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Abstract— For autonomous nonlinear systems stability and
input-output properties in small enough (infinitesimally small)
neighborhoods of (linearly) asymptotically stable equilibrium
points can be inferred from the properties of the linearized dy-
namics. On the other hand, generalizations of the S-procedure
and sum-of-squares programming promise a framework poten-
tially capable of generating certificates valid over quantifiable,
finite size neighborhoods of the equilibrium points. However,
this procedure involves multiple relaxations (unidirectional
implications). Therefore, it is not obvious if the sum-of-
squares programming based nonlinear analysis can return a
feasible answer whenever linearization based analysis does.
Here, we prove that, for a restricted but practically useful
class of systems, conditions in sum-of-squares programming
based region-of-attraction, reachability, and input-output gain
analyses are feasible whenever linearization based analysis is
conclusive. Besides the theoretical interest, such results may
lead to computationally less demanding, potentially more con-
servative nonlinear (compared to direct use of sum-of-squares
formulations) analysis tools.

I. INTRODUCTION

Internal stability, input-to-state, and input-to-output prop-
erties of dynamical systems are commonly analyzed by
constructing Lyapunov/storage functions satisfying certain
conditions (such as dissipation inequalities) [1], [2], [3],
[4]. Generalizations of the S-procedure [5], [4] and sum-of-
squares (SOS) relaxations for polynomial nonnegativity [6]
provide a framework for the search of such Lyapunov/storage
functions for systems with polynomial vector fields based on
(linear or bilinear) semidefinite programming (SDP) prob-
lems [7], [8], [9], [10], [11], [12], [13], [14], [16], [17], [18].

On the other hand, it is well known that if there exist Lya-
punov/storage functions for the linearized dynamics (around
an asymptotically stable equilibrium point) then, by certain
continuity assumptions, these functions (always) serve as
Lyapunov/storage functions for the nonlinear system possibly
only locally, i.e., corresponding Lyapunov or dissipation
inequalities only hold in a “sufficiently small” neighborhood
of the equilibrium point. The promise of SOS programming
based nonlinear analysis is that it may be possible to con-
struct Lyapunov/storage functions that satisfy the Lyapunov
or dissipation inequalities not only in a “sufficiently small”
neighborhood of the equilibrium point but also over quan-
tifiable, non-trivial subsets of the state space. However, the
transformation from system analysis questions to correspond-
ing SDP problems (in nonlinear analysis) involves a series
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of sufficient (but not necessarily necessary) conditions. For
example, except certain special or hypothetical cases, S-
procedure is not lossless and not all nonnegative polynomials
are SOS [9], [6], [19]. Therefore, it is not obvious if (SOS
programming based) nonlinear analysis yields a certificate
for the nonlinear system whenever the linear analysis does.

In this paper, we propose conditions for the feasibility
of SDP problems (equivalently SOS programming prob-
lems), proposed in [5], [20], [7] in the context of stability
robustness, reachability, and input-output gain analyses of
nonlinear systems around asymptotically stable equilibrium
points, based on the properties of the corresponding lin-
earized dynamics. We focus on systems with cubic polyno-
mial vectors fields mainly due to practical reasons. Although
SOS programming based analysis can theoretically be used
for systems with polynomial vector fields of any finite
degree, there are practical bounds on the degree imposed by
the capabilities of current SDP solvers and computational
resources (see [7], [14] for a more detailed discussion).
Therefore, nonlinear analysis with cubic vectors fields is
a pragmatic extension for linearization based analysis with
tighter approximations for the actual dynamics and richer
families of Lyapunov/storage functions.

The motivation is primarily theoretical, showing that the
optimization-based (S-procedure/SOS) methods for nonlin-
ear analysis (as proposed in [5], [20], [7]) always involve
feasible bilinear SDP problems whenever the linearization
is asymptotically stable. Furthermore, these results may also
have some limited practical value in actually constructing
(possibly conservative) quantitative results for the nonlinear
system as outlined in section VI.

Notation: For ξ ∈ Rn, ξ � 0 means that ξk ≥ 0 for
k = 1, · · · , n. For Q = QT ∈ Rn×n, Q � 0 (Q � 0)
means that ξTQξ ≥ 0 (> 0) for all ξ ∈ Rn. For x1 ∈ Rn1

and x2 ∈ Rn2 , [x1;x2] ∈ Rn1+n2 denotes the concatenation
of x1 and x2. R[ξ] represents the set of polynomials in ξ
with real coefficients. The subset Σ[ξ] := {π = π2

1 + π2
2 +

· · ·+ π2
M : π1, · · · , πM ∈ R[ξ]} of R[ξ] is the set of SOS

polynomials. For η > 0 and a function g : Rn → R, define
the η-sublevel set Ωg,η of g as

Ωg,γ := {x ∈ Rn : g(x) ≤ η}.

For a piecewise continuous map u : [0,∞) → Rm, define
the L2 norm as

‖u‖2 :=

√∫ ∞
0

u(t)Tu(t)dt.
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In several places, a relationship between an algebraic con-
dition on some real variables and state properties of a dy-
namical system is claimed, and same symbol for a particular
real variable in the algebraic statement as well as the state
of the dynamical system is used. This could be a source of
confusion, so care on the reader’s part is required. /

II. PRELIMINARIES

Following two lemmas are straightforward generalizations
of the S-procedure [4]. See [21], [7] for the proofs.

Lemma II.1. Given g0, g1, · · · , gm ∈ R[x], if there
exist s1, · · · , sm ∈ Σ[x] such that g0 −

∑m
i=1 sigi ∈

Σ[x], then {x ∈ Rn : g1(x), . . . , gm(x) ≥ 0}
⊆ {x ∈ Rn : g0(x) ≥ 0} .

Lemma II.2. Given g0, g1, g2 ∈ R[x] such that g0 is positive
definite and g0(0) = 0, if there exist s1, s2 ∈ Σ[x] such that
g1s1 + g2s2 − g0 ∈ Σ[x], then {x ∈ Rn : g1(x) ≤ 0}\{0}
⊂ {x ∈ Rn : g2(x) > 0}. /

The following fact will be used in the subsequent sections.

Lemma II.3. Let Q = QT ∈ Rn×n be positive definite,
f : Rn → R be defined as f(x) = xTQx, c1, . . . , cm
be positive real numbers, and g : Rm → R be defined as
g(y) = c1y

2
1 + c2y

2
2 + . . . + cmy

2
m. Then, f(x)g(y) can be

written in the form

f(x)g(y) = z(x, y)THz(x, y),

where z(x, y) = y ⊗ x and H � 0. /

Proof:

f(x)g(y) = xTQx(c1y2
1 + . . .+ cmy

2
m)

=
∑m
i=1 ci(yix)TQ(yix)

= z(x, y)THz(x, y),

where H = HT ∈ Rnm×nm is

H :=

 c1Q
. . .

cnQ

 .
Clearly, H is positive definite since Q is positive definite. �

Lemma II.4. Let Q and f be as in Lemma II.3, c1, . . . , cn
be positive real numbers, and g : Rn → R be defined as
g(x) = c1x

2
1 + . . . + cnx

2
n. Then, f(x)g(x) can be written

in the form
f(x)g(x) = z(x)THz(x),

where z(x) is a vector of all monomials of the form xiyj for
i = 1, . . . , n and j ≥ i with no repetition. /

Lemma II.5. Let Q and f be as in Lemma II.3, c1, . . . , cn+m

be positive real numbers, and g : Rm+n → R be defined as
g(x, y) = c1y

2
1+c2y2

2+. . .+cmy2
m+cm+1x

2
1+. . .+cm+nx

2
n.

Then, f(x)g(x, y) can be written in the form

f(x)g(x, y) = z(x, [x; y])THz(x, [x; y]),

where z(x, [x; y]) is a vector of all monomials of the form x2
i

for i = 1, . . . , n and xiyj for i = 1, . . . n and j = 1, . . .m
with no repetition. /

Although z (as defined above)depends on x and/or y,
this dependence will not be explicitly notated whenever it
is convenient and does not cause confusion.

III. L2 → L2 INPUT-OUTPUT GAIN ANALYSIS

Consider the dynamical system governed by

ẋ(t) = f(x(t), w(t))
y(t) = h(x(t)), (1)

where x(t) ∈ Rn, w(t) ∈ Rnw , and f is a n-vector with
elements in R[(x,w)] such that f(0, 0) = 0 and h is an
ny-vector with elements in R[x] such that h(0) = 0. Let
φ(t; x0, w) denote the solution to (1) at time t with the initial
condition x(0) = x0 driven by the input/disturbance w.

Lemma III.1. [22] If there exist real scalars γ > 0 and
R ≥ 0 and a continuously differentiable function V such
that

V (0) = 0 and V (x) > 0 for all nonzero x ∈ Rn, (2)
ΩV,R2 is bounded, (3)

∇V f(x,w) ≤ wTw − γ−2yT y ∀x ∈ ΩV,R2 , w ∈ Rnw ,
(4)

then for the system in (1)

x(0) = 0 and ‖w‖2 ≤ R⇒ ‖y‖2 ≤ γ‖w‖2. (5)

/

In other words, γ is an upper bound for the “local” input-
output gain for the system in (1). For given γ > 0, we
restrict V to be a polynomial of some fixed degree and use
Proposition III.1 to compute lower bounds on the maximum
value of R such that (2)-(4) hold.

Proposition III.1. [21] For given γ > 0 and positive definite
polynomial l1 satisfying l1(0) = 0, let RL2 be defined
through

R2
L2

:= max
V ∈Vpoly,R≥0,s∈S

R2 subject to (6)

V (0) = 0, s1 ∈ Σ[(x,w)], (7)
V − l1 ∈ Σ[x], (8)

−
[
(R2 − V )s1 +∇V f(x,w)− wTw + γ−2yT y

]
(9)

∈ Σ[(x,w)],

where Vpoly ⊆ V and S are prescribed finite-dimensional
subsets of R[x]. Then,

x(0) = 0 and ‖w‖2 ≤ RL2 ⇒ ‖y‖2 ≤ γ‖w‖2.

/

Now, consider the case where f and h are of the form

f(x,w) = Ax+Bw + f2(x) + f3(x)
+ (g1(x) + g2(x))w,

h(x) = Cx+ h2(x),
(10)
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where f2, f3, g1, g2, and h2 are matrices (of appropriate
dimension) of (purely) quadratic, cubic, linear, quadratic,
and quadratic polynomials in their arguments respectively
and A, B, and C are matrices (of reals) of appropriate
dimension. Then, the following proposition gives conditions
on the feasibility of the constraints in (6)-(9) based on the
analysis of the corresponding linearized dynamics.

Proposition III.2. For given γ > 0, l1(x) = xTL1x with
L1 � 0, f and h in the form in (10), if there exist a symmetric
matrix Q and ε > 0 such that Q � L1 and

D0 :=
[
ATQ+QA+ γ−2CTC QB

BTQ −I

]
� −εI,

then the constraints in (6)-(9) are feasible. /

Proof: Define V (x) := xTQx. Let z = z(x, [x;w]) be
as defined in section II. Then, there exist H � 0, M1, and
M2 such that

zTHz = (wTw + xTx)(xTQx)
xTM1z = xTQ(f2(x) + g1(x)w) + xTCTh2(x)
zTM2z = 2xTQ(f3(x) + g2(x)w) + h2(x)Th2(x).

Let α > 0 be such that

D1 :=
[
−D0 −M1

−MT
1 αH −M2

]
� εI

and R :=
√
ε/(2α). Define

s1(x,w) := α(xTx+ wTw).

Then, V − l1 and s1 are SOS. Consider

b(x,w) := −
[
∇V f(x,w)− wTw + hT (x)h(x)

]
− α(xTx+ wTw)

(
R2 − V

)
,

which can be decomposed as

b(x,w) = [x;w; z]TD2[x;w; z],

where

D2 := D1 −
[
αR2I 0

0 0

]
� εI −

[
αR2I 0

0 0

]
� ε

2
I.

Hence, b is SOS. �

IV. REACHABILITY ANALYSIS

For R ≥ 0 and ‖w‖2 ≤ R, the set GR2 of points reachable
from the origin under the flow of (1) is defined as

GR2 := {φ(T ; 0, w) ∈ Rn : T ≥ 0, ‖w‖2 ≤ R} .

Lemma IV.1 adapted from a Lyapunov-like argument in [4,
§6.1.1] provides a characterization of sets containing GR2

[5], [22].

Lemma IV.1. If there exists a continuously differentiable
function V such that

V (x) > 0 for all x ∈ Rn\{0} with V (0) = 0, (11)
ΩV,R2 is bounded, (12)

∇V f(x,w) ≤ wTw ∀x ∈ ΩV,R2 , w ∈ Rnw , (13)

then GR2 ⊆ ΩV,R2 . /

For given β > 0 and positive definite, convex polynomial
p, the following proposition provides a lower bound for the
maximum value of R such that GR2 ⊆ Ωp,β .

Proposition IV.1. [22] Let β > 0, l1 be a positive definite
polynomial satisfying l1(0) = 0, Rreach be defined through

R2
reach := max

V ∈Vpoly,R≥0,s1∈S1,s2∈S2
R2 subject to (14)

V (0) = 0, s1 ∈ Σ[x], and s2 ∈ Σ[(x,w)], (15)
V − l1 ∈ Σ[x], (16)

(β − p)− (R2 − V )s1 ∈ Σ[x], (17)
−
[
(R2 − V )s2 +∇V f(x,w)− wTw

]
∈ Σ[(x,w)],(18)

where Vpoly ⊂ V and Si are prescribed finite-dimensional
subsets of R[x]. Then,

GR2
reach

⊆ ΩV,R2
reach

⊆ Ωp,β .

/

Proposition IV.2. For p(x) = xTPx with P � 0, l1(x) =
xTL1x with L1 � 0, and f of the form in (10), if there exist
ε > 0 and Q � L1 such that

D0 :=
[
ATQ+QA QB

BTQ −I

]
� −εI,

then the constraints in (14)-(18) are feasible. /

Proof: Define V (x) := xTQx. Let z = z(x, [x;w]) be
as defined in section II. Then, there exist H � 0 (by Lemma
II.3), M1, and M2 such that

zTHz = (wTw + xTx)(xTQx)
xTM1z = xTQ(f2(x) + g1(x)w)
zTM2z = 2xTQ(f3(x) + g2(x)w).

Let α > 0 be such that

D1 :=
[
−D0 −M1

−MT
1 αH −M2

]
� εI,

and R :=
√
ε/(2α). Define

s1(x) := λmax(P )/λmin(Q)
s2(x,w) := α(xTx+ wTw).

Then, V − l1, s1, s2, and (β − p) − (R2 − V )s1 are SOS.
Consider

b(x,w) := −∇V f(x,w)+wTw−α(xTx+wTw)
(
R2 − V

)
,

which can be decomposed as

b(x,w) = [x;w; z]TD2[x;w; z],

where

D2 := D1 −
[
αR2I 0

0 0

]
� εI −

[
αR2I 0

0 0

]
� ε

2
I.

Hence, b is SOS. �
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A. Extensions of the reachability analysis for systems with
degenerate linearization

Consider the system

ẋ(t) = Amx(t) +BΛK̂T
x (t)x(t) + Ew(t)

˙̂
Kx = −Γxx(t)xT (t)PB,

(19)

where x(t) ∈ Rn, B ∈ Rn×m, w(t) ∈ Rn×nw , and P , E,
Λ, Am, and Γx are matrices of appropriate dimension with
Hurwitz Am. The dynamics in (19) can be considered as
the closed loop dynamics for the system ẋ(t) = Amx(t) +
BΛu(t) regulated to the origin by a model reference adaptive
controller of the form[23]

u(t) = K̂x(t)x(t)

in the presence of the disturbance w. Note that the results
in Proposition IV.2 is not applicable to the system in (19)
because its linearization at the origin is not asymptotically
stable. Nevertheless, the nonlinear reachability analysis as
outlined in Proposition IV.1 is still applicable.

Proposition IV.3. Let x1 ∈ Rn1 , x2 ∈ Rn2 , and w ∈ Rnw
and consider

ẋ1(t) = Ax1(t) + b(x1(t), x2(t)) + Ew(t)
ẋ2(t) = q(x1(t)) (20)

where b : Rn1+n2 → Rn1 whose entries are bilinear
polynomials in x1 and x2, q : Rn1 → Rn2 whose entries are
quadratic polynomials in x1, and E and A are real matrices
of appropriate dimension such that there exist Q1 = QT1 � 0
and ε > 0 with[

ATQ1 +Q1A Q1E
ETQ1 −I

]
� −εI.

. Then, there exist positive definite V ∈ R[(x1, x2)], s ∈
Σ[x1], and R > 0 such that bm ∈ Σ[(x1, x2, w)] where

bm(x1, x2, w) := −
[
∇V f(x1, x2, w)− wTw + (R2 − V )s

]
.

/

Proof: Let V (x) := xT1 Q1x1 + xT2 Q2x2, where Q2 =
QT2 � 0. Then, there exist B1, B2, H1 � 0, and H2 � 0
such that

xT1 Q1b(x1, x2) = xT1 B1z(x1, x2)
xT2 Q2q(x1) = xT1 B2z(x1, x2)
xT1 Q1x1x

T
1 x1 = z(x1, x1)TM1z(x1, x1)

xT2 Q2x2x
T
1 x1 = z(x1, x2)TM2z(x1, x2)

and −bm can be decomposed as

bm =


x1

w
z(x1, x1)
z(x1, x2)


T

D


x1

w
z(x1, x1)
z(x1, x2)

 ,

where D is
ATQ1 +Q1A+ αR2I Q1E 0 B1 +B2

ETQ1 −I 0 0
0 0 −αM1 0

BT1 +BT2 0 0 −αM2


and D negative semidefinite by proper choice of α (suf-
ficiently large) and R (sufficiently small). Consequently,
bm ∈ Σ[(x1, x2, w)]. �

V. REGION-OF-ATTRACTION ANALYSIS

The material of this section is adapted from [24] where
similar results were proven in the context of robust region-of-
attraction analysis for systems with parametric uncertainty.
For simplicity, we focus on the case without uncertainty.
Consider the autonomous nonlinear dynamical system

ẋ(t) = f(x(t)), (21)

where x(t) ∈ Rn is the state vector and f is an n-vector
with entries in R[x] satisfying f(0) = 0, i.e., the origin is an
equilibrium point of (21). Let φ(t; x0) denote the solution
to (21) at time t with the initial condition x(0) = x0. The
region-of-attraction of the origin for the system (21) is{

x0 ∈ Rn : lim
t→∞

φ(t; x0) = 0
}
.

A modification of a similar result in [2] provides a character-
ization of invariant subsets of the ROA in terms of sublevel
sets of appropriately chosen Lyapunov functions.

Lemma V.1. Let γ ∈ R be positive. If there exists a
continuously differentiable function V : Rn → R such
that

ΩV,γ is bounded, and (22)
V (0) = 0 and V (x) > 0 for all x ∈ Rn (23)
ΩV,γ\ {0} ⊂ {x ∈ Rn : ∇V (x)f(x) < 0} , (24)

then ΩV,γ is an invariant subset of the ROA. /

In order to enlarge the computed invariant subset of
the ROA, we define a variable sized region Ωp,β =
{x ∈ Rn : p(x) ≤ β}, where p ∈ R[x] is a fixed positive
definite convex polynomial, and maximize β while imposing
the constraint Ωp,β ⊆ ΩV,γ along with the constraints (22)-
(24).

SOS programming and simple generalizations of the S-
procedure (namely Lemmas II.1 and II.2) provide algebraic
sufficient conditions for the constraints in Lemma V.1.
Specifically, let l1 and l2 be a positive definite polynomials.
Then, since l1 is radially unbounded, the constraint

V − l1 ∈ Σ[x] (25)

and V (0) = 0 are sufficient conditions for (22) and (23). By
Lemma II.1, if s1 ∈ Σ[x], then

− [(β − p)s1 + (V − γ)] ∈ Σ[x] (26)

implies the set containment Ωp,β ⊆ ΩV,γ , and by Lemma
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II.2, if s2, s3 ∈ Σ[x], then

− [(γ − V )s2 +∇V fs3 + l2] ∈ Σ[x] (27)

is a sufficient condition for (24). Consequently, Ωp,β∗ROA is
a subset of the ROA and ΩV ∗,γ∗ is an invariant subset of the
ROA, where

β∗ROA := max
V ∈V,β,si∈Si

β subject to (25)− (27),

V (0) = 0, si ∈ Σ[x], β > 0
(28)

and V ∗ and γ∗ are optimal values of V and γ in (28). Here,
the sets V and Si are prescribed finite-dimensional subspaces
of polynomials.

We now focus on systems governed by ordinary differen-
tial equations of the form

ẋ = f(x) = Ax+ f2(x) + f3(x), (29)

where f2 and f3 are vectors of (purely) quadratic and
cubic polynomials, respectively, and A ∈ Rn×n, and prove
that asymptotic stability of the linearized dynamics is also
sufficient for the feasibility of the constraints in (28) (for
sufficiently small γ > 0).

Proposition V.1. Let f be an n-vector of cubic polynomials
in x satisfying f(0) = 0, and let P � 0, R1 � 0, R2 � 0,

p(x) := xTPx, l1(x) := xTR1x, l2(x) := xTR2x.

If there exists Q � 0 such that

ATQ+QA ≺ 0,

then the constraints in (28) are feasible for some R > 0. /

Proof: The proof is constructive. Let z = z(x) be as
defined in Lemma II.4, Q̃ � 0 satisfy AT Q̃+ Q̃A � −2R2

and Q̃ � R1 (such Q̃ can be obtained by properly scaling
Q). Let

ε := λmin(R2), V (x) := xT Q̃x,

and H � 0 be such that (xTx)V (x) = zTHz (which exists
by Lemma II.4). Let M2 ∈ Rn×nz and symmetric M3 ∈
Rnz×nz satisfy

∇V f2(x) = xTM2z
∇V f3(x) = zTM3z.

Define
s1(x) := λmax(Q̃)

λmin(P )

c2 :=
λmax(M+

3 + 1
2εM

T
2 M2)

λmin(H)

s2(x) := c2x
Tx

γ := ε
2c2

β := γ
2s1

s3(x) := 1,

where for a symmetric matrix M , M+ denotes its projection
into the positive semidefinite cone. Clearly, s1 ∈ Σ[x], s2 ∈
Σ[x], and s3 ∈ Σ[x]. Note that

V (x)− l1(x) = xT (Q̃−R1)x ∈ Σ[x],

since Q̃−R1 � 0.

b1(x) := − [(γ − V )s2 +∇V fs3 + l2]

=
[
x
z

]T
B1

[
x
z

]
,

where

B1 :=
[
−γc2I −R2 − (AT Q̃+ Q̃A) −M2/2

−MT
2 /2 c2H −M3

]
and

B1 �
[

ε
2I −M2/2

−MT
2 /2 c2H −M3

]
� 0

by the Schur’s complement formula. Consequently, b1(x) ∈
Σ[x]. Finally,

− [(β − p)s1 + (V − γ)]

=
[

1
x

]T [ −βs1 + γ 0
0 s1P − Q̃

]
︸ ︷︷ ︸

B2

[
1
x

]
,

(30)
where B2 � 0 and consequently b2 ∈ Σ[x]. �

VI. INTERPRETATION AND DEMONSTRATION OF RESULTS

It is worth re-stating that the motivation here is theoretical
rather than practical. The conclusions can be summarized
as that the nonlinear local analysis (based on S-procedure
and SOS programming relaxations as proposed in [5], [20],
[7]) is always capable of returning a feasible result (i.e.,
corresponding optimization problems are feasible) whenever
corresponding conditions for the linearized dynamics are
feasible. Alternatively, these results may also have some
limited practical value in constructing (possibly conservative)
quantitative results for the nonlinear system. For example,
Propositions V.1, III.2, and IV.2 can be directly used to
construct feasible solutions for the problems in Eq. (28)
and Propositions III.1 and IV.1, respectively. Proofs of
Propositions V.1, III.2, and IV.2 also suggest a recipe for
constructing less conservative feasible solutions for these
problems by searching for an “optimal” quadratic Lyapunov
function (instead of fixing V to a Lyapunov function for
the linearization). A construction in the case of region-of-
attraction analysis can be summarized as follows: Choose
the multipliers s1, s2, and s3 in the form given in the
proof of Proposition V.1 with the free parameter c2. Affinely
parameterize H , M2, and M3 in terms of Q (note that there
may be multiple possible parameterizations for M2 and M3

and the choice may change the quantitative results - here
we arbitrarily choose one parametrization). Then, Ωp,β∗ is a
subset of the ROA where

β∗ := max
γ,c2,β,Q=QT�R1

β subject to[
−γc2I −R2 −ATQ−QA −M2(Q)/2

−M2(Q)T /2 c2H(Q)−M3(Q)

]
� 0[

−β + γ 0
0 P −Q

]
� 0.

(31)
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Note that the above problem can be solved through a series
of convex SDP problems by a line search on c2. Construction
of feasible solutions for the problems in Propositions III.1
and IV.1 can be developed in a similar manner.

The value of such “suboptimal” construction of feasible
solutions for the problems in the context of nonlinear system
analysis may be better appreciated by recalling the fact that
one of the main difficulties in SOS programming based
nonlinear system analysis is the computational complexity
of the SOS programming. The procedure outlined above
provides an ad hoc way of generating (possibly high quality)
solutions for the corresponding optimization problems or
initial seeds for further optimization. The following example
demonstrates this construction for ROA analysis and com-
pares the results with “optimal”solutions from (28).

Example VI.1. Consider the Van der Pol dynamics

ẋ1 = −x2

ẋ2 = x1 + (x2
1 − 1)x2,

which have a stable equilibrium point at the origin and an
unstable limit cycle around the origin which is the boundary
of the ROA of the equilibrium point. In this example, we will
construct invariant subsets of the ROA using the problem in
Eq. (28) and Proposition V.1. Let x = [x1 x2]T , p(x) = xTx,
l1(x) = l2(x) = 10−6xTx. The solution of the problem
in Eq. (28) with a quadratic Lyapunov function candidate,
(purely) quadratic s2, and scalar s1 and s3 certifies Ωp,1.57
to be a subset of the ROA. The feasible solution provided in
Proposition V.1 certifies Ωp,0.20 to be a subset of the ROA.
Alternatively, by the procedure outlined above certifies that
Ωp,0.65 is in the ROA. /

VII. CONCLUSIONS

Sum-of-squares programming based analysis of nonlinear
systems with polynomial vector fields may be regarded supe-
rior to analysis based on linearized dynamics in the sense that
the former is capable of generating quantitative certificates
as opposed to conclusions from the latter valid only over in-
finitesimally small neighborhoods of the equilibrium points.
However, sum-of-squares based approach involves multiple
relaxations. Therefore, it is not obvious if the sum-of-squares
programming based nonlinear analysis can return feasible
answers whenever linearization based analysis does. In this
paper, we proved that, for a restricted but practically useful
class of systems, conditions in sum-of-squares programming
based region-of-attraction, reachability, and input-output gain
analyses are feasible whenever linearization based analysis is
conclusive. Besides the theoretical interest, such results may
lead to computationally less demanding, potentially more
conservative nonlinear (compared to direct use of sum-of-
squares programming formulations) analysis tools.
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