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Abstract— The ability of birds to perch robustly and ef-
fectively is a powerful demonstration of the capabilities of
nature’s control systems. Their apparent robustness to gust
disturbances is particularly remarkable because when the
airspeed approaches zero just before acquiring a perch, the
influence of aerodynamic forces, and therefore potentially the
control authority, is severely compromised. In this paper we
present a simplified closed-form model for a fixed-wing aircraft
which closely agrees with experimental indoor perching data.
We then carefully examine the LTV controllability along an
optimized perching trajectory for three different actuation
scenarios - a glider (no powerplant), a fixed propeller, and a
propeller with thrust vectoring. The results reveal that while
all three vehicles are LTV controllable along the trajectory, the
additional actuators allow the perch to be more easily acquired
with less control surface deflections. However, in all three cases,
disturbances experienced just before reaching the perch cannot
be effectively rejected.

I. INTRODUCTION

The ability of a bird to land accurately and robustly on

a perch represents one of the most striking examples of

the high-performance capabilities of nature’s aerodynamic

control systems—capabilities which are as yet unmatched by

man-made controllers. To accomplish perching with the level

of performance which birds achieve requires that an aircraft

leave the standard flight envelope in which most planes fly,

and around which most aircraft controllers are designed.

Birds decelerate rapidly to a perch by a fast transient maneu-

ver which exploits the large viscous and pressure drags which

occur at extremely high angles-of-attack (AoA). In these

high-AoA maneuvers, the sort of control an aircraft possesses

over its dynamics is very different from that which it has

during standard forward flight. Both this obvious disparity

in achieved performance and the growing interest in industry

for highly agile aircraft have inspired significant interest in

the design of controllers for robust perching.

(Cory & Tedrake, 2008) presents a successful demonstra-

tion of a perching glider in a laboratory, where a feedback

policy optimized on a coarse state-space discretization was

used to execute the perching maneuver in still air condi-

tions. A closely related project at Cornell has examined

optimal trajectory generation for a morphing fixed-wing

aircraft (Wickenheiser et al., 2005; Wickenheiser & Garcia,

2006; Wickenheiser & Garcia, 2008). Their most recent
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Fig. 1. Simple aircraft model. The blue segments represent the aerodynamic
surfaces of the wings and the elevator with surface areas Sw and Se,
respectively, going into the page.

work focuses on computing optimal perching trajectories in

simulation through the solution of a boundary value problem.

However, previous work has so far ignored the issue of

stabilizing a perching trajectory in the face of aerodynamic

disturbances and sensory limitations. As we progress from

laboratory to outdoor experiments, stabilization becomes

critically important. In this paper, we investigate the control-

lability and stabilizability of a generated perching trajectory

in order to design a feedback control system capable of

robustly handling disturbances.

We first present a simplified aircraft model, whose aero-

dynamics are based upon the work of (Cory & Tedrake,

2008). Using direct collocation, we design nominal control

trajectories for this aircraft and examine their controllability

and stabilizability, although all forms are very susceptible to

disturbances. Our analysis suggests that the ability to gener-

ate thrust provides an advantage in practical performance and

can improve the robustness of the trajectory. We conclude

with a discussion of how these results may be applied to

actual perching experiments and of additional techniques

which may further improve performance through the use of

nonlinear controllers.

II. LIFT AND DRAG MODELS

Our simple aircraft model can be described by a single

rigid body subject to gravitational and aerodynamic forces.

The aerodynamic forces are functions of the AoA of both

the wing and the elevator control surface, both of which

are modeled as thin flat-plates (see Figure 1). Thin flat-plate

models are in fact a close approximation to the actual wings

and control surfaces found on many aerobatic hobby aircraft,
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Fig. 2. A image taken with a high-speed camera from one of the perching
trajectories used to obtain data on lift and drag coefficients. The target perch
can be seen in the left of the image.

whose designs have formed the basis of our experimental

platforms. Our previous work presented in (Cory & Tedrake,

2008) described a statistical procedure for modeling the aero-

dynamics of one of our flat-plate experimental gliders (no

powerplant). Using tools from nonlinear system identifica-

tion, lift, drag, and moment coefficients were estimated over

a large range of angles-of-attack (including post-stall) using

real flight data obtained through the execution of perching

trajectories as in Figure 2 (Cory & Tedrake, 2008). Recent

work (Hoburg & Tedrake, 2009) shows that the majority

of the aerodynamic behavior can be explained using simple

trends predicted by flat-plate theory (Tangler & Kocurek,

2005), and thus this minimalist model was used. Figure 3

illustrates the general trend of the estimated coefficients

versus their flat-plate theory predictions. Our data agree

closely with their respective theory models, which can be

written in closed form as:

CL = 2 sin(α) cos(α) (1)

CD = 2 sin2(α) (2)

We suspect that the discrepancy in the drag data at high

angles-of-attack are largely due to time-varying vortex shed-

ding effects. For the purposes of this investigation, we use

flat-plate theory models which effectively average out the

vorticity effects at high angles-of-attack. Also, as the data

was taken from a glider, our model does not necessarily

capture any of the aerodynamic effects of ‘backwash’ off

a forward-mounted propeller - these effects are thought to

be very significant in much of the work on fixed-wing

aerobatics(Green & Oh, 2005; How et al., 2008). Future work

will focus on investigating higher-fidelity models that include

these effects.

III. AIRCRAFT MODEL

First, let us define unit vectors normal to the control

surfaces (in the directions of the illustrated force vectors):

nw =

[

−sθ
cθ

]

, ne =

[

−sθ+φ
cθ+φ

]

,

where we introduce the notation sθ = sin θ and cθ = cos θ
which will be used throughout this section. Also, let us define
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Fig. 3. Scatter plots showing the general trend of the estimated aerodynamic
coefficients presented in (Cory & Tedrake, 2008). Shown are lift and
drag coefficient data (blue) overlaid with their respective flat plate theory
predictions (red).

a unit vector along the primary fuselage axis (tail to nose)

of the vehicle (and thus the thrust force):

np =

[

cθ
sθ

]

.

Next, solving for the kinematics of the geometric centroid

of aerodynamic surfaces (here equivalent to the the mean

aerodynamic chord, which is the center of pressure for flat

plate theory) for each aerodynamic surface, we have:

xw =

[

x− lwcθ
y − lwsθ

]

, xe =

[

x− lcθ − lecθ+φ
y − lsθ − lesθ+φ

]

, (3)

ẋw =

[

ẋ+ lwθ̇sθ
ẏ − lwθ̇cθ

]

, ẋe =

[

ẋ+ lθ̇sθ + le(θ̇ + φ̇)sθ+φ
ẏ − lθ̇cθ − le(θ̇ + φ̇)cθ+φ

]

.

(4)

The determination of the aerodynamic forces is of utmost

importance to the fidelity of the model. Equations (1) and (2)

provide expressions for lift and drag coefficients that model

the observed dynamics very well. Using these coefficients,

the forces on the wing and elevator can be written in closed

form. The force on the wing can be written as components

in lift and drag:

FwL =
1

2
ρ|ẋw|

2CLSw, FwD =
1

2
ρ|ẋw|

2CDSw. (5)
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where ρ is the density of air, and Sw and Se are the surface

areas of the wing and tail control surfaces, respectively.

Using CL and CD from Eqns. (1) and (2), these can be

written:

FwL =ρ|ẋw|
2 cos(αw) sin(αw)Sw, (6)

FwD =ρ|ẋw|
2 sin2(αw)Sw. (7)

where αw and αe are the angles-of-attack of the wing and

elevator (computed using the atan2 function in Matlab),

respectively. Noting that the lift force is perpendicular to

velocity in the positive y direction and the drag force is

anti-parallel to the velocity, this can be written (using the

normal of the wing) as:

Fw = ρ|ẋw|
2 sin(αw)Swnw (8)

Doing the same for the elevator we can represent the aero-

dynamic forces as:

αw =θ − tan−1 ẏw
ẋw

, αe = θ + φ− tan−1 ẏe
ẋe

(9)

Fw =ρSw|ẋw|
2 sinαwnw = fwnw, (10)

Fe =ρSe|ẋe|
2 sinαene = fene, (11)

The thrust force can then be given simply as:

Ft = ft [cθ+ψ sθ+ψ] , (12)

where ft is the signed magnitude of the thrust and ψ is the

angle of the thrust vector with respect to the body. Finally,

these forces can be integrated into the dynamics as follows:

mẍ = − fwsθ − fesθ+φ + ftcθ+ψ (13)

mz̈ =fwcθ + fecθ+φ + ftsθ+ψ −mg (14)

Iθ̈ = − fwlw − fe(lcφ + le) + ftltsψ (15)

We can then write the state of the system as x =
[x y θ φ ẋ ẏ θ̇ φ̇]T , and the actuation as u = [φ̈ ft ψ]T . The

parameters for this system were then chosen based upon the

properties of the foam glider used for the data collection in

§II, and are given below in Table I.

TABLE I

MODEL PARAMETERS

Parameter Value

m [kg] 0.05
g [m/s2] 9.81
ρ [kg/m3] 1.292
Sw [m2] 0.1
Se [m2] 0.025
I [kg · m2] 6 · 10−3

l [m] 0.35
lw [m] −0.03
le [m] 0.04
lt [m] 0.05

While this is an extremely simplified model of an aircraft,

it has sufficient richness to capture a number of the relevant

properties of the system. It allows for stable gliding without

thrust, as well as a number of trim conditions for steady level

flight, steady climb and so forth. Most critically, however,

is the fact that the aerodynamic force models agree well

with those seen on the experimental glider, even up to very

high angles of attack. As high-AoA maneuvers are a critical

aspect of the perching problem to be solved, the fidelity of

the model in this regime is of utmost importance.

IV. PROBLEM SPECIFICATION

As previously mentioned, the state of the aircraft consists

of seven state variables x = [x y θ φ ẋ ẏ θ̇ φ̇]T , where x

denotes the state vector, x and y denote the horizontal and

vertical distance to the perch, respectively, θ denotes the pitch

of the aircraft, and φ is the elevator deflection angle. The

perching task is described as follows: the aircraft approaches

a perch that is 4m away with an initial forward velocity of

6m/s at zero angle-of-attack, (i.e., x0 = [0 1 0 0 6 0 0 0]T ).

Given these initial conditions, the goal is to land the aircraft

on the perch with a negligible final forward velocity (xd =
[4 0.75 π/4 0 0 − 0.5 − 0.5 0]T ) in one second

using the control inputs: elevator torque, thrust (propulsive)

force and thrust direction (i.e., thrust vectoring). Thrust is

saturated between -0.03 and 0.1 Newtons, the elevator angle

is constrained to be between −40◦ and 40◦ and ψ was set

between −15◦ and 15◦. A nominal perching trajectory is

illustrated in Figure 4.

In the following sections, we divide the control problem

into two steps: 1) Generate a feasible open-loop perching

trajectory using direct collocation optimization(von Stryk,

1993; Betts, 2001) and 2) Stabilize this nominal perching tra-

jectory by computing a local feedback policy and analyzing

the controllability of the closed loop system. The constraints

on our trajectory generation differ from those used in Wick-

enheiser’s (Wickenheiser & Garcia, 2008) gradient descent

approach in that we allow for some deviations around the

desired state (e.g., in pitch velocity).

Fig. 4. A nominal perching trajectory. The trajectory of the glider illustrated
here is derived in (Cory & Tedrake, 2008) from real flight data of a
successful perch.

V. TRAJECTORY GENERATION

A. Trajectory Generation Method

We computed an open-loop perching trajectory for our

model using direct collocation: a standard policy optimiza-

tion method for finite horizon problems. While solutions

from this method can be susceptible to local minima, re-

peated runs from several initial trajectories converged to the

same result.

This optimization was performed with a finite horizon of

one second, and a quadratic cost function with costs imposed
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on actuation and final position error, taking the form:

J =

∫ tf

ti

(

u
T (t)Ru(t) + x

T (t)Qx(t)
)

dt+x
T (tf )Qfx(tf ),

(16)

where R = RT > 0 is cost on actuation, Q = QT ≥ 0 is

cost on state error and Qf = QTf ≥ 0 is the cost on final state

error. For this work all were taken to be diagonal matrices,

with R set to 10−6 · I (and I as the identity matrix), Q as

the zero matrix, while Qf ’s diagonal was set as diag(Qf ) =
[100 100 25 0 10 10 0] (corresponding to gains of 100 on x
and y, 25 on θ and 10 on both ẋ and ẏ).

B. Resulting Trajectory

The optimization was performed for all three variants of

the aircraft—a glider, an aircraft with thrust and an aircraft

with thrust-vectoring. The open-loop trajectory found for

each of these systems was slightly different, although they

are qualitatively similar (see Figure 5). Saturations were

imposed as hard constraints in the optimization.

Fig. 5. Nominal trajectory for the airplane with thrust vectoring as found
by direct collocation. The black bars show the plane’s pitch at that point in
the trajectory.

These trajectories were in accord with the optimal tra-

jectories previously proposed by (Wickenheiser & Garcia,

2008) in a qualitative sense. The dip in altitude before the

perch that was observed in that work is seen here as well,

demonstrating that the proposed simplified model captures

many of the relevant dynamical aspects for the perching task.

Different initial conditions will result in different nominal

trajectories, but qualitatively many of the found trajectories

are similar over a reasonable range of initial conditions.

VI. CONTROLLABILITY

The controllability of the aircraft around the generated

open-loop trajectory is of great interest due to its bearing

on the robustness of the perching trajectory. In this section

the linear time-varying (LTV) controllability of the system

is investigated, a process which revealed several important

properties of the system which must be dealt with by any

proposed controller.

A. LTV Analysis

The full non-linear system is converted to an LTV systems

by linearizing the nonlinear dynamics around the nominal

trajectory. The behavior of the system along the trajectory

can then be written:

ẋ − ẋt = A(t)(x − xt) +B(t)(u − ut) (17)

where A and B are the linearizations of the dynamics at time

t of the trajectory, while xt and ut are the nominal trajectory

state and action vectors, respectively.

To investigate the controllability of this LTV system, we

evaluate the rank of the controllability Gramian G(t0, tf ),
which, for LTV systems is a function of both the initial and

final time. It is a well-known result that for LTV systems the

cost can be written J = x
TP−1(t)x, and that if the Gramian

is full rank, the system is controllable. A common method to

compute G(t0, tf ) is by integrating P (t) backwards in time

from the final time tf to the initial time ti, according to the

equation:

Ṗ (t) = A(t)P (t) + P (t)AT (t) −B(t)R−1(t)BT (t) (18)

with P (tf ) equaling the zero matrix as the boundary

value (Lewis, 1992). P (t) being full rank then indicates that

errors in the trajectory following at time t can be rejected

completely (with unbounded control actions), and therefore

the system is controllable.

However, due to the high-speeds of certain modes of the

system, an evaluation of rank is difficult to do numerically.

These difficulties can be overcome by periodically saturating

the singular values of the matrix P . This was accomplished

by performing the singular value decomposition of P =
UΣV T every 0.1 seconds, saturating all singular values to

be less than or equal to 1, then replacing P with Psat =
UΣsatV

T . After this process the integration can continue for

another 0.1 seconds. The span of this saturated matrix will

be the same as that of the original matrix, thus the saturation

will not change the rank. This periodic saturation resolves the

numerical issues resulting from the disparity in mode speeds,

and the controllability of the system can now be evaluated

numerically.

This analysis indicated that the system is controllable over

virtually the entire trajectory, with or without the use of

thrust. However, achieving the perch may require very strong

responses from the actuators, and as the physical actuators

will saturate relatively quickly, the actual envelope of control

around the nominal trajectory may be very small. To achieve

robustness, the trajectory should be controllable with as little

actuator effort as possible, and in this metric the glider and

airplanes with thrust perform very differently. This difference

is analyzed in detail in §VI-C.

B. Stabilizing Controller

Due to the fact that controllability exists (as seen in the

previous section), there is the possibility of developing a

simple linear controller to stabilize the trajectory. For a

system with a quadratic cost on state and action as given in
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Eqn. (16), LTV analysis can give an optimal LTV controller

for the system. However, to avoid the numerical difficulties

associated with computing P and to allow some acceptable

deviations from the desired final state, S = P−1 was used to

derive the LTV controller. This was obtained by integrating

the Riccati equation backwards in time according to:

−Ṡ(t) = AT (t)S(t)+S(t)A(t)−S(t)B(t)R−1(t)BT (t)S(t),
(19)

using a large but finite final cost. S can then be used to

derive the optimal LTV controller of the form (Kwakernaak

& Sivan, 1972):

u(t) = − F (t)(x(t) − xt(t)), (20)

F (t) =R−1(t)BT (t)S(t), (21)

where xt(t) is the nominal trajectory of the system. The

terminal value S(tf ) for this integration is then a final cost

equivalent to the Qf of Eqn. (16). While the cost function

structure to develop the controller was the same as that used

in §V for trajectory generation, the gains were changed. For

this LTV controller, R was set to a diagonal matrix with

entries [.1 20 5], Q as 10I (I again the identity matrix), and

Qf the same as in Section V-A.

C. Advantages of Thrust

The inclusion of thrust in this model (distinguishing it

from the glider system upon which the aerodynamic data is

based) provides the critical ability of being able to add energy

to the system. This allows the plane to respond to larger

perturbations than would otherwise be possible. A glider

can respond to small perturbations by achieving the final

state via a path with less losses than the nominal, but in the

case of large perturbations there can simply be insufficient

energy to reach the final state. Furthermore, even in the case

of small perturbations from the nominal trajectory, thrust

provides a number of advantages, including smaller required

actuator responses (and thus less risk of saturation) and faster

convergence to the nominal trajectory (in practice reducing

the errors and thus allowing a closer approach to the perch).

A clear indication of the advantages of thrust can be seen

in Figure 6, where the value of the greatest eigenvalue of S
is plotted as a function of time along the trajectory. This

eigenvalue is representative of the cost of a perturbation

in the most expensive direction. A high cost represents a

combination of larger actuator exertions and greater error at

time t = tf (as the terminal cost is finite, a final error is

allowed). The figure shows that the addition of thrust results

in less-expensive responses to perturbations over much of

the trajectory, with thrust-vectoring providing still greater

performance. This is indicative of the fact that a thrust-

capable plane can respond well even near the perch, while

the glider finds it very difficult to exert control as its airspeed

drops and the remaining time decreases.

This distinction is further clarified in Figure 7, in which the

performance of the systems are examined using the optimal

LTV controllers stabilizing the trajectory optimized for the

glider, operating on the full nonlinear dynamics with actuator

Fig. 6. The largest eigenvalue of S plotted against time t along the
trajectory. The cost of a perturbation in the most expensive direction quickly
falls for the thrust-vectoring plane, followed shortly thereafter by the thrust-
capable plane. Additional actuation clearly increases the amount of the
trajectory over which disturbances can be effectively and cheaply rejected,
however all three do poorly during the last 0.1 seconds of the trajectory.

saturations. The airplanes which are capable of producing

thrust respond to disturbances in their initial velocity much

better than the glider, particularly as the initial velocity is

decreased (thrust and thrust vectoring are equivalent around

the glider trajectory due to the linearization about zero

thrust). Table II shows what this means in more practical

terms, comparing the errors in position and velocity at the

end of the trajectory for the glider and thrust capable plane.

TABLE II

COMPARISON OF MAXIMUM ERROR AT FINAL STATE FOR INITIAL

VELOCITIES WITHIN 1 m/s OF NOMINAL

Error Type Glider Thrust

Position [m] 0.4306 0.3339
Velocity [m/s] 0.4949 0.2806
Pitch [rad] 0.5330 0.4472

The picture that emerges is that while all three systems

are controllable for the full length of the trajectory, addi-

tional actuators offer what is in some sense greater control

authority, as they are able to respond to disturbances more

quickly, more easily, and with lower efforts on the individual

actuators. The addition of these actuators have the practical

effect demonstrated in Table II of making the goal of robust

perching much more attainable.

VII. DISCUSSION

The ability of a plane capable of generating thrust to exe-

cute a highly successful perching trajectory, and to stabilize

this trajectory over a reasonable range of initial conditions,

is a significant step forward in the development of man-

made perching controllers. Flyers in nature are able to

perch in a wide range of conditions, dealing with steady

wind, intermittent gusts and irregular shaped perches, all

while maintaining a high degree of robustness. Stabilizing

a nominal trajectory, even with a simple linear controller, is

the first step toward achieving this goal.
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Fig. 7. Cost for initial velocities of Vnominal +∆Vinit executing on the
glider trajectory. As is clear from the figure, the addition of thrust improves
robustness, particularly for low initial velocities. Thrust vectoring in this
context is equivalent to thrust when linearized around the glider trajectory.

Eventually, however, richer controllers will be required to

truly match the abilities of birds and insects, particularly

as control for different parameters such as larger inertias

or smaller aerodynamic surfaces can become much more

challenging. Nonlinear control laws could be capable of

perching over a much wider range of initial conditions while

rejecting more significant disturbances during the trajectory.

A more advanced controller could identify when a trajectory

has become impossible or inefficient to stabilize, and follow

a more appropriate trajectory as a result. This ability would

make gliders more competitive, but would also make planes

capable of thrust even more robust. How to obtain these

nonlinear controllers remains an open question, particularly

as even the heavily simplified dynamics of the plane model

presented here are rather complex. The authors believe that

machine learning techniques, both value methods such a

value iteration and policy gradient methods such as weight-

perturbation, offer the possibility of obtaining these high-

performance controllers.

VIII. CONCLUSION

If one desires to build a perching plane, this work suggests

that thrust aids in achieving robustness to reasonably large

disturbances (e.g., 1m/s error on a nominal speed of 6m/s).

Furthermore, while thrust vectoring allows for superior per-

formance, in practice the additional complexity may not be

warranted for the marginal increase in performance. Perhaps

most important, however, is the fact that none of the systems

displayed the level of robustness seen in nature (all three

effectively losing authority during the last 0.1 seconds of the

trajectory), suggesting richer actuation and control may be

required to match the performance of the humblest bird.
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