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Abstract—We demonstrate that some delay-differential equa-
tions of neutral type are, up to basis transformation, equivalent
to retarded delay differential equations. In particular, for two
classes of neutral delay differential equation models, we use
state transformations to show that delayed derivatives can in
some cases be expressed in terms of the model’s state. Hence,
we obtain conditions when neutral delay differential equations
can be transformed into retarded delay differential equations.

I. INTRODUCTION

The class of differential equations that involve delayed
derivatives is classically referred to in the mathematics and
control communities as neutral delay differential equations
[3]. As opposed to retarded delay differential equations
(ones that do not involve delayed derivatives), those of
neutral type may exhibit such peculiarities as spectra with
an infinite numbers of roots in certain right half planes
with imaginary parts tending to infinity, which unfortunately
brings stability and robustness to parameter variations of such
systems into question. In this paper, we point out that some
delay differential equations that are traditionally classified
as neutral (i.e. having delayed derivatives in the equation)
are essentially retarded. Specifically, we study two neutral
delay differential equation models; the first is motivated in
the study of output feedback control, while the second (and
very classical) model arises in numerous feedback control
as well as modeling applications. For both models, through
using smart state transformations including the widely-used
special coordinate basis (SCB) transformation [9] and more
tailored transformations, we give conditions under which the
delayed derivatives can be expressed in terms of the models’
states, and hence show that such equations actually have
retarded type dynamics. This study significantly helps clarify
the definitions of neutral and retarded delay differential
equations.
The remainder of the article is organized as follows.

In Section 2, we motivate and describe the first neutral
delay-differential equation model, namely one that arises
when multiple output derivatives of an LTI system are used
in feedback upon delay. Then we give a condition under
which such a differential equation is equivalent to ones
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of retarded-type, using the SCB. In Section 3, we study
a delay differential equation model that is classical in the
study of neutral systems, namely one in which multiply-
delayed first derivatives are present. We give the necessary
and sufficient condition that such a differential equation can
be made equivalent to one of retarded type through a state
transformation.

II. EQUIVALENT RETARDED REPRESENTATIONS FOR A
MULTIPLE-DERIVATIVE-FEEDBACK MODEL

Time-derivatives of system outputs (up to a certain or-
der) are well-understood to codify state information [9].
Thus, state estimation, which is needed for feedback con-
troller design, requires the designer in one way or other
to obtain derivatives of system outputs. For systems that
are subject to time delays in observation, as well as ones
where model-based observer design is impracticable and
instead signal-based methods are needed (e.g., adaptive or
decentralized systems), direct computation/approximation of
output derivatives for feedback control may be a promising
strategy [4], [5], [10]. One natural means for using output
derivatives in feedback is through delayed measurement or
delayed computation1. Moreover, various natural and engi-
neered systems from such diverse domains as computational
biology and electric power system management are modeled
using differential equations with delayed-derivative terms
(e.g., [1]). Motivated by these complementary control and
modeling applications, we study the dynamics of a class of
linear delay systems (linear delay differential equations) with
delayed-derivative feedback. Our key result here is that these
delayed-derivative dynamics emulate the drastically different
characteristics of neutral-type and retarded-type dynamics,
depending on the order of the derivative used in feedback.
The delayed-derivative model that we consider here com-

prises an LTI plant

ẋ = Ax + Bu, y = Cx, x ∈ R
n, u ∈ R

m, y ∈ R
p,

where the input u is a linear combination of delayed output
derivatives of multiple orders. In particular, the input is

u(t) =
M−1∑
i=0

Kiy(i)(t − h), t ≥ 0,

where the delay h is strictly positive, the gains Ki ∈ Rm×p

may be arbitrary,M is a positive integer, and the initial con-
dition of the system is the signal x(t) over the time-interval

1We stress that direct computations, just like any state estimation method,
may be susceptible to sensor noise; we refer the reader to [7] for intelligent
implementations.
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[−h, 0]. This class of feedback models is representative of
systems where observations of outputs and their deriva-
tives (e.g., velocity or position-derivative measurements) are
subject to delay (e.g., due to the need for communication
through a data channel). Substituting for the input in terms
of the output and then the state, we automatically see the
closed-loop dynamics are described by the following delay-
differential equation:

ẋ = Ax + B

M−1∑
i=0

KiCx(i)(t − h). (1)

This delay differential equation is of neutral type for M = 2
and of advanced type for M > 2, since it involved first
derivatives (respectively, higher derivatives) of the delayed
state vector x(t − h) for M = 2 (respectively, M > 2). We
refer to this model as multiple-derivative-feedback model.
The multiple-derivative-feedback model, which is nomi-

nally described by neutral delay differential equations can
in certain case be equivalently represented by retarded delay
differential equations. That is, the delay differential equation
can sometimes be rewritten without any delayed derivative
terms. The concept underlying this reformulation is simple:
derivatives of linear-system outputs (or their linear combi-
nations) up to a certain order generally can be written as
linear functions of the state variables, and hence in our
case the delayed-derivative terms (up to a certain order) can
be re-written in terms of the the state. The order of the
derivatives of particular linear combinations of the output
that can be written in this way follows immediately from
a structural decomposition of linear systems known as the
special coordinate basis (SCB) [8], [9]. This equivalence
of output (linear combination) derivatives with states is
well-established for finite-dimensional LTI plants. What our
efforts here clarify is that such an equivalence is in force for
delayed-derivative models, and in fact permits us to represent
seemingly neutral/advanced-type systems as retarded ones.
To make the presentation clear to both control theorists

and modelers, we focus our analysis on the control repre-
sentations but then also explicitly consider the model form
(closed-loop form) as needed. We develop the results in three
steps. We first give a sufficient condition for the maximum
number of derivatives that can be used in feedback such
that, for any set of gains, the system can be equivalenced
to a retarded one (Theorems II.1). Second, we discuss the
possibility of using higher derivatives of particular linear
combinations of outputs while maintaining the retarded struc-
ture. A formal description of this general case would require
us to develop the SCB in full intricacy (which detracts
somewhat from the perspective put forth here), and so we
only give a conceptual discussion.
Let us begin with the multiple-derivative-feedback model.

Our condition for the maximum number of delayed-
derivatives for which the dynamics is effectively retarded is
easily phrased in terms of theMarkov parameters of the plant
(from which the special coordinate basis can be constructed,
see [9]). We recall that the ith Markov parameter is given

by Mi = CAi−1B, i = 1, 2, . . .. In terms of the Markov
parameters, we recover the following upper bound on the
order of the delayed derivative, such that any controller will
yield a retarded delay system:

Theorem II.1 Consider the multiple-derivative-feedback
model (1). If the first q Markov parameters are identically
zero, then the delayed-derivative model for any M ≤ q + 1
can be rewritten as a retarded model.

Proof: We claim that y(i)(t − h) = CA(i)x(t − h), i =
0, 1, 2, . . . , q. Let us verify this recursively. To do so, notice
that the expression is clearly true for i = 0. Now say that the
expression holds for arbitrary i ∈ 1, . . . , q − 1, and consider
y(i+1)(t − h). However, noting that y(i+1)(t − h) equals
d
dty

(i)(t − h), we obtain that

y(i+1)(t − h) =
d

dt
CA(i)x(t − h)

= CA(i+1)x(t − h) + CA(i)Bu(t − h).

Noticing that the first q Markov parameters are nil, we
recover the result for the first q output derivatives. From
this result, we automatically find that

ẋ = Ax + Bu = Ax + B

M−1∑
i=0

Kiy(i)(t − h)

can in fact be written as

ẋ = Ax + B
M−1∑
i=0

KiCA(i)x(t − h),

for any M ≤ q +1. Hence, the system is of retarded type in
this case.
We thus see that many feedback control systems that at

first glance appear to be of neutral or even advanced type
are in fact retarded systems. We notice that their spectra
do not display any of the characteristics of neutral delay
systems, including infinite root chains and hyper-sensitivity
to parameter variations. This observation indicates that feed-
back of delayed derivatives of low enough order will not
yield highly unstable/sensitive dynamics, and in fact may be
of use in stabilization and other control tasks.
When the highest derivative M − 1 in the multiple-

derivative-feedback model is greater than or equal to the
number of the first non-zero Markov parameter, it is easy
to check that the dynamics will display the characteristics
of neutral delay systems (e.g., infinite root-chains) for some
feedback gains. However, certain linear combinations of the
higher output derivatives may still be linear functions of the
concurrent state, hence permitting a retarded representation
of the closed-loop system for other gains. We exclude the
details in the interest of space, but kindly ask the reader
to see work on special coordinate basis for the relevant
methodologies [9].
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III. RETARDED EQUIVALENCE IN A

MULTIPLY-DELAYED-DERIVATIVE MODEL

Delay differential equations with multiply-delayed first
derivatives of the state vector are also prominently used in
modeling systems subject to time delay (e.g., [1]). These
neutral delay models originate from various control systems
applications in which multiply-delayed observation deriva-
tives are being used in feedback, as well as from modeling
of systems in nature with response delays. Because these
differential equations with multiply-delayed derivatives have
traditionally been introduced in their differential equation
form (rather than a control system form), we also progress
from this modeling rather than controller design formulation.
From this formulation, we study whether a state transfor-
mation can be used to transform the neutral differential
equation into a retarded delay-differential equation (in an
algebraic sense as well as in terms of the spectrum and
sensitivity). We are able to obtain necessary and sufficient
conditions for this equivalence to a retarded system through
any state transformation. We first present this general case
along with some motivational examples. We then remark
on the development of delay-independent conditions, and
illustrate our results in the simple but useful case that the
model originates from a feedback control paradigm.
Formally, let us consider the following system:

d
dt

⎛
⎝x(t) −

M∑
j=1

Hjx(t − ρj)

⎞
⎠ = Ax(t) +

M∑
j=1

Hjx(t − τj)

(2)
where x(t) ∈ Rn, all matrices are real while ρj and τj are
positive constants for j = 1, . . . , M .
This is a classical model for neutral linear time-invariant

delay systems, which we refer to as the multiply-delayed-
derivative model. On the other hand we have the classical
model for retarded delay systems:

d
dt

x(t) = Ax(t) +
M∑

j=1

Hjx(t − τj) (3)

We recall an important property of retarded delay systems:

Lemma III.1 Consider a retarded system of the form (3)
and the associated spectrum, i.e. the zeros of

g(s) = det

⎛
⎝sI − A −

M∑
j=1

Hje
−sτj

⎞
⎠

Then for any r ∈ R there exists only a finite number of zeros
of g(s) in the half plane Re s ≥ r.

Let us first present an example, that makes clear that
state transformation can achieve retarded equivalence in the
multiply-delayed-derivative model:

Example III.2 Consider the system

d
dt

(
x(t) −

(
0 −1
1 0

)
x(t − 1) −

(
0 0
0 1

)
x(t − 2)

)

= Ax(t) +
M∑

j=1

Hjx(t − τj)

where A and H1, . . . , HM can be arbitrary. We define a
state space transformation:

x̃(t) = x(t) −
(

0 −1
1 0

)
x(t − 1) −

(
0 0
0 1

)
x(t − 2)

which is nicely invertible:

x(t) = x̃(t) −
(

0 1
−1 0

)
x̃(t − 1) −

(
1 0
0 0

)
x̃(t − 2)

This transformation results in a model in terms of x̃(t) which
is of retarded type (3):

d
dt

x̃(t) = A

(
x̃(t) −

(
0 1

−1 0

)
x̃(t − 1)

−
(

1 0
0 0

)
x̃(t − 2)

)

+
M∑

j=1

Hj

(
x̃(t − τj) −

(
0 1

−1 0

)
x̃(t − τj − 1)

−
(

1 0
0 0

)
x̃(t − τj − 2)

)
(4)

Example III.3 Consider the same example as in Example
III.2. Consider this model in the frequency domain:

s

(
x(s) −

(
0 −1
1 0

)
e−sx(s) −

(
0 0
0 1

)
e−2sx(s)

)

= Ax(s) +
M∑

j=1

Hje
−τjsx(s)

Premultiply the above equation on both sides from the left
by:

I −
(

0 1
−1 0

)
e−s −

(
1 0
0 0

)
e−2s

(which is invertible for all s ∈ C) We obtain, in the frequency
domain:

sx(s) =
(

I −
(

0 1
−1 0

)
e−s −

(
1 0
0 0

)
e−2s

)

×
⎛
⎝Ax(s) +

M∑
j=1

Hje
−τjsx(s)

⎞
⎠

which in the time domain yields a model in terms of x(t)
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which is of retarded type (3):

d
dt

x(t) = Ax(t) +
M∑

j=1

Hjx(t − τj) −
(

0 1
−1 0

)

×
⎛
⎝Ax(t − 1) +

M∑
j=1

Hjx(t − τj − 1)

⎞
⎠

−
(

1 0
0 0

) ⎛
⎝Ax(t − 2) +

M∑
j=1

Hjx(t − τj − 2)

⎞
⎠ (5)

The interesting aspect is that this new model is of retarded
type in the original state space coordinates without even
using a basis transformation.

Based on these examples, we are motivated to determine
conditions such that a neutral system of the form (2) can be
transformed into a retarded system of the form (3). Next, we
present our core mathematical result which will be needed
to prove our main results. Due to page limitations the proof
is omitted.

Lemma III.4 Consider a function f of the form:

f(s) = 1 −
R∑

i=1

αie
−βis (6)

where we assume that 0 < β1 < β2 < . . . < βR and, without
loss of generality, that αi �= 0 for i = 1, . . . , R. We have:

• The function f has all zeros in a strip:

L := { s ∈ C | ζ1 ≤ Re s ≤ ζ2 } .

for suitably chosen ζ1, ζ2 ∈ R.
• f has an infinite number of zeros
• Consider an analytical function g that is bounded on L̄
defined by:

L̄ := { s ∈ C | ζ1 ≤ Re s ≤ ζ2, |s| > 1 } .

In that case, the function d(s) defined by:

d(s) = f(s) + 1
sg(s)

has an infinite number of zeros in L̄.
Let us now present our main result regarding existence of

a basis transfomation for retarded equivalence of a neutral
system:

Theorem III.5 Consider a system of the form (2) and define

f(s) = det

⎛
⎝I −

M∑
j=1

Hje
−sρj

⎞
⎠ .

There exists an invertible basis transformation of the form:

x̃(t) = x(t) −
K∑

j=1

Wjx(t − ρj) (7)

such that x̃(t) satisfies a retarded delay model of the form
(3) if and only if f(s) = 1 for all s ∈ C.
Moreover, in that case, we can choose Wj = Hj and

K = M and the basis transformation (7) has the property
that ⎛

⎝I −
M∑

j=1

Hje
−ρjs

⎞
⎠

−1

= I −
N∑

j=1

V je
−μjs

for appropriately chosen V 1, . . . , V N and μ1, . . . , μN .
Moreover, besides (7), we have that:

x(t) = x̃(t) −
N∑

j=1

V j x̃(t − μj) (8)

Proof: First, assume f(s) = 1 for all s ∈ C. In that case:

I −
M∑

j=1

Hje
−ρjs

is invertible for all s ∈ C and:⎛
⎝I −

M∑
j=1

Hje
−ρjs

⎞
⎠

−1

= adj

⎛
⎝I −

M∑
j=1

Hje
−ρjs

⎞
⎠

The adjoint matrix is determined by only using multiplication
and addition and hence will be of the form:

I −
N∑

j=1

V je
−μjs

for appropriately chosen V 1, . . . , V N and μ1, . . . , μN . If we
define:

x̃(t) = x(t) −
M∑

j=1

Hjx(t − ρj)

then (8) follows from the above arguments with the use of
the Laplace transform. But then (2) is trivially transformed
into a delay system of retarded type:

˙̃x(t) = A

⎡
⎣x̃(t) −

N∑
j=1

V j x̃(t − μj)

⎤
⎦

+
M∑

j=1

Hj

⎡
⎣x̃(t − τj) −

N∑
j=1

V j x̃(t − τj − μj)

⎤
⎦

Conversely, assume f(s) �= 1 for some s ∈ C. In that case,
it is easily seen that f is of the form (6) which implies, by
Lemma III.4, that f(s) has an infinite number of zeros in a
strip L.
Next consider h(s) = detH(s) where:

H(s) = sI +
M∑

j=1

sHje
−sρj − A −

M∑
j=1

Hje
−sτj

It is not difficult to verify that:

h(s) = snf(s) +
n−1∑
i=0

siki(s)
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where ki(s) are exponential functions (i.e. a linear combina-
tion of exponentials). Then it is easily verified that:

g(s) =
n−1∑
i=0

si−n+1ki(s)

is an analytic function which is bounded on the strip L̄ as
defined in Lemma III.4. Then, according to Lemma III.4 we
find that f(s) + 1

sg(s) has an infinite number of zeros in
the strip L̄ and hence also h(s) has an infinite number of
zeros in the strip L̄. Recall that h(s) is the determinant of
H(s) and hence there exists an infinite number of points
sk in L for which H(sk) is singular. In other words, there
exists xk ∈ Cn with xk �= 0 such that H(sk)xk = 0. Then
x(t) = Re [esktxk] satisfies the system dynamics. After all:

ẋ(t) = Re
[
esktskxk

]
= Re

⎡
⎣esktAxk − eskt

M∑
j=1

(
skHje

−skρj − H̄je
−skτj

)
xk

⎤
⎦

= Ax(t) −
M∑

j=1

Hj ẋ(t − ρj) +
M∑

j=1

Hjx(t − τj)

Given the structure of our basis transformation, then (7)
implies that x̃(t) = Re [esktx̃k] where

x̃k = x0 −
K∑

j=1

Wje
−skρj xk

This yields that sk is also an element of the point spectrum
for the system we obtain after the basis transformation.
Therefore the system we obtain after a basis transformation
has a point spectrum which has an infinite number of points
in a strip L. By Lemma III.1 this implies that this system
cannot be a retarded delay system.

Remark III.6 Note that just as in Example III.3, instead
of a state space transformation we can also find a retarded
model in terms of the original state x by premultiplying the
model (after Laplace transformation) by:

I −
N∑

j=1

V je
−μjs

which is of course only well-defined in case f(s) = 1.

In the above theorem, we have given necessary and
sufficient conditions such that basis transformations can be
used to convert the multiply-delayed derivative model (2)
into a neutral delay equation. If the condition of the above
theorem is not satisfied, then in fact there does not exist
even a more general state transformation to bring the system
into retarded form. Since any reasonable basis transformation
should preserve the spectrum, from the proof of the above
theorem it is clear that if f(s) �= 1 for some s ∈ C then the
spectrum contains an infinite number of poles in a vertical
strip in the complex plane. Hence the system does not satisfy
the property outlined in Lemma III.1 that retarded systems

will always have only a finite number of poles in such a
vertical strip.
Interestingly, the ability to transform the neutral differen-

tial equation into a retarded equation may be highly sensitive
to changes in the delays:

Example III.7 Consider the same system an in example
(III.2) but with some uncertainty in the delay terms:

d
dt

(
x(t) −

(
0 −1
1 0

)
x(t − ρ1) −

(
0 0
0 1

)
x(t − ρ2)

)

= Ax(t) +
M∑

j=1

Hjx(t − τj)

Applying Theorem III.5 we construct:

f(s) = 1 − e−2ρ1s + e−ρ2s

and note that the system is equivalent to a retarded system
if and only if 2ρ1 = ρ2, a property that is clearly trivially
ruined by small perturbations in the delay.

Given the sensitivity to perturbations in the delays of
the state space transformations, we can ask ourselves the
question of whether we can find a characterization which is
independent of the delays. The following theorem gives such
a delay-independent characterization:

Theorem III.8 Consider a system of the form (2). There
exists for all μ1, μ2, . . . , μM > 0 an invertible basis trans-
formation of the form:

x̃(t) = x(t) −
N∑

j=1

V jx(t − μj) (9)

such that x̃(t) satisfies a retarded delay model of the form
(3) if and only if

f̄(z1, . . . , zM ) = det

⎛
⎝I −

M∑
j=1

Hjzj

⎞
⎠

has no zeros in CM or, equivalently, the function f̄ is equal
to 1.

Proof: Note that for any value for ρ1, ρ2, . . . , ρM we have
that such a basis transformation exists if and only if f(s) is
a constant. We know

f(s) = 1 −
R∑

i=1

αie
−βis

where β1, . . . βR are a linear function of the ρ1, . . . , ρM

while the αi are independent of the ρj . Without loss of
generality, we can exclude that βi = βj for all ρ1, ρ2, . . . , ρM

(then we can simple combine both terms in one). But f(s)
is then equal to a constant if either all αi are equal to zero
or if βi = βj for some i and j and the corresponding αi

cancel. In the first case, clearly f(s) is equal to a constant
for all ρ1, . . . , ρM and it is easily seen that f̄(z1, . . . , zM )
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is equal to a constant (which, due to the structure of f̄ must
be 1). Conversely if βi = βj then this is a nontrivial linear
equation and the set of ρ1, . . . , ρM that satisfy this form a
hyperplane. Hence the points for which f(s) is a constant
form the union of a finite set of hyperplanes and an arbitrary
small perturbation brings you to a function f(s) which has
a zero and then

f̄(eρ1s, . . . , eρM s) = f(s) = 0

Note that the above condition on f̄ is still a necessary and
sufficient condition, when only small perturbations of the
delays (rather than arbitrary valuations of them) are possible.
That is, if given ρ̄1, . . . , ρ̄M , we require existence of ε > 0
such that for all ρ1, . . . , ρM with |ρi−ρ̄i| < ε there is a basis
transformation such that the new state satisfies a model of
the form (3), then the condition is necessary and sufficient.
Of interest, the above delay-independent condition for

retarded equivalence can be written explicitly in terms of the
matrices Hi, rather than in terms of the existence of zeros
of a function defined thereof. We note that the function f̄ is
equal to 1 if and only if the polynomial matrix

F (z1, . . . , zM ) =
M∑

j=1

Hjzj

is nilpotent for all z1, . . . , zM . The latter implies that there
exists m such ⎛

⎝ M∑
j=1

Hjzj

⎞
⎠

m

= 0

Since the polynomial matrix is of dimension n × n, we find
that we can choose m ≤ n and we can choose the same m
for all z1, . . . , zM . A polynomial matrix is clearly zero only
if all its coefficients are equal to zero.
Denote by π(k1, . . . , kM ) with k1 + · · · + kM = m, all

possible sequences (i1, . . . im) which contain kj occurrences
of the integer j for j = 1, . . . , M . In that case we define the
combinatorial sum:

Q(k1, . . . , kM ) =
∑

(i1,...,im)∈π(k1,...,kM )

Hi1Hi2 · · ·Him

Theorem III.9 Consider the multiply-delayed-feedback
model (2)), where M is the number of delay terms and
n is the dimension of x(t). If there exists an integer m
such that the combinatorial sums Q(k1, . . . , kM ) are zero
for all k1, . . . , kM with k1 + · · · + kM = m, then the
model is equivalent to a retarded model. Furthermore,
if there is no such i, then the model cannot be viewed
as retarded-equivalent for at least some sets of delays
ρ1, . . . , ρM .

This result follows algebraically from the above Theorem
III.8. We omit the details.
Finally, let us briefly discuss an example where the

multiply-delayed derivative model is obtained from a con-
trols paradigm, to crystallize the connection between the spe-
cial coordinate basis transformation (as used in the previous

section) and the transformation considered here. Precisely, let
us consider an LTI plant ẋ = Ax + Bu, y = Cx, x ∈ R

n,
u ∈ Rm, y ∈ Rp, where the input u is a linear combination
of multiply-delayed outputs and output derivatives:

u(t) =
M∑
i=1

Kiy(t − τi) + Kiẏ(t − ρi), t ≥ 0,

where WLOG 0 < ρ1 < ρ2 < . . . < ρM , 0 < τ1 <
τ1 < . . . < τM , and the gains K̂i and Ki may be arbitrary.
We recover immediately from the special coordinate basis
transformation (or from first principles) that the closed-loop
dynamics of this neutral system is equivalent to a retarded
system whenever CB = 0. However, we see that the condi-
tion is by no means necessary for retarded-equivalence. For
instance, consider the system with state equation ẋ(t) = u(t)

and observation y(t) =

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦x(t), with control law

u(t) = ẏ(t − ρ). This system’s first Markov parameter CB
is nonzero, and yet the closed-loop dynamics satisfy ẋ(t) =⎡
⎣0 1 0
0 0 1
0 0 0

⎤
⎦

3

u(t − 3ρ) = 0, or in other words the dynamics

are retarded-equivalent. This example makes evident that the
special coordinate basis transformation is concerned with
equivalencing delayed output derivatives with the concurrent
state, and so is a special case of the transformation developed
in this section for the multiply-delayed-derivative model. We
leave it to future work to check the whether the broader
transformation can be given a structural control-theoretic
interpretation, and whether such a transformation can be
applied to the multiple derivative feedback model.
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