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Abstract— This paper presents automatic tools to optimize
pole locations in state feedback control to satisfy performance
specifications such as rise time, settling time, overshoot, and
steady state error. Through the use of Particle Swarm Op-
timization (PSO), the advantages of such time-domain based
controllers over frequency-domain controllers such as the
Proportional-Integral-Derivative (PID) control is demonstrated,
particularly for Multi-Input Multi-Output (MIMO) systems
with a large number of states. A proof of concept problem
involving the stabilization of a helicopter under the Rationalized
Helicopter Model is presented and the results of the PSO auto-
tuning, including the simultaneous design of a state observer
and feedback controller, are supported by illustrative computer
simulations.

Index Terms— Particle Swarm Optimization, Linear Systems,
Pole Placement, State Feedback, State Estimation

I. INTRODUCTION

THE design of feedback controllers to satisfy perfor-

mance specifications such as rise time, settling time,

overshoot, and steady state error is well understood in

the domain of classical control theory, utilizing frequency-

domain approaches such as root locus, Bode, and Nyquist

plots in conjunction with simple controllers such as the

Proportional-Integral-Derivative (PID) control [1]. For Multi-

Input Multi-Output (MIMO) systems, it is easier to work in

the time-domain through the so-called state space represen-

tation since that with p inputs and q outputs, q × p transfer

functions are needed to encode the equivalent information.

State feedback control [2], also known as pole placement,

involves the relocation of system poles to the left half s-

plane in achieving stability in the closed-loop, with only

the assumption that the system is controllable or observable.

While the pole placement procedure is more straightforward

than PID parameter tuning, it is unclear how the locations of

closed-loop poles relate to the performance of the controller,

especially in the transient state.

Without sophisticated counterparts to the frequency-

domain based tuning methods, pole placement in the time-

domain mainly consists of trial and error where a con-

trol engineer attempts several iterations of different pole

locations until a desirable response is obtained. Traditional

optimization techniques are unavailable as the optimization
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objective can only be written as a combination of transient

performance parameters (constants) where gradients cannot

be computed. While we can cast this as a search problem,

such an iterative search is highly dimensional and is only

feasible for lower order problems. In a n-state linear system,

for example, an optimization routine would have to search

in a 2n-dimensional hyperspace, accounting for the real

and imaginary parts of each pole; moreover, the design

of an observer effectively doubles the search space. Most

traditional optimization routines cannot handle such a high

dimensional task.

In the existing literature, several previous works have

considered using evolutionary algorithms for control design

since these methods do not require explicit gradient infor-

mation for optimization. For an overview of evolutionary

algorithm in control engineering, see [3]. In particular, pole

placement in [4] and [5] was formulated as a multi-objective

optimization problem and solved with genetic algorithms

(GAs). Our work is more comparable with [6] and [7], where

GAs were used for robust pole placement and in nonlinear

MIMO systems. More recently, Particle Swarm Optimization

(PSO) was used to tune PI and PID controllers [8][9] and

these works have shown that PSO is fast and reliable tool

for control optimization, outperforming other evolutionary

algorithms such as GAs.

The main contribution of this paper is the use of PSO

for optimizing pole locations in satisfying transient and

steady state performance specifications, which extends the

previous work on PSO-tuned PID controllers to the time-

domain. The PSO algorithm, developed by James Kennedy

and Russell C. Eberhart in 1995 [10][11], is inspired by

the paradigm of social interaction and searches the solution

hyperspace by a population of moving particles. Compared

to other computational intelligence techniques such as neural

networks and genetic algorithms, PSO performs extremely

well in high dimensional optimization problems, and we

show that it is effective in finding optimal pole locations

in state feedback control.

The rest of this paper is organized as follows. Section II

gives a brief overview of the time-domain control design

using state feedback control, state estimation, and the hand-

tuning of pole locations for transient and steady state perfor-

mance. Section III discusses the Particle Swarm Optimization

algorithm and formulates the problem of pole placement

using PSO, including details on design issues such as the

construction of the fitness function and system simulation.

Section IV demonstrates the PSO optimized state feedback

control for the case of a helicopter stabilization under the
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Rationalized Helicopter Model (RHM). We conclude with

Section V and discuss future research directions.

II. STATE FEEDBACK CONTROL

Consider the linear time-invariant (LTI) system

ẋ(t) = Ax(t) + Bu(t) (1)

y(t) = Cx(t) + Du(t) (2)

where x(t) is the state vector, u(t) is the input vector, and

y(t) is the output vector. If the system is controllable, i.e.,

if it is possible to find some input function u(t) that will

transfer the initial state x(t0) to the origin at some finite

time, then the full state feedback law

u = −Kx(t) (3)

gives a stable closed-loop system. The controllability of

a linear system can be easily verified by constructing the

controllability matrix

R = [B AB · · · An−1B] (4)

such that if R has a full rank, then the system is controllable.

If the internal state of the system is not directly accessi-

ble, the separation principle can be used to design a state

observer such that x(t) can be indirectly obtained from the

output y(t). The output feedback method with a Luenberger

observer has the dynamics

˙̂x(t) = Ax̂(t) + Bu(t)− L(ŷ(t)− y(t)) (5)

ŷ(t) = Cx̂(t) (6)

which can be used if the system is observable, i.e., if the

observability matrix

Q = [C CA · · · CAn−1]T (7)

has a full rank. Both the full and output feedback methods are

well-established in linear systems theory and detailed deriva-

tion and designs can be found in [2]. The state feedback

approach described here is also fully valid for the regulation

problem, where we seek to find a set of controls u(t) to track

some reference output yref (t).
The key design issue in state feedback control is the

selection of the feedback gains K and L, which are directly

computed from the closed loop poles. One attractive feature

of the state feedback method is that as long as the poles are

placed in the left side of the s-plane, the closed-loop response

will yield a zero steady state error. Compared to other

frequency-domain controllers design, the pole placement

procedure is more straightforward in this respect. The lack of

graphical tools such as root locus and Bode plots, however,

means that it is significantly more difficult to tune the state

feedback controller for transient state performance, such as

rise time, settling time, and overshoot. Control engineers

are often forced to rely on intuition for the tuning of these

parameters. There are two general heuristics on the pole

locations:

1) As poles are placed further to the left side of the s-

plane, i.e., approaching −∞, the transient performance

improves significantly, while poles near the origin lead

to a slower transient response.

2) The penalty of placing poles further to the left side is

two fold: it leads to overwhelmingly high magnitude

in the control input u(t) and the resulting system is

drastically more sensitive to external disturbances.

In making these tradeoffs, a conventional approach is to rely

on optimal control, particularly the linear-quadratic regulator

(LQR) [12], in which a cost functional of the form

J =

∫

∞

0

(

xT Qx + uT Ru
)

dt (8)

can be used to express the accuracy vs. control effort tradeoff.

The LQR feedback law

u(t) = −
(

R−1BT P(t)
)

x(t) (9)

gives the optimal control with respect to the cost functional,

where P(t) is the solution to the algebraic Riccati equation.

While it is equivalent to the state feedback law in (3), the

fundamental problem of using optimal control to design for

transient performance is that the available cost heuristics

are in terms of constant parameters, e.g., settling time and

overshoot, which do not give the gradients information nec-

essary to derive the feedback law. Without knowing how to

express these costs in terms of the Q and R weight matrices,

the design for transient and steady-state performance still

requires manual tuning, a time-consuming process often

taking a few iterations before a desirable response can be

obtained.

III. PARTICLE SWARM OPTIMIZATION

A. Overview

Particle Swarm Optimization, developed by James

Kennedy and Russell C. Eberhart in 1995, is a stochastic,

population-based evolutionary computing technique inspired

by the paradigm of social interaction. Instead of the gradient

information utilized by most other optimization algorithms,

PSO relies on the trajectories of a group of potential solutions

called ”particles”, which traverse the solution hyperspace

in R
n. At each time instance, the quality of the solutions

obtained by each particle is assessed by a fitness function

and each individual fitness value is shared across neighboring

particles. Individually, the particles record their own best

fitness value and the associated solution, as well as the

group’s best fitness and solution. Over time, the group as

a whole is drawn stochastically towards the global optimum.

The flow of the PSO algorithm can be described by

Algorithm 1, where

• m is the number of particles

• x is the position of the particles, i.e., the potential

solutions

• v is the velocity of the particles

• flbest and xlbest is the best fitness value and position

for individual particles

• fgbest and xgbest is the best fitness value and position

for the group
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Algorithm 1 PSO − SEARCH

1: Initialize m PSO particles

2: while iteration k < maximum iterations count do

3: for each particle j ∈ [1 . . .m] do

4: f ← PSO-FITNESS(x[j])
5: if f < flbest[j] then

6: flbest[j]← f

7: xlbest[j]← x[j]
8: end if

9: if f < fgbest then

10: fgbest ← f

11: xgbest ← x[j]
12: end if

13: v[j, k+1] = wv[j, k]+c1φ1(xlbest[j, k]−x[j, k])+
c2φ2(xgbest[j, k]− x[j, k])

14: x[j, k + 1] = x[j, k] + v[j, k + 1]
15: end for

16: end while

PSO-FITNESS is the fitness function used to assess the

quality of the solutions obtained and is constructed according

to the optimization objective. Since the goal of this paper is

the application of PSO to the pole placement problem, we

refrain from lengthy discussions on intricate details of the

algorithm itself and instead refer the readers to [13].

A critical component of the PSO algorithm is the position

and velocity update equations in lines 13-14. There are three

design parameters:

1) φ1 and φ2 are uniformly distributed random variables

bounded in [0, 1], used to generate the trajectories.

2) c1 and c2 are the acceleration constants which guide

each particle toward the best solution found by itself

as well as the group.

3) w is the inertia constant, used to provide balance over

exploration and exploitation.

Typically, the particle velocities are also bounded within a

range [−vmax, vmax] and when the velocity update equation

returns a result violating this bound, the appropriate upper

and lower limits are used as the velocity instead.

The power of PSO lies in its simplicity. Unlike opti-

mal control and other optimization algorithms, PSO does

not assume an advanced mathematical background and its

construction involving the two update equations and some

housekeeping operations is simple and straightforward. By

understanding that the first term in the velocity update

equation is used for global exploration and the last two terms

are used for local search, the PSO convergence response can

be easily tuned to yield better performance. For parameter

selection and variations on the PSO algorithm, see [13].

B. Poles and Particles

In formulating the problem of optimal pole placement with

PSO, an important design issue is how the pole locations

should be represented as particle positions. While in theory,

the closed-loop poles can be arbitrarily placed anywhere in

the left side of the complex plane, from an optimization point

of view, the dimensions of the search problem can be reduced

by restricting the poles to be complex conjugates, i.e., of the

form

pi = a± bj (10)

With this restriction, the solution hyperspace is reduced by

half, since only one set of values for a and b need to be

determined for each pair of poles. This implies that for a

state space system of n states, the hyperspace is contained

within R
n. In the case of output feedback, where the poles

for the Luenberger observer are designed simultaneously, the

observer poles double the size of the hyperspace to R
2n.

In our approach, we encode each particle to include the

set of closed-loop poles for the system, i.e., a set of a and b

values from (10). As the PSO algorithm progresses and the

particles traverse the search space, the poles associated with

each particle is used to simulate the control response.

C. Fitness Function

The fitness function in PSO plays an important role in

that it directly influences the trajectories of the particles. In

the pole placement problem, the fitness function evaluates the

pole locations, i.e., the particle’s position and returns a fitness

value with consideration of the user-defined performance

specifications. The fitness function in PSO is equivalent to

the objective function in traditional optimization algorithms,

but similar to other evolutionary algorithms, the fitness func-

tion is optimized without explicitly computing any gradients.

The fitness function used in PSO-SEARCH utilizes five

individual fitness measures of the transient and steady state

responses:

1) Steady state error: the difference between the system

output and the reference in steady state

2) Settling time: the time required to settle to within 5%

of the steady state value

3) Overshoot: the amount exceeding the steady state value

on the signal’s initial rise

4) Rise time: the time required for travel from the 10%

to the 90% level

5) Maximum input limit: absolute value of the the maxi-

mum amplitude of the input signal

There are a variety of other metrics to evaluate the quality

of the system output, but the five measures above are the

most general and frequently used. The user is asked to enter

five target values for the five parameters and at each fitness

evaluation, the actual performance of the system is compared

to the target specifications. If the actual system performance

is within the specified limit, then a fitness value of zero is

assigned to the parameter; otherwise, the percent error of

actual vs. target specs is calculated.

The final fitness value returned by the fitness function is

the sum of all individual fitness values, assuming that the

weighting factors for the parameters are equal (penalized

equally). For MIMO systems, the multiple input and output

signals are evaluated separately and the fitnesses are summed

together to produce the final value. The importance of a

particular signal or performance parameter can be expressed
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by using a larger weighting factor. While PSO allows multi-

objective optimization where there are multiple (potentially

competing) objectives, we found that single-objective PSO

is sufficient to solve the pole placement problem.

D. System Simulation

An important observation in the construction of the fitness

function is the evaluation of the actual system performance.

For both the transient and steady state parameters, responses

can only be obtained by simulating the system, which is

much more computationally intensive than the PSO algo-

rithm itself. The Runge-Kutta method [14] is typically used

for control systems simulations, but in our approach, we

chose the Euler method [15], a basic method of numerical

integration for ordinary differential equations, to obtain the

control response, where

xn+1 = xn + h (Axn + Bu) (11)

for x(t0) = x0. This is a typical simplification, since for a

linear time-invariant state space system, the Euler method

produces accurate results yet remains fast and simple to

implement.

Also, a number of numerical algorithms exist for pole

placement, with the Kautsky algorithm [16] being the most

widely used. In the MATLAB environment, the Kautsky

algorithm was implemented as the place() function in the

Control Systems Toolbox, taking in the system matrices and

a list of desired pole locations as inputs and outputting a

gain matrix for use in the control law. For the full state

and the output feedback cases, K = place(A, B, P) and L

= place(A’, C’, P)’ gives the plant and observer feedback

gains, respectively.

IV. EXAMPLE - HELICOPTER STABILIZATION

A helicopter stabilization design was chosen as a proof

of concept problem in demonstrating the PSO-based state

feedback design. The Rationalized Helicopter Model (RHM)

[17] is a well-studied nonlinear dynamical model of single-

rotor helicopters. Modeled after the Westland Lynx he-

licopters, the RHM accounts for a four-blade semi-rigid

main rotor and rigid body. The equations governing the

helicopter motions are complex and the open loop dynamics

are unstable throughout the flight envelope, exhibiting highly

cross-coupled and nonlinear response.

A. Dynamics

In this design, the dynamical model is taken from [18],

where a linear system

ẋ(t) = Ax(t) + Bu(t) (12)

y(t) = Cx(t) (13)

approximates the small-perturbation rigid motion of the

aircraft about hover. The state vector x(t) contains eight

states:

• θ - pitch attitude

• φ - roll attitude

• p - roll rate (body-axis)

• q - pitch rate (body-axis)

• ξ - yaw rate

• vx - forward velocity

• vy - lateral velocity

• vz - vertical velocity

The output y(t) contains six variables made up of four

controlled outputs

• Ht - heave velocity

• θ - pitch attitude

• φ - roll attitude

• ψt - heading rate

and two additional body-axis measurements

• p - roll rate

• q - pitch rate

The four blade angles serve as the inputs to the helicopter

• u1 - main rotor collective

• u2 - longitudinal cyclic

• u3 - lateral cyclic

• u4 - tail rotor collective

The A,B,C matrices for the RHM model can be obtained

from [19] as a MATLAB script.

Roughly, the main rotor collective input controls the lift by

rotating the rotor blades. The longitudinal and lateral cyclic

inputs control the longitudinal and lateral motions by varying

the blade angles. The tail rotor balances the torque generated

by the main rotor, preventing the aircraft from spinning and

also gives the desired lateral motion. This model assumes

that the dynamics are decoupled when in reality, it is highly

coupled, which leads to non-minimum phase characteristics

at certain operating points. For more discussions on the

dynamics, see [18].

B. Control design

Previous studies on the RHM model consisted of robust

control designs and disturbance rejections to reduce the

effects of atmospheric turbulence. While PSO can be used

for this purpose, we instead focus on the simpler task of

optimizing for transient state performance, highlighting the

high dimensional search capabilities of the algorithm - for

the eight-state RHM model, the PSO algorithm searches for

the optimal output feedback controller design in R
16.

Consider the scenario of a helicopter motion in some non-

zero initial state, and the control objective is to stabilize the

system to the origin, i.e., to reach a state of equilibrium

where the vector sum of all forces and all moments is equal

to zero. The performance targets are defined as follows:

• Steady State Error: 0.1
• Settling Time: 2s

• Maximum input: 100

Since the control objective is not to track a step reference,

other transient performance metrics such as overshoot and

rise time are not included.

After the construction of the controllability and observabil-

ity matrices, it is verified that the plant is both controllable

and observable. A series of hand tuned simulations are first

conducted using a duration of 5 seconds and a time step of
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0.01. Iteratively, pole locations are first identified to satisfy

the steady state error requirement, then settling time, and

finally maximum input. After five iterations in approximately

three minutes, the response in Fig. 1 and 2 are obtained,

where only the maximum input still does not fall under

the desired level. Further simulations either do not reduce

u(t) or violate the first two constraints. For comparison, this

reasonable tuning effort produces a response with

• Steady State Error: 0.0285
• Settling Time: 1.9933s

• Maximum input: 176.5133

Next, the identical system is given to a PSO-based auto-

tuner with a set of standard parameters:

• Number of Particles (m): 10
• Max number of Iterations (k): 100
• Inertia Constant (w): 0.7
• Acceleration Constants (c1 and c2): 1
• Maximum Particle Velocity (vmax): 2

The particle positions are contained within a 2 × 6 × 10
matrix, accounting for the two axes (real and imaginary),

six pairs of complex-conjugate poles (three for the plant and

three for the observer) and the ten particles. All parameters

in the multiple inputs and outputs are penalized equally in

the fitness calculations. The plots corresponding to the PSO-

tuned simulations are shown in Fig. 3 and Fig. 4.

The PSO-tuned design is simulated using a Intel Core 2

Duo 2.0 GHz computer with 2 GB of memory. Finishing in

approximately 15 seconds (or comparably, less time than a

single hand-tuned iteration), the search returned a response

with

• Steady State Error: 0.00031038
• Settling Time: 2.7790s

• Maximum input: 70.8414

In comparison with the hand-tuned results, the greater (but

still acceptable) settling time reduces the maximum input by

150%.

Various other combinations of PSO parameters are also

experimented with in attempts to further improve the sys-

tem response. Extending the number of particles, maximum

number of iterations, as well as various constants yield

slight variations in the output, most of which show trade-

offs between the maximum input and settling time. Overall,

the original set of parameters used appears to give the best

performance with the shortest computation time. It is noted

that the exact procedure in tuning the PSO parameters is

still unknown and there is vast literature on the topic with

numerous solutions on how variations to the update equations

and parameters can lead to faster convergence.

While we did not compare the performance of our PSO-

based control design to the alternative methods discussed

in the literature review, we can offer some simple analysis

on the expected performance difference based on studies

on the PSO algorithm itself. As stated previously, most

optimization routines used for control design are evolutionary

algorithms, which do not require the explicit computation of

gradients. In the existing literature, PSO has been extensively
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Fig. 1. Hand-tuned pole placement simulation showing the six outputs
stabilizing to zero in 1.9933 seconds.
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Fig. 2. Hand-tuned control inputs corresponding to Fig. 1 with a maximum
value of 176.5133 (u3), exceeding the max input constraint by 43%.

studied against other evolutionary algorithms, and the results

show that it consistently outperforms genetic algorithms and

similar routines. We refer the readers to [20] and [21] for

discussions on the philosophical and performance compar-

isons.

V. CONCLUSIONS

In this paper, Particle Swarm Optimization (PSO) was

implemented to search for the optimal pole locations in

state feedback control to satisfy transient and steady state

performance specifications such as rise time, settling time,

overshoot, and steady state error. A proof of concept problem

involving the stabilization of a helicopter was presented

and the results of the PSO auto-tuning were supported by
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Fig. 3. PSO-assisted pole placement simulation showing that the six outputs
stabilize to zero in 2.7790 seconds.
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Fig. 4. PSO-tuned control inputs corresponding to Fig. 3 with a maximum
value of 70.8414 (u3), under the given max input constraint.

illustrative computer simulations.

PSO is a powerful optimization tool in the realm of control

theory, particularly for the time-domain state space systems,

where performance tuning has not been well-studied in the

past. Possible future work include extensions to nonlinear

and adaptive control theory, where the techniques such as

feedback linearization and gain scheduling can be used in

conjunction with PSO. In addition, the variety of improved

PSO algorithms that have surfaced in the past decade could

potentially be used to produce better results, and it would

be interesting to see how the PSO parameter tuning can be

simplified with these new algorithms.
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