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Abstract— This paper presents a new robust and adaptive
framework for Markov Decision Processes that accounts for
errors in the transition probabilities. Robust policies are typ-
ically found off-line, but can be extremely conservative when
implemented in the real system. Adaptive policies, on the other
hand, are specifically suited for on-line implementation, but
may display undesirable transient performance as the model
is updated though learning. A new method that exploits the
individual strengths of the two approaches is presented in
this paper. This robust and adaptive framework protects the
adaptation process from exhibiting a worst-case performance
during the model updating, and is shown to converge to the
true, optimal value function in the limit of a large number
of state transition observations. The proposed framework is
investigated in simulation and actual flight experiments, and
shown to improve transient behavior in the adaptation process
and overall mission performance.

I. INTRODUCTION

Many decision processes, such as Markov Decision Pro-
cesses (MDPs) and Partially Observable MDPs (POMDPs)
are modeled as a probabilistic process driven by a known
Markov Chain. In practice however, the true parameters of
the Markov Chain are frequently unavailable to the modeler,
and many researchers have recently addressed the issue of
robust performance in these decision systems [1]–[4].

While many authors have studied the problem of MDPs
with uncertain transition probabilities [5]–[7], robust coun-
terparts to these MDPs have been obtained only recently.
Robust MDP counterparts have been introduced in the work
of Bagnell et al [8], Nilim [1] and Iyengar [2]. Bagnell
presented a robust value iteration algorithm for solving
the robust MDPs. The convergence of robust value itera-
tion was formally proved by Nilim [1] and Iyengar [2].
Both Nilim and Iyengar introduced meaningful uncertainty
sets for the transition probabilities that could be efficiently
solved by adding an additional, “inner” optimization on the
uncertain transition probabilities. One of the methods for
finding a robust policy in [1] was to use scenario-based
methods, wherein the performance is optimized for different
realizations of the transition probabilities. However, it was
recently shown that a scenario-based approach may require
an extremely large number of realizations to yield a robust
policy [4]. This observation motivated the development of
a specific scenario selection process using the first two
moments of a Bayesian prior to obtain robust policies using
much fewer scenarios [4], [21].

Robust methods find robust policies that hedge against
errors in the transition probabilities. However, there are many
cases when this type of an approach is too conservative.
For example, it may be possible to identify the transition
probabilities by observing state transitions, and obtain im-
proved estimates, and resolve the optimization to find a
less conservative policy. Model-based learning of MDPs is
closely related to indirect adaptive control [9] in that the
transition probabilities are estimated in real-time using a
maximum likelihood estimator. At each time step, certainty
equivalence is assumed on the transition probabilities, and
a new policy is found with the new model estimate [10].
Jaulmes et al. [11], [12] study this problem in an active
estimation context using POMDPs. Marbach [13] considers
this problem, when the transition probabilities depend on
a parameter vector. Konda and Tsitsiklis [14] consider the
problem of slowly-varying Markov Chains in the context of
reinforcement learning. Sato [15] considers this problem and
shows asymptotic convergence of the probability estimates
also in the context of dual control. Kumar [16] also consid-
ered the adaptation problem. Ford and Moore [17] consider
the problem of estimating the parameters of a non-stationary
Hidden Markov Model.

This paper demonstrates the need to account for both
robust planning and adaptation in MDPs with uncertainty
in their transition probabilities. Just like in control [18] or in
task assignment problems [19], adaptation alone is generally
not sufficient to ensure reliable operation of the overall
control system. This paper shows that robustness is critical
to mitigating worst-case performance, particularly during the
transient periods of the adaptation.

This paper contributes a new combined robust and adaptive
problem formulation for MDPs with errors in the transition
probabilities. The key result of this paper shows that robust
and adaptive MDPs can converge to the truly optimal
objective in the limit of a large number of observations.
We demonstrate the robust component of this approach
by using a Bayesian prior, and finds the robust policy by
using scenario-based methods. We then augment the robust
approach with an adaptation scheme that is more effective
at incorporating new information in the models. The MDP
framework is discussed in Section II, the impact of uncer-
tainty is demonstrated in Section III, and then we present
the individual components of robustness and adaptation in
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Section IV. The combined robust and adaptive MDP is shown
to converge to the true, optimal value function in the limit
of a large number of observations. The paper concludes in
Section VI with a set of demonstrative numerical simulations
and actual flight results on our UAV testbed.

II. MARKOV DECISION PROCESS

A. Problem Formulation

The Markov Decision Process (MDP) framework that we
consider in this paper consists of a set of states i ∈ S of
cardinality N, a set of control actions u∈U of cardinality M
with a corresponding policy µ : S→ U , a transition model
given by Au

i j = Pr(ik+1| jk,uk), and a reward model g(i,u).
The time-additive objective function is defined as

Jµ = gN(iN)+
N−1

∑
k=0

φ
kgk(ik,uk) (1)

where 0 < φ ≤ 1 is an appropriate discount factor. The goal
is to find an optimal control policy, µ∗, that maximizes an
expected objective given some known transition model Au

J∗ = max
µ

E
[
Jµ(i0)

]
(2)

In an infinite horizon setting (N→ ∞), the solution to Eq. 2
can be found by solving the Bellman Equation

J∗(i) = max
u

[
g(i)+φ ∑

j
Au

i jJ
∗( j)

]
, ∀i (3)

The optimal control is found by solving

u∗(i) ∈ argmax
u∈U

E
[
Jµ(i0)

]
∀i ∈ S (4)

The optimal policy can be found in many different ways
using Value Iteration or Policy Iteration, while Linear Pro-
gramming can be used for moderately sized problems [20].

III. MODEL UNCERTAINTY

It has been shown that the value function can be biased in
the presence of small errors in the transition probabilities [3],
and that the optimal policy µ∗ can be extremely sensitive to
small errors in the model parameters. For example, in the
context of UAV missions, it has been shown that errors in
the state transition matrix, Ãu, can result in increased UAV
crashes when implemented in real systems [21].

An example of this suboptimal performance is reflected
in Figure 1, which shows two summary plots for a 2-UAV
persistent surveillance mission formulated as an MDP [22]
averaged over 100 Monte Carlo simulations. The simu-
lations were performed with modeling errors: the policy
was found by using an estimated probability shown on the
y-axis (“Modeled”), but implemented on the real system
that assumed a nominal probability shown on the x-axis,
(“Actual”). Figure 1(a) shows the mean number of failed
vehicles in the mission. Note that in the region labeled
“Risky”, the failure rate is increased significantly such that all
the vehicles in the mission are lost due to the modeling error.
Figure 1(b) shows the penalty in total coverage time when the
transition probability is underestimated (in the area denoted

(a) Total number of failed vehicles

(b) Mean coverage time vs mismatched fuel flow probabilities

Fig. 1. Impact on modeling error on the overall mission effectiveness

as “Risky” in the figure). In this region, the total coverage
time decreases from approximately 40 time steps (out of a 50
time step mission) to only 10 time steps. It is of paramount
importance to develop precise mathematical descriptions for
these errors and use this information to find robust poli-
cies. While there are many methods to describe uncertainty
sets [1], [2], our approach relies on a Bayesian description
of this uncertainty. This choice is primarily motivated by
the need to update estimates of these probabilities in real-
time in a computationally tractable manner. This approach
assumes a prior Dirichlet distribution on each row of the
transition matrix, and recursively updates this distribution
with observations. The Dirichlet distribution fD at time k
for a row of the N-dimensional transition model is given
by pk = [p1, p2, . . . , pN ]T and positive distribution parameters
α(k) = [α1,α2, . . . ,αN ]T , is defined as

fD(pk|α(k)) = K
N

∏
i=1

pαi−1
i , ∑

i
pi = 1 (5)

= K pα1−1
1 pα2−1

2 . . .(1−
N−1

∑
i=1

pi)αN−1

where K is a normalizing factor that ensures the probability
distribution integrates to unity. Each pi is the ith entry of
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the mth row, that is: pi = Au
m,i and 0≤ pi ≤ 1 and ∑i pi = 1.

The primary reasons for using the Dirichlet distribution is
that the mean p̄i satisfies the requirements of a probability
vector 0≤ p̄i≤ 1 and ∑i p̄i = 1 by construction. Furthermore,
the parameters αi can be interpreted as “counts”, or times
that a particular state transition was observed. This enables
computationally tractable updates on the distribution based
on new observations. The uncertainty set description for the
Dirichlet is known as a credibility region, and can be found
by Monte Carlo integration.

IV. ADAPTATION AND ROBUSTNESS

This section discusses individual methods for adapting to
changes in the transition probabilities, as well as methods for
accounting for robustness in the presence of the transition
probability uncertainty.

A. Adaptation

It is well known that the Dirichlet distribution is conjugate
to the multinomial distribution, implying a measurement
update step that can be expressed in closed form using the
previously observed counts α(k). The posterior distribution
fD(pk+1|α(k +1)) is given in terms of the prior fD(pk|α(k))
as

fD(pk+1|α(k +1)) ∝ fD(pk|α(k)) fM(β (k)|pk)

=
N

∏
i=1

pαi−1
i pβi

i =
N

∏
i=1

pαi+βi−1
i

where fM(β (k)|pk) is a multinomial distribution with hyper-
parameters β (k) = [β1, . . . ,βN ]. Each βi is the total number
of transitions observed from state i to a new state i

′
:

mathematically βi′ = ∑i δi,i′ and

δi,i′ =
{

1 if transition
0 Otherwise

indicates how many times transitions were observed from
state i to state i

′
. For the next derivations, we assume that

only a single transition can occur per time step, βi = δi,i′ .
Upon receipt of the observations β (k), the parameters

α(k) are updated according to

αi(k +1) = αi(k)+δi,i′ (6)

and the mean can be found by normalizing these parameters
p̄i = αi/α0.

Our recent work [23] has shown that the mean p̄i can be
equivalently expressed recursively in terms of the previous
mean and variance

p̄i = αi/α0 (7)

Σii =
αi(α0−αi)
α2

0 (α0 +1)
(8)

by recursively writing these moments as

p̄i(k +1) = p̄i(k)+Σii(k)
δ

i,i′
−p̄i(k)

p̄i(k)(1−p̄i(k))
Σ
−1
ii (k +1) = γk+1 Σ

−1
ii (k)+ 1

p̄i(k+1)(1−p̄i(k+1))

where γk+1 = p̄i(k)(1−p̄i(k))
p̄i(k+1)(1−p̄i(k+1)) . Furthermore, it was shown

that these mean-variance recursions, just as their count-
equivalent counterparts, can be slow in detecting changes
if the model is non-stationary. Hence, a modified set of
recursions was derived that showed that the following re-
cursions provided a much more effective change-detection
mechanism.

p̄i(k +1) = p̄i(k)+1/λkΣii(k)
δi,i′ − p̄i(k)

p̄i(k)(1− p̄i(k))
(9)

Σ
−1
ii (k +1) = λkγk+1Σ

−1
ii (k)+

1
p̄i(k)(1− p̄i(k))

(10)

The key change was the addition of an effective process
through the use of a discount factor 0 < λk ≤ 1, and this
allowed for a much faster estimator response [23].

B. Robustness

While an adaptation mechanism is useful to account for
changes in the transition probabilities, the estimates of the
transition probabilities are only guaranteed to converge in
the limit of an infinite number of observations. While in
practice the estimates do not require an unbounded number
of observations, simply replacing the uncertain model Ã with
the best estimate Â may lead to a biased value function [3]
and sensitive policies, especially if the estimator has not yet
converged to the true parameter A. For the purposes of this
paper, the robust counterpart of Eq. (2) is defined as [1], [2]

J∗R = min
Ã∈A

max
µ

E
[
Jµ(i0)

]
(11)

Like the nominal problem, the objective function is maxi-
mized with respect to the control policy; however, for the
robust counterpart, the objective is minimized with respect
to the uncertainty set A .

When the uncertainty model A is described by a Bayesian
prior, scenario-based methods can be used to generate re-
alizations of the transition probability model. This gives
rise to a scenario-based robust method which can turn
out to be computationally intensive, since the total number
of scenarios needs to be large [21]. This motivated our
work [4] that, given a prior Dirichlet distribution on the
transition probabilities, deterministically generates samples
of each transition probability row Yi (so-called Dirichlet
Sigma Points) using the first two statistical moments of each
row of the transition probability matrix, p̄ and Σ,

Y0 = p̄

Yi =
{

p̄+β
(
Σ1/2

)
i ∀i = 1, . . . ,N

p̄−β
(
Σ1/2

)
i ∀i = N +1, . . . ,2N

where β is a tuning parameter that depends on the level of
desired conservatism, which in turn depends on the size of
the credibility region. Here, Σ

1/2
i denotes the ith row of the

matrix square root of Σ. The uncertainty set A contains the
deterministic samples Yi ∀i ∈ {1,2, . . . ,2N}.
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V. ROBUST ADAPTATION

There are many choices for replanning efficiently us-
ing model-based methods, such as Real Time Dynamic
Programming (RTDP) [24], [25]. RTDP assumes that the
transition probabilities are unknown, and are continually
updated through an agent’s actions in the state space. Due
to computational considerations, only a single sweep of the
value iteration is performed at each measurement update. The
result of Gullapalli [25] shows that if each state and action
are executed infinitely often, then the (asynchronous) value
iteration algorithm converges to the true value function. An
alternative strategy is to perform synchronous value iteration,
by using a bootstrapping approach where the old policy is
used as the initial guess for the new policy [26].

In this section, we consider the full robust replanning prob-
lem (see Algorithm 1). The two main steps are an adaptation
step, where the Dirichlet distributions (or alternatively, the
Dirichlet Sigma Points) for each row and action are updated
based on the most recent observations, and a robust replan
step. For this paper, we use the Dirichlet Sigma Points to
find the robust policy by using scenario-based methods, but
we note that the following theoretical results apply to any
robust value function. While appealing to account for both
robustness and adaptation, it is critical to demonstrate that
the proposed algorithm in fact converges to the true, optimal
solution in the limit. We show this next.

A. Convergence

Gullapalli and Barto [25] showed that in an adaptive (but
non-robust) setting, an asynchronous version of the Value
Iteration algorithm converges to the optimal value function.

Theorem 1: [25] (Convergence of an adaptive, asyn-
chronous value iteration algorithm) For any finite state, finite
action MDP with an infinite-horizon discounted performance
measure, an indirect adaptive asynchronous value iteration
algorithm converges to the optimal value function with
probability one if:

1) the conditions for convergence of the non-adaptive
algorithm are met;

2) in the limit, every action is executed from every state
infinitely often;

3) the estimates of the state transition probabilities remain
bounded and converge in the limit to their true values
with probability one.

Proof: See [25].
Using the framework of the above theorem, the robust

counterpart to this theorem is stated next.
Theorem 2: (Convergence of a robust adaptive, asyn-

chronous value iteration algorithm) For any finite state, finite
action MDP with an infinite-horizon discounted performance
measure, a robust, indirect adaptive asynchronous value
iteration algorithm of Theorem 1

Jk+1(i) =
{

minµ maxAk∈Ak E[Jµ ] if i ∈ Bk ∈ S
Jk(i) Otherwise (14)

converges to the optimal value function with probability
one if the conditions of Theorem 1 are satisfied, and the

Algorithm 1 Robust Replanning
Initialize uncertainty model: for example, Dirichlet distribution parame-
ters α

while Not finished do
Using a statistically efficient estimator, update estimates of the tran-
sition probabilities (for each row, action). For example using the
discounted estimator of Eq. 9

p̄i(k +1) = p̄i(k)+1/λkΣii(k)
δ

i,i′
−p̄i(k)

p̄i(k)(1−p̄i(k))
Σ
−1
ii (k +1) = λkγk+1Σ

−1
ii (k)+ 1

p̄i(k)(1−p̄i(k))

For each uncertain row of the transition probability matrix, find the
robust policy using robust DP

min
A

max
µ

E
[
Jµ

]
(12)

For example, update the Dirichlet Sigma Points (for each row, action),

Y0 = p̄

Yi = p̄+β

(
Σ

1/2
)

i
∀i = 1, . . . ,N (13)

Yi = p̄−β

(
Σ

1/2
)

i
∀i = N +1, . . . ,2N

and find new robust policy minµ maxA ∈Y E
[
Jµ

]
Return

end while

uncertainty set Ak converges to the singleton Âk, in other
words, limk→∞ Ak = {Âk}. Here Bk denotes the subset of
states that are updated at each time step.

Proof: The key difference between this theorem and
Theorem 1 is the maximization over the uncertainty set
Ak. However, as additional observations are incurred and
by virtue of the convergent, unbiased estimator, the size of
the uncertainty set will decrease to the singleton unbiased
estimate Âk. Furthermore, since the robust operator given by
T .= minµ maxAk∈Ak is a contraction mapping [1], [2]. Using
both of these arguments, and since this unbiased estimate
will in turn converge to the true value of the transition
probability, then the robust adaptive asynchronous value
iteration algorithm will converge to the true, optimal solution.

Corollary 3: (Convergence of synchronous version) The
synchronous version of the robust, adaptive MDP will con-
verge to the true, optimal value function.

Proof: In the event that an entire sweep of the state space
occurs at each value iteration, then the uncertainty set Ak
will still converge to the singleton {Âk}.

Remark: (Convergence of robust adaptation with Dirich-
let Sigma Points) For the Dirichlet Sigma Points, the dis-
counted estimator of Eq. 9 converges in the limit of a large
number of observations (with appropriate choice of λk), and
the covariance Σ is eventually driven to 0, then each of the
Dirichlet Sigma Points will collapse to the singleton, the
unbiased estimate of the true transition probabilities. This
means that the model will have converged, and that the robust
solution will in fact have converged to the optimal value
function.
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VI. NUMERICAL RESULTS

This section presents actual flight demonstrations of the
proposed robust and adaptive algorithm on a persistent
surveillance mission in the RAVEN testbed [22].

The UAVs are initially located at a base location, which
is separated by some (possibly large) distance from the
surveillance location. The objective of the problem is to
maintain a specified number r of requested UAVs over
the surveillance location at all times. The base location is
denoted by Yb, the surveillance location is denoted by Ys,
and a discretized set of intermediate locations are denoted
by {Y0, . . . ,Ys − 1}. Vehicles can move between adjacent
locations at a rate of one unit per time step.

The UAVs have a specified maximum fuel capacity Fmax,
and we assume that the rate Ḟburn at which they burn fuel
may vary randomly during the mission: the probability of
nominal fuel flow is given by pnom. This uncertainty in the
fuel flow may be attributed to aggressive maneuvering that
may be required for short time periods, for example. Thus,
the total flight time each vehicle achieves on a given flight
is a random variable, and this uncertainty must be accounted
for in the problem. If a vehicle runs out of fuel while in
flight, it crashes and is lost. The vehicles can refuel (at a
rate Ḟre f uel) by returning to the base location.

In this section, the adaptive replanning was implemented
by explicitly accounting for the uncertainty in the probability
of nominal fuel flow, p̃nom. The replanning architecture
updates both the mean and variance of the fuel flow transition
probability, which is then passed to the online MDP solver,
which computes the robust policy. This robust policy is then
passed to the policy executer, which implements the control
decision on the sytem. The Dirichlet Sigma Points were
formed using updated mean and variance

Y0 = p̂nom

Y1 = p̂nom +β σp

Y2 = p̂nom−β σp

and used to find the robust policy. Using the results from the
earlier chapters, appropriate choices of β could range from
1 to 5, where β ≈ 3 corresponds to a 99% certainty region
for the Dirichlet (in this case, the Beta density). For this
scalar problem, the robust solution of the MDP corresponds
to using a value of p̂nom − βσp in place of the nominal
probability estimate p̂nom.

Flight experiments were performed for a case when the
probability estimate p̂nom was varied in mid-mission, and
three different replanning strategies were compared
• Adaptive only: The first replan strategy involved only

an adaptive strategy, with λ = 0.8, and using only the
estimate p̂nom

• Robust replan, undiscounted adaptation: This replan
strategy used the undiscounted mean-variance estimator
λ = 1, and set β = 4 for the Dirichlet Sigma Points

• Robust replan, discounted adaptation: This replan
strategy used the undiscounted mean-variance estimator
λ = 0.8, and set β = 4 for the Dirichlet Sigma Points

(a) Fast adaptation (λ = 0.8) with no robustness (β = 0)

(b) High robustness (β = 4) but slow adaptation (λ = 1)

Fig. 2. Experimental results showing vehicle trajectories (red and blue),
and probability estimate used in the planning (black)

In all cases, the vehicle takes off from base, travels through
2 intermediate areas, and then reaches the surveillance lo-
cation. In the nominal fuel flow setting losing 1 unit of
fuel per time step, the vehicle can safely remain at the
surveillance region for 4 time steps, but in the off-nominal
fuel flow setting (losing 2 units), the vehicle can only remain
on surveillance for only 1 time step. The main results are
shown in Figure 2, where the transition in pnom occurred at
t = 7 time steps. At this point in time, one of the vehicles is
just completing the surveillance, and is initiating the return
to base to refuel, as the second vehicle is heading to the
surveillance area. The key to the successful mission, in the
sense of avoiding vehicle crashes, is to ensure that the change
is detected sufficiently quickly, and that the planner maintains
some level of cautiousness in this estimate by embedding
robustness. The successful mission will detect this change
rapidly, and leave the UAVs on target for a shorter time. The
result of Figure 2(a) ignores any uncertainty in the estimate
but has a fast adaptation (since it uses the factor λ = 0.8).
However, by not embedding the uncertainty, the estimator
while detecting the change in pnom quickly, nonetheless
allocates the second vehicle to remain at the surveillance
region. Consequently, one of the vehicles runs out of fuel
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Fig. 3. Fast adaptation (λ = 0.8) with robustness (β = 4)

and crashes. At the second cycle of the mission, the second
vehicle remains at the surveillance area for only 1 time step.

The result of Figure 2(b) accounts for uncertainty in
the estimate but has a slow adaptation (since it uses the
factor λ = 1). However, while embedding the uncertainty, the
replanning is not done quickly, and for this different reason
from the adaptive, non-robust example, one of the vehicle
runs out of fuel, and crashes. At the second cycle of the
mission, the second vehicle remains at the surveillance area
for only 1 time step.

Figure 3 shows the robustness and adaptation acting to-
gether to cautiously allocate the vehicles, while responding
quickly to changes in pnom. The second vehicle is allocated
to perform surveillance for only 2 time steps (instead of 3),
and safely returns to base with no fuel remaining. At the
second cycle, both vehicles only stay at the surveillance area
for 1 time step. Hence, the robustness and adaptation have
together been able to recover mission efficiency by bringing
in their relative strengths: the robustness by accounting for
uncertainty in the probability, and the adaptation by quickly
responding to the changes in the probability.

VII. CONCLUSIONS

This paper has presented a combined robust and adap-
tive framework that accounts for errors in the transition
probabilities. This framework is shown to converge to the
true, optimal value function in the limit of a large number
of observations. The proposed framework has been verified
both in simulation and actual flight experiments, and shown
to improve transient behavior in the adaptation process and
overall mission performance. Our current work is addressing
a more active learning mechanism for the transition proba-
bilities, by the use of exploratory actions specifically taken
to reduce the uncertainty in the transition probabilities. Our
future work will consider the problem of decentralization
of the robust adaptive framework across multiple vehicles,
specifically addressing the issues of model consensus in a
multi-agent system, and the impact of any disagreement on
the robust solution.
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