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Abstract— We introduce an approach for stable deployment
of agents into planar curves (1-D formations in 2-D space)
parameterized by the agent index. Stability is ensured by
leader feedback, which is designed in a manner similar to
boundary control of PDEs. By discretizing the model and
the PDE controllers with respect to the continuous agent
index, we obtain control laws for the discrete follower agents
and the leader agent. The class of PDEs that motivates our
design is the reaction-advection-diffusion class (broader than
the standard heat equation, which is stable and does not
necessitate leader feedback), which allows a much broader
family of deployment profiles. Many of these profiles, however,
are open-loop unstable. We stabilize them with leader feedback.

I. INTRODUCTION

We study the problem of stabilizing planar multi-agent

formations by using a leader agent to control the deploy-

ment profile and convergence rate of follower agents in

each dimension independently. The deployment formations

correspond to the potentially unstable, nonzero equilibria of

two decoupled linear reaction-advection-diffusion PDEs. We

achieve exponential stabilization of these profiles for agents

modeled with single-integrator dynamics.

Research in formation control of multi-agent systems

has included leaderless and leader-follower systems. In [1],

feasible geometric patterns were characterized for a group

of anonymous/homogeneous agents executing the same al-

gorithm. Exponential convergence to any specified geometric

pattern was proved for leaderless unicycles with a common

sense of direction in [2], and convergence to generalized

regular polygons was shown for unicycles under cyclic

pursuit in [3]. The latter result was extended by rotating

the line of sight between a pursuer and its leading neighbor

to enable convergence to a point or a spiral in [4]. In [5],

formation-keeping nonlinear control laws were derived for

agents that follow a leader whose motion plan is generated

externally. Artificial potentials and virtual leaders are used

to control the group geometry and direct its mission in [6].

In related works, leader-to-formation stability was studied

in [7], and the controllability of leader-follower systems is

characterized in [8], [9], and [10].

Our control design utilizes the boundary control synthesis

for continuous linear reaction-advection-diffusion PDEs with

dynamic boundary conditions. The two boundary control

laws are executed by the leader agent and another agent
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that we refer to as the anchor agent. In [11], the Laplacian

(consensus) control, analyzed in [12], [13], and [14], was

shown to coincide with the heat equation, making our model

a natural extension. Continuous PDE models have been

previously used to model discrete phenomena such as traffic

flow [15] and the manufacture of semiconductor chips [16].

We use the 1-D backstepping approach [17] to expo-

nentially stabilize two independent 1-D deployment profiles

parameterized by the agent index, one for the horizontal

coordinate and one for the vertical coordinate. This allows

us to form curves in 2-D. The stabilizing PDE controllers,

which are given through a continuous agent index, are

then discretized to recover an ODE system that governs

the dynamics of the agents. We illustrate our results with

numerical simulations.

II. LEADER-ENABLED DEPLOYMENT

For fully actuated agents in 2-D, the deployment problem

consists of two decoupled 1-D deployment problems (for

the horizontal and for the vertical coordinates of the agents).

For this reason, we focus on 1-D deployment designs in the

next four sections, only to return to 2-D applications in the

simulation section (Sec. VI).

It is common to consider the heat equation

ut(x, t) = uxx(x, t) (1)

as a model that governs the position u(x, t) at time t
of an agent indexed by x in a large (continuum) group

of agents, where each agent is applying nearest-neighbor-

based diffusion feedback actuated through a velocity input,

namely, v(x, t) = uxx(x, t). This simple agent strategy is

known to be stable, but it is limited in the convergence

rate and is capable of achieving only linear/homogeneous (in

x) deployment/equilibrium profiles (because the equilibrium

equation is the simplest second order ODE, ū′′(x) = 0).

We consider a situation where the agents are governed

in each coordinate axis by a more general linear reaction-

advection-diffusion equation,

ut(x, t) = uxx(x, t) + bux(x, t) + λu(x, t), x ∈ [0, 1] ,
(2)

i.e., where the velocity-actuated feedback laws of the agents

are

v(x, t) = uxx(x, t) + bux(x, t) + λu(x, t) , (3)

which are still based only on the nearest-neighbor informa-

tion and where all the agents apply the same constant gains b
and λ. In the sequel, we drop the arguments (x, t) whenever

the context allows us to do so without harming clarity.
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With the continuum of agents being indexed from x = 0
to x = 1, we designate a special role for the two boundary

agents, whose motion is governed by

ut(0, t) = U0(t), (4)

ut(1, t) = U1(t), (5)

where U0(t), U1(t) are controls to be designed, and which

play the roles of the boundary conditions for the PDE (2).

The leader agent (x = 1) and the anchor agent (x = 0)

will control the follower agents (0 < x < 1). As indicated by

their names, the leader stabilizes the deployment profile ū(x)
while the anchor autonomously deploys to its designated

position ū(0), holding its end of the profile fixed.

The deployment profiles of interest are the nonzero equi-

librium profiles of (2), which satisfy the two-point boundary

value problem,

ū′′(x) + bū′(x) + λū(x) = 0, (6)

with ū(0) and ū(1) given. This allows for a much more

general family of deployment profiles than the linear (in x)

equilibrium profiles of the heat equation (1). However, it

is crucial to note that the equilibria described by (6) may

be open-loop unstable since the eigenvalues of (2) are λ −
b2/4− π2n2 where n ∈ {0, 1, 2, . . .}. Hence, the leader and

the anchor agents will play a crucial role of stabilizing the

possibly nonlinear (in x) deployment profiles.

Equation (6), which is a second-order ODE with constant

coefficients, characterizes all the achievable deployment pro-

files with the follower agent feedbacks (3). It is of interest

to see how rich the family of possible deployment profiles

is. Table I categorizes the deployment profiles and their

associated basis functions according to the values of b and

λ. From the two decoupled PDE models, we have two

deployment profiles, ū(x) and v̄(x), that characterize a planar

curve parameterized in x in the (u, v) plane,

u = ū(x), v = v̄(x), x ∈ [0, 1]. (7)

To the user, who has particular shapes of deployment for-

mations in mind, these basis functions are a starting point

in selecting the strategies of the follower agents, and also of

the leader and anchor agents.

In this paper we present a design procedure for leader-

enabled, possibly inhomogeneous, multi-agent deployment,

where the user applies the following steps for both the

horizontal and vertical coordinates of the agents:

1) Select the family of desired deployment profiles.

2) Select the family of basis functions that span the

desired family of deployment profiles.

3) Select the specific basis functions by choosing the val-

ues of the advection (b) and reaction (λ) coefficients.

4) Pick basis function coefficients a0 and a1 to generate

the specific deployment profile ū(x).
5) Pick the desired deployment convergence rate.

6) Discretize the continuous model (2), (4), (5) spatially

to obtain implementable control laws for the leader,

anchor, and follower agents.

TABLE I

1-D DEPLOYMENT PROFILES OF THE REACTION-ADVECTION-DIFFUSION

EQUATION.

b, λ 1-D Deployment Profile ū(x) Basis Functions

b = λ = 0 a0 + a1x (1, x)

b 6= 0, λ = 0 a0 + a1e−bx
`

1, e−bx
´

b = 0, λ > 0 a0 cos(θx) + a1 sin(θx), (cos(θx), sin(θx))

θ =
√

λ

b2 = 4λ (a0 + a1x) e−σx,
`

e−σx, xe−σx
´

σ =
√

λ

b2 < 4λ eσx (a0 cos(θx) + a1 sin(θx)), (eσx cos(θx),

σ = − b
2

, θ = 1

2

√
4λ − b2 eσx sin(θx))

b2 > 4λ a0eσ0x + a1eσ1x, (eσ0x, eσ1x)

σ0,1 = − b
2
± 1

2

√
b2 − 4λ

The key to this procedure is a step that is not included in

this list, as it is not a routine user step. This is the step of

designing the control laws for the anchor/leader inputs U0(t),
U1(t) appearing in (4), (5). We now focus on the design of

these control laws.

III. LEADER FEEDBACK DESIGN

We employ PDE backstepping boundary control [17].

First, we introduce the deployment profile error,

z(x, t) = u(x, t) − ū(x), (8)

to shift the equilibrium to the origin. Substituting (8) into

(2), (4), and (5), yields

zt = zxx + bzx + λz, (9)

zt(0) = Z0(t), (10)

zt(1) = Z1(t), (11)

where Z0(t) = U0(t) and Z1(t) = U1(t). Next, we eliminate

the advection term by using the change of variable,

v(x) = z(x)e
b

2
x, (12)

as shown in [17]. Substituting (12) into (9)–(11) results in

the reaction-diffusion equation

vt = vxx +

(

λ − b2

4

)

v, (13)

vt(0) = V0(t), (14)

vt(1) = V1(t), (15)

where V0(t) = Z0(t) and V1(t) = e
b

2 Z1(t).
Let w(x, t) be a new state that is defined by the coordinate

transformation [17],

w(x, t) = v(x, t) −
∫ x

0

k(x, y)v(y, t) dy . (16)

where the kernel k(x, y) defined on T = {(x, y) : 0 ≤ y ≤
x ≤ 1} is given by

k(x, y) = −c̄y
I1

(

√

c̄ (x2 − y2)
)

√

c̄ (x2 − y2)
, (17)
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c̄ = c + λ − b2/4, and I1 denotes the first order modified

Bessel function of the first kind.

Remark 3.1: The transformation (16) can be inverted to

obtain

v(x, t) = w(x, t) +

∫ x

0

l(x, y)w(y, t) dy, (18)

where the inverse gain kernel l ∈ C2(T ) [17].

The variable (16) is shown to satisfy the target system

wt = wxx − cw − ky(x, 0)w(0), (19)

wt(0) = −cw(0), (20)

wt(1) = −cw(1), (21)

where c > 0. From (12), (16), and (20),

Z0(t) = −cz(0), (22)

is immediate, and from (8) and (22), we obtain the anchor’s

control law,

U0(t) = −c (u(0) − ū(0)) . (23)

To define the leader’s control law, we introduce the oper-

ator K{·} acting on a function ξ(x, t) as

K{ξ}(t) = −
√

c̄ I1

(√
c̄
)

e−
b

2 ξ(0, t)

−
(

c̄2

8
+

bc̄

4
− c̄

2
+ c

)

ξ(1, t) − c̄

2
ξx(1, t)

−
∫ 1

0

e−
b

2
(1−y)



c̄y3
I3

(

√

c̄ (1 − y2)
)

(c̄ (1 − y2))
3

2

− 3y
I2

(

√

c̄ (1 − y2)
)

c̄ (1 − y2)

+ y
I1

(

√

c̄ (1 − y2)
)

√

c̄ (1 − y2)



 c̄2ξ(y, t) dy, (24)

where I2 and I3 indicate the second and third order modified

Bessel functions of the first kind respectively. From (12),

(16), and (21), we find

Z1(t) = K{z}(t). (25)

Then from (8) and (25), we arrive at the leader’s control law,

U1(t) = K{u}(t) −K{ū}, (26)

that, with (23), stabilizes the deployment profile ū(x).

Of note, the control laws (23) and (26) both contain a

feedback term and a constant bias term. These bias terms

can be computed prior to deployment according to the

desired deployment profile. Thus, by simply changing the

bias—without changing the feedback—different deployment

profiles can be stabilized. When the bias terms are zero,

rendezvous at the origin is achieved.

IV. CLOSED-LOOP STABILITY

There are several aspects in which the stability analysis

here differs from that in [17]. This is due to the dynamic

character of the boundary conditions (20), (21), which re-

quire that the analysis be conducted in the space H1 rather

then L2, and due to the additional (perturbation) term on the

right-hand side of (19).

Theorem 1: The system (2) with boundary conditions (4),

(5) and control laws (23), (26) is exponentially stable in the

H1 norm at the equilibrium u(x, t) ≡ ū(x), i.e., there exists

M > 0 such that for all t > 0,

Ω(t) ≤ Me−ctΩ(0), (27)

where

Ω(t) = z(0, t)2 + z(1, t)2 + ‖z(t)‖2
L2 + ‖zx(t)‖2

L2 , (28)

c > 0, and c 6= b2

4 − λ.

Proof: Let V (t) be the Lyapunov functional

V (t) =
m0

2
w(0, t)2 +

1

2
w(1, t)2

+
m1

2
‖w(t)‖2

L2 +
1

2
‖wx(t)‖2

L2 , (29)

where m0 and m1 are positive scalars to be determined. In

the sequel, we omit the arguments (x, t) unless needed for

clarity.

Computing the time derivative of V (t) and substituting

(19)–(21) yields

V̇ = −cm0w(0)2 − cw(1)2 − cm1

∫ 1

0

w2 dx

− m1w(0)

∫ 1

0

ky(x, 0)w dx + m1

∫ 1

0

wwxx dx

+

∫ 1

0

wxwxt dx. (30)

Integrating by parts the last two terms of (30), gives

V̇ = −cm0w(0)2 − cw(1)2 + m1wwx|10 + wxwt|10

− cm1

∫ 1

0

w2 dx − m1

∫ 1

0

w2
x dx

− m1w(0)

∫ 1

0

ky(x, 0)w dx −
∫ 1

0

wxxwt dx. (31)

Again we substitute (19)–(21) and collect terms to obtain

V̇ = −cm0w(0)2 − cw(1)2 + (m1 − c)wwx|10

− cm1

∫ 1

0

w2 dx − m1

∫ 1

0

w2
x dx −

∫ 1

0

w2
xx dx

− w(0)

∫ 1

0

ky(x, 0) (m1w − wxx) dx + c

∫ 1

0

wwxx dx.

(32)
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Integrate the last term in (32) by parts to get

V̇ ≤ −cm0w(0)2 − cw(1)2 + m1wwx|10

− cm1

∫ 1

0

w2 dx − (m1 + c)

∫ 1

0

w2
x dx −

∫ 1

0

w2
xx dx

+ |w(0)|
∣

∣

∣

∣

∫ 1

0

ky(x, 0) (m1w − wxx) dx

∣

∣

∣

∣

. (33)

We now apply the Cauchy-Schwarz Inequality and Young’s

Inequality to obtain

V̇ ≤ −cm0w(0)2 − cw(1)2 + m1wwx|10

− cm1

∫ 1

0

w2 dx − (m1 + c)

∫ 1

0

w2
x dx

−
∫ 1

0

w2
xx dx +

1

2
w(0)2

∫ 1

0

ky(x, 0)2 dx

+
1

2

∫ 1

0

(

m2
1w

2 − 2m1wwxx + w2
xx

)

dx. (34)

Integrating the last term of (34) by parts gives

V̇ (t) ≤ −
(

c − 1

2m0

∫ 1

0

ky(x, 0)2 dx

)

m0w(0, t)2

− cw(1, t)2 −
(

c − m1

2

)

m1

∫ 1

0

w(x, t)2 dx

− c

∫ 1

0

wx(x, t)2 dx − 1

2

∫ 1

0

wxx(x, t)2 dx,

≤ −min

(

c − Λ

2m0
, c − m1

2

)

(

m0w(0, t)2

+w(1, t)2 + m1‖w(t)‖2
L2 + ‖wx(t)‖2

L2

)

, (35)

where

Λ =

∫ 1

0

ky(x, 0)2 dx,

=
2

3
c̄2 I0

(√
c̄
)2

− 2

3
c̄
√

c̄ I0

(√
c̄
)

I1

(√
c̄
)

− 1

3
c̄ I1

(√
c̄
)

− 2

3
c̄2 I1

(√
c̄
)2

. (36)

We select m0 = Λ/c and m1 = c to obtain

V̇ ≤ −cV. (37)

(The choice of m0 assumes that c 6= b2

4 − λ so that Λ > 0.)

By the Comparison Lemma,

V (t) ≤ e−ctV (0). (38)

From Lemma 1 and (38), we have

Ω(t) ≤ 1

p1
Ψ(t) ≤ 1

p1q1
V (t) ≤ 1

p1q1
e−ctV (0),

≤ q2

p1q1
e−ctΨ(0) ≤ p2q2

p1q1
e−ctΩ(0), (39)

where q1 = 1
2 min

(

1, Λ
c
, c
)

, q2 = 1
2 max

(

1, Λ
c
, c
)

, and p1

and p2 are shown in (53). The result (27) is obtained from

(39) with M = p2q2

p1q1

.

V. DISCRETIZED AGENT CONTROL LAWS

To move from a continuum of agents to a model for a finite

number, we spatially discretize the continuous model (2) and

the leader agent’s feedback (26). The anchor agent’s control

law (23) does not require any modification since it depends

only on the anchor agent’s position. The state variable u(x, t)
becomes u(ih, t) where i = 0, . . . , n+1, h = 1/(n+1), and

n is the number of follower agents. We denote the leader

agent as un+1, the anchor agent as u0, and the follower

agents as ui.

For the leader agent, we define the operator KD{·}, a

discretized version of (24), acting on a function ξ(ih, t), as

KD{ξ}(t) = −
√

c̄ I1

(√
c̄
)

e−
b

2 ξ0(t)

−
(

c̄2

8
+

bc̄

4
− c̄

2
+ c

)

ξn+1(t)

− c̄

2

(

ξn+1(t) − ξn(t)

h

)

− h

2

(

fn+1(t) + 2

n
∑

i=1

fi(t)

)

, (40)

where

fi(t) = e−
b

2
(1−ih)



c̄(ih)3
I3

(

√

c̄ (1 − (ih)2)
)

(c̄ (1 − (ih)2))
3

2

− 3ih
I2

(

√

c̄ (1 − (ih)2)
)

c̄ (1 − (ih)2)

+ ih
I1

(

√

c̄ (1 − (ih)2)
)

√

c̄ (1 − (ih)2)



 c̄2ξi(t), (41)

fn+1(t) =
c̄2

48
(c̄ + 6) ξn+1(t). (42)

To obtain (40), we use the trapezoidal rule and the two-point

backward difference to approximate the integral term and the

ux(1) term in (24). With (40), the leader’s discretized control

law is simply,

Un+1(t) = KD{u}(t)−KD{ū}. (43)

We discretize the follower agent control laws (2) by using

three-point central differencing to approximate the spatial

derivatives and by averaging the reaction term, obtaining

Ui(t) =
ui+1 − 2ui + ui−1

h2
+ b

ui+1 − ui−1

2h
+ λ (pui−1 + (1 − 2p)ui + pui+1) , (44)

where p is a positive scalar to be determined. Together, the

control laws (23), (43), and (44) govern the dynamics of the

agents according to the ODE system,

u̇0 = U0(t), (45)

u̇i = Ui(t), (46)

u̇n+1 = Un+1(t). (47)

The approximation error of (43) and (44) due to the spatial

discretization increases as the discretization becomes coarser
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(a) Elliptical deployment
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(b) Hyperbolic deployment
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(c) Circular logarithmic spiral deployment
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(d) Rendezvous at (2, 1.5)

Fig. 1. Agent trajectories for deployments (a)-(c) with agents initialized at the origin and rendezvous (d) with agents initialized from a random uniform
distribution. Darker shading indicates advances in time where t ∈ [0, 2] sec.

(fewer agents are deployed). Consequently, the equilibria

of (45)–(47) start to significantly deviate from the desired

deployment profiles in Table I for small numbers of agents.

We use p as a tool to force the equilibria to match the nonzero

equilibrium profiles of (2) in a least squares sense.

We determine p by assuming that the equilibrium ūi,

which satisfies u̇i(t) = 0, is equal to the deployment profile

ū(ih), leaving p as the only unknown variable. We obtain

the over-determined system of equations, Ap = B, where

A = λh2

( ū0 − 2ū1 + ū2

ūi−1 − 2ūi + ūi+1

ūn−1 − 2ūn + ūn+1

)

, (48)

B =





αū0 +
(

2 − λh2
)

ū1 − βū2

αūi−1 +
(

2 − λh2
)

ūi − βūi+1

αūn−1 +
(

2 − λh2
)

ūn − βūn+1



 , (49)

α =
bh

2
− 1, β = 1 +

bh

2
, i = 1, . . . , n, (50)

and solve for p using the pseudo-inverse of A.

We see directly from (43) and (44) that the spatial dis-

cretization imposes a fixed communication topology where

the follower agents depend only on their nearest neighbors,

and the leader requires global information to stabilize the

deployment. Such a topology is not uncommon in leader-

follower systems when the leader is responsible for control-

ling the behavior of the follower agents.

VI. SIMULATIONS

We simulate ten agents (n = 8) in the (u, v) plane by

implementing the control laws (23), (43), and (44) to stabilize

decoupled 1-D deployments along each axis. In this manner,

we achieve 2-D planar curves parameterized in x.

For example, we stabilize the ellipse (Fig. 1(a)),
(

3u+v
8

)2
+
(

u+3v
8

)2
= 1, and the hyperbola (Fig. 1(b)),

(u/2)
2 − (2v)2 = 1, using the parameter sets (b = 0, λ =

4π2(n+1
n+2 )2, c = 10, p = 0.0850) and (b = 0, λ = −4, c =

10, p = 0.0831). In Fig. 1(c), we stabilize a circular loga-

rithmic spiral, u = e−
5

2
x sin(2πx), v = e−

5

2
x cos(2πx),

where x ∈ [0, 1], which corresponds to b = 5 and λ =

1998



4π2 + 25/4. The gain c = 25 and c = 15 was used

when stabilizing the u- and v-axis deployment profiles with

p = 0.1128.

Our final example uses control laws derived from the

heat equation (1) to enable the agents to rendezvous at a

selected point. Fig. 1(d) shows the agents rendezvousing at

the point (2, 1.5) after being initialized randomly from a

uniform distribution. The parameter c = 10 was used. One

should note that the leader does not simply move directly to

the rendezvous point, but instead takes a route that influences

the followers and speeds convergence.

VII. CONCLUSIONS

We have introduced a PDE boundary control-based ap-

proach for stable leader-enabled deployment of 2-D forma-

tions of agents. While the standard diffusion-based feedback

for individual agents leads to inherently stable deployment

into equidistant profiles, for which leader assistance is not

needed, the non-equidistant profiles that we pursue here may

be open-loop unstable. In our approach, the leader feedback

stabilizes such profiles.

The approach that we present here is based on reaction-

advection-diffusion PDEs and allows stable deployment into

profiles where the agent displacement can be represented by

the following functions of the agent index: linear (standard),

sin, cos, sinh, cosh, exp. This allows deployment formations

of practical interest—for example, the leader deploying out

the majority of agents near a target position (occupied by

the anchor agent) while staying at base and keeping very

few agents near base, or conversely, deploying out only a few

agents; deploying agents out in both directions symmetrically

while both the leader and anchor stay at base, thus creating

a “protective shell” for the leader; or deploying the agents

to encircle a point of interest.

It is crucial to observe that in our leader-enabled frame-

work the follower agents deploy out not by being com-

manded some reference positions, but by being induced

(indirectly influenced) by the leader’s and anchor’s motions

to deploy out and to maintain a stable formation.

Future work includes stabilizing formations with observer-

based feedback and modeling the agents with nonholonomic

vehicle dynamics. Additionally, nonlinear PDE models will

further broaden the types of formations that can be stabilized.
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APPENDIX

Lemma 1: There exists p1, p2, q1, q2 > 0 such that

p1Ω(t) ≤ Ψ(t) ≤ p2Ω(t), (51)

q1Ψ(t) ≤ V (t) ≤ q2Ψ(t), (52)

where Ψ(t) = w(0, t)2 + w(1, t)2 + ‖w(t)‖2
L2 + ‖wx(t)‖2

L2 ,

and Ω(t) and V (t) are shown in (28) and (29).

Proof: Using (12), (16), and (18), one can obtain

p1 =
1

l1n1
, p2 = l2n2, (53)

where

l1 = max
(

2 + b2 + (12 + b2)L + 8Lx, 4
)

, (54)

l2 = max
(

2 + b2 + 8K + 4Kx, 4
)

, (55)

L = sup
(x,y)∈T

|l(x, y)|2, (56)

Lx = sup
(x,y)∈T

|lx(x, y)|2, (57)

K = sup
(x,y)∈T

|k(x, y)|2, (58)

Kx = sup
(x,y)∈T

|kx(x, y)|2, (59)

n1 = max
(

1, e−b
)

, and n2 = max
(

1, eb
)

, to satisfy (51).

With q1 = 1
2 min (1, m0, m1) and q2 =

1
2 max (1, m0, m1), equation (52) is immediate.

1999


