
LPV Decoupling for Multivariable Control System Design

Javad Mohammadpour†‡, Karolos Grigoriadis†, Matthew Franchek†, and Yue-Yun Wang♯

Abstract— The paper explores methods for decoupled linear
parameter varying (LPV) control. The proposed approach seeks
to benefit the multi-variable control of multi-input multi-output
(MIMO) systems with variable operating conditions, variable
parameters or nonlinear behavior. The method can improve the
performance and reduce the variability of such MIMO systems
with significant coupling in the system dynamics. We design
MIMO decoupled feedback LPV controllers to address coupling
effects. In particular, the method uses a parameter-dependent
static inversion or SVD decomposition of the system to minimize
the effects of the off-diagonal terms in the MIMO system
transfer function matrix. The parameter-dependent decoupling
matrices are selected along with the appropriate LPV controller
design to guarantee the closed-loop performance specifications.
A new parameter-dependent interaction measure is also intro-
duced based on SVD decomposition and static inversion and is
examined for the adaptive control design purposes to address
the variability and coupling of the multivariable systems.

I. INTRODUCTION

An idealized requirement in MIMO control system design

is that of decoupling. Decoupling can be performed in

several ways from static, where decoupling is only demanded

for constant reference signals, to full dynamic decoupling,

where decoupling is achieved over all frequencies. Since full

dynamic decoupling is a stringent demand, it is more com-

mon to seek dynamic decoupling over a desired frequency

bandwidth. If a plant is dynamically decoupled, then changes

in the set-point of one process variable leads to a response in

only that process variable and all others remain unchanged

[8]. In the literature, different decoupling approaches have

been proposed for MIMO LTI systems and successfully

applied in many engineering applications. There has been

a particular interest to the problem of dynamic decoupling

for stable minimum phase systems, dynamic decoupling for

stable non-minimum phase systems and dynamic decoupling

for open loop unstable systems (see [8], [11] and references

therein). As expected, full dynamic decoupling is a strong

requirement that can rarely be achieved. This brings other

relaxed forms of decoupling as more feasible and practical.

For example, static decoupling is quite prevalent in prac-

tical applications. The question then becomes, over what

bandwidth decoupling will be valid. Different decoupling

strategies come at a cost. It turns out that the additional

cost of decoupling is a function of open-loop poles and

zeros in the right half plane [8]. Thus, if one is interested in

This work is being supported by Powertrain Control Research of General
Motors, Warren, MI.

†Department of Mechanical Engineering, University of Houston, Hous-
ton, TX 77004.

♯Powertrain Systems Research Lab, General Motors, Warren, MI 48090.
‡Corresponding author, email: JMohammadpour@uh.edu.

restricting the decoupling to some bandwidth then by paying

attention to those open-loop poles and zeros that fall within

this bandwidth, the cost of decoupling over that region can

be assessed.

Gain-scheduling control is a popular design technique of-

ten used by practicing control engineers when the controlled

plant is highly nonlinear. In gain-scheduling, linear control

techniques are applied for control design over a partition

of the operating envelope. A necessary number of operating

points are usually selected by the designer to cover the entire

operating region, and a local controller is designed at each

one of these points. In between the operating points, for

which the linear controllers were designed, the parameters of

the controllers are interpolated to cover the entire operating

envelope. The main drawback of traditional gain-scheduling

control is that the design does not guarantee stability of the

closed-loop system. This is because the global feedback law

obtained from gain-scheduling is a nonlinear controller and

the guarantees of the linear synthesis methods do not hold.

In contrast to the classical gain-scheduling techniques, the

recently developed robust gain-scheduling methods (see [9]

and references therein) in the linear parameter varying (LPV)

framework provide systematic ways to design controllers

scheduled based upon the operating point of the system.

An LPV system is a system whose describing state-space

matrices depend on a time-varying parameter vector. LPV-

based design methods do not require the interpolation of

the local controllers. In fact, they provide a family of linear

controllers with guarantee of stability and performance for

the entire operating range.

In many multivariable industrial plants and processes,

single-loop PID controller design is often implemented by

controlling individual feedback loops, where decoupling is

employed to decouple the interaction between input and

output variables. The use of standard PID design procedures

and the ease of fine tuning are the main advantages of this

approach [5]. Nevertheless, as mentioned earlier, this control

design procedure for MIMO systems involves two stages:

first the need to decouple the different SISO subsystems, and

then the need to individually control them so that stability

and satisfactory performance is provided. Traditional decou-

pling, however, does not address the challenge of system non-

linearities and changes in operating conditions. This is often

a reason why the standard (static or dynamic) decoupling

fails to provide satisfactory decoupling for systems in which

the operating conditions constantly change. The objective

of this paper is to propose an adaptive way of updating

the decoupling transformation matrices by employing a set

of parameter-dependent bases generated off-line and used

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB15.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3112



to update the decoupling transformation matrices in real-

time. The assumption here is that the operating points are

measurable in real-time and slowly varying.

II. PROBLEM STATEMENT

Consider a linear parameter varying (LPV) plant G(s, ρ)
represented by the following state-space realization

ẋ = A(ρ)x + B(ρ)u (1)

y = C(ρ)x + D(ρ)u (2)

where x ∈ Rn is the state vector, u ∈ Rnu is the control

input and y ∈ Rny includes the measured outputs. In the

above formulation, the time-varying parameter vector ρ =
[ρ1, . . . , ρs]

T is assumed to be unknown a priori but can be

measured or estimated in real-time. In this paper, we are par-

ticularly interested in the frequency-domain control design

problem for multivariable systems where the coupling effects

due to the non-diagonal elements in the system transfer ma-

trix G(s, ρ) are significant. The decoupling problem for LTI

systems has been well studied in the past couple of decades.

Our objective is to propose a methodology for designing

decoupling controllers to guarantee the design specifications

in the presence of operating condition variability and system

nonlinearities. The design approach is simple yet applicable

to many applications in which an invariant decoupling pro-

cedure fails to provide satisfactory closed-loop performance

due to nonlinearities and/or parameter variability. In this

paper, we only consider systems with square transfer function

matrices. However, the ideas discussed in the paper can be

readily extended to nonsquare systems.

III. LPV DECOUPLED CONTROL OF MIMO SYSTEMS

A. Analytical Framework for LPV Decoupled Control

A multivariable system often exhibits coupling interactions

between its inputs and outputs. These interactions cause

inherent problems in the multivariable control design. De-

coupling control is based on appropriate cancellation of these

cross-coupling loop interactions and allows improved control

and subsequent ease of tuning and calibration. Similar to

most decoupling techniques, the LPV decoupling method-

ology for parameter-dependent multivariable control design

proposed in this paper uses a two-step procedure as follows:

(i) we first design a parameter-dependent compensator to

decouple the interactions between the off-diagonal terms of

the LPV open-loop system whose transfer function matrix

is represented by G(s, ρ), and (ii) we design a diagonal

controller using standard methods applicable to SISO sys-

tems. The approaches we consider for decoupled MIMO

control design are based on designing a pre-compensator to

counteract the cross-coupling interactions in G(s, ρ) or pre-

and post-compensators by employing an SVD decomposition

to diagonalize G(s, ρ). In the next sections, we describe

in detail how the method is applied for each decoupling

approach.

The proposed LPV decoupling control design method

provides significant advantages in terms of dealing with

the coupling issue in MIMO systems subject to nonlinear

behavior and operating condition variability. In particular,

the proposed methods result in:

1) a systematic methodology for on-line updating of the

decoupling matrices to guarantee system decoupling in

the presence of parameter variability.

2) a combined LPV control design that uses the de-

coupled system to guarantee improved closed-loop

performance.

We are also interested in developing conditions that guaran-

tee appropriate selection of the parameter-dependent decou-

pling matrices and dynamic controllers for closed-loop stabil-

ity and performance based on the computation of parameter-

dependent Lyapunov functions.

B. MIMO LPV Decoupling Based on Inversion

LPV decoupling can be simply achieved using a pre-

compensator W (s, ρ) that results in a new shaped plant in

the following form:

Gs(s, ρ) = G(s, ρ)W (s, ρ) (3)

which is expected to have a desired structure, e.g. diagonal

or approximately diagonal and, hence, easier to control com-

pared to the original plant G(s, ρ). Once such a parameter-

dependent pre-compensator is found, then a diagonal LPV

controller Ks(s, ρ) can be designed for the shaped plant

Gs(s, ρ). The overall controller will then be

K(s, ρ) = W (s, ρ)Ks(s, ρ). (4)

Decoupling is achieved if Gs(s, ρ) defined in (3) is diago-

nal at a selected frequency range. There are two approaches

for designing such a pre-compensator. One is the dynamic

decoupling, where (assuming that Gs(s, ρ) is invertible)

W (s, ρ) = G−1(s, ρ) is selected to diagonalize Gs(s, ρ) at

all frequencies and all admissible time-varying parameters.

Realizing such a compensator could be difficult due to the

possible problems involved in taking the inverse of the plant

transfer function [11], [8]. A second design approach is the

static decoupling at a certain frequency w0, where one looks

for a parameter-dependent W (ρ) to make Gs(jw0, ρ) as

close to a diagonal matrix as possible. This may be obtained

by selecting a constant pre-compensator W (ρ) = G−1
0 (ρ)

where G0 is a real approximation of G(jw0). Steady-state

decoupling by setting w0 = 0 is one common way of

achieving the static decoupling. The bandwidth frequency

is also another good selection for w0 since the effect on per-

formance of the reduced coupling is normally maximum at

this frequency [11]. For both dynamic and static decoupling,

if the open-loop system’s transfer matrix is non-square, then

the pseudo-inverse can be utilized provided that the matrix is

full-rank for all admissible time-varying parameters ρ. Due

to its ease of implementation, we focus our attention to the

static decoupling throughout this paper.
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C. MIMO LPV Decoupling Based on SVD Decomposition

The basic idea is to shape the open-loop system as

Gs(s, ρ) = W2(s, ρ)G(s, ρ)W1(s, ρ), where W1 and W2 are

appropriate parameter-dependent decoupling matrices, such

that Gs(s, ρ) becomes diagonal. Taking into account the fact

that we are interested in the static decoupling problem, the

compensators are parameter-dependent static matrices. Then,

the overall controller will be

K(s, ρ) = W1(ρ)Ks(s, ρ)W2(ρ) (5)

where Ks(s, ρ) is the MIMO diagonal controller designed for

the decoupled plant Gs(s, ρ). The SVD-controller is a special

case of a pre- and post-compensator design as explained

above. Here

W1(ρ) = V0(ρ) and W2(ρ) = UT
0 (ρ)

where U0(ρ) and V0(ρ) are obtained from a parametric

singular value decomposition G0(ρ) = U0(ρ)Σ0(ρ)V T
0 (ρ),

where G0(ρ) is a real approximation of G(jω0, ρ) at a given

frequency ω0. SVD decoupling may be performed around

ω0 = 0 (steady-state decoupling) or ω0 = ωb (bandwidth

frequency decoupling), in which cases the matrices U0(ρ)
and V0(ρ) are generated. Hence, the proposed decoupling

approach is similar to a parameter-dependent SVD decompo-

sition except that the decomposition is performed off-line and

a basis is produced to be used for updating the decoupling

matrices in real-time.

IV. DISCUSSION

Decoupling is susceptible to erroneous or incomplete

cross-coupling cancellations due to modeling errors. Hence,

appropriate robustness of the design should be guaranteed.

Partial decoupling can be employed if the effect of some of

the interacting loops is deemed negligible. In the first part

of this section, we present some results on the post-analysis

of the closed-loop system to ensure that the decoupled LPV

design will guarantee closed-loop stability and desired per-

formance even when the decoupling is not perfectly achieved.

Interaction analysis of MIMO systems is crucial for con-

trol design and decentralized control problems. There are

different measures used to quantify the interaction between

the inputs and outputs which include the relative gain array

(RGA) introduced by Bristol [6], the steady-state interaction

indices developed by Chang and Davison [7] and a recently

proposed method by Astrom et. al [3]. In the second part

of this section, we extend the idea developed in [3], [4]

and introduce a new interaction measure based on SVD

decomposition and static inversion and show how it works

for LPV decoupled control design.

A. Stability and Performance Degradation Analysis

In the previous section, we discussed the problem of LPV

decoupled controller design for nonlinear systems in an LPV

form. According to [10], [12], the decoupled controller has to

meet two criteria: nominal stability and robust performance.

Nominal stability is achieved if the decoupled controller,

designed for the diagonal elements of the decoupled sys-

tem, provides stability for the closed-loop system. Robust

performance is achieved if the performance requirements are

satisfied for all plants within the uncertainty set. It is noted

that both nominal stability and robust performance will result

in bounds on the sensitivity and complementary sensitivity

functions of all the independent SISO control loops in the

decoupled controller design, which can be readily used in an

H∞ loop shaping design of the SISO controllers.

Following the notation presented in the previous section,

we have

Gs(s, ρ) = W2(ρ)G(s, ρ)W1(ρ)

Let us define Ds(s, ρ) = diag{Gsii
(s, ρ)} where Gsii

are

the diagonal elements of the compensated plant Gs. In the

case of a perfect decoupling, Gs(s, ρ) = Ds(s, ρ). However,

in reality, Ds(s, ρ) is just an approximation of Gs(s, ρ).
Finally, Ds(s, ρ) may be further manipulated to generate

another diagonal matrix Dd(s, ρ) using static or dynamic

scaling.

The control design method discussed earlier is a decen-

tralized one consisting of q independent SISO controllers

designed based on Dd(s, ρ). Let us assume that such a con-

troller is represented by Ks(s) = diag{K1(s), . . . ,Kq(s)}
designed for the compensated parameter-dependent system

Dd(s, ρ). It is noted that the controller itself could be

parameter-dependent as well. The final controller then be-

comes (5). The sensitivity and complementary sensitivity

based on Ds(s, ρ) and the independent SISO controllers are

defined as

SD(ρ) = (I + Ds(ρ)Ks)
−1

TD(ρ) = (I + Ds(ρ)Ks)
−1Ds(ρ)Ks. (6)

Considering the fact that Ds(s, ρ) and Ks(s) are both

diagonal, SD(ρ) will become diagonal as well, and hence

the following relations hold

‖SD(ρ)‖∞ = max
ρ

max
i=1,...,q

{‖(1 + Gsii
Ki)

−1‖∞} (7)

‖TD(ρ)‖∞ = max
ρ

max
i=1,...,q

{‖(1 + Gsii
Ki)

−1Gsii
Ki‖∞}

(8)

Applying the final controller represented by (5) to the

system leads to the following sensitivity and complementary

sensitivity functions

S(ρ) = (I + Gs(ρ)Ks)
−1

T (ρ) = (I + Gs(ρ)Ks)
−1Gs(ρ)Ks. (9)

Nominal stability is achieved if S(ρ) defined above is

stable. Due to the imperfect decoupling, the nominal stability

may not be guaranteed. A simple way to check the stability

issue due to the non-ideal decoupling is to treat the differ-

ence between Gs(ρ) and Ds(ρ) as a multiplicative output

uncertainty by generalizing the formulation in [12] as

E(s, ρ) = (Gs(s, ρ) − Ds(s, ρ))D−1
s (s, ρ).
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A posteriori analysis can then be performed to determine the

stability and performance degradation caused by an imper-

fect decoupling. This can be accomplished by employing,

for instance, parameter-dependent Lyapunov functions used

for the closed-loop stability and performance satisfaction

in an LPV framework. The results presented in [2] can

then be employed to do this post analysis. It should be,

however, noted that due to the parameter-dependence of all

the transfer matrices in the above formulations, checking

the nominal stability and robust performance needs to be

done by appropriate gridding the parameter space to achieve

a finite-dimensional optimization problem and examine the

appropriate conditions.

B. Interaction Measure for Decoupling LPV Systems

Consider an LPV MIMO control problem, where the goal

is to design a parameter-dependent controller K(s, ρ) for an

LPV system represented by G(s, ρ). The designed controller

is assumed to be a static pre- and post-compensator combined

with a decentralized parameter-varying PI controller with set-

point weighting as configured in [1]. The control law can be

represented by

U(s) = W1(ρ)
(

K̄(s, ρ)R(s) − K(s, ρ)W2(ρ)Y (s)
)

(10)

where W1 and W2 are the pre- and post-compensators, U
is the control input, Y is the system measurement, and R is

the reference input. The PI controller K̄ is selected different

from K to allow for set-point weighting [1]. Due to the

decentralized nature of the design, both of these matrices are

parameter-dependent diagonal for a system with the same

number of inputs and outputs. We consider the following

structure for the controllers

Kj = kP(j)
+

kI(j)

s

K̄j =
kI(j)

s

where the controller gains are parameter-dependent. In the

literature it has been shown that excluding the proportional

term in K̄j is essential to achieve an improved performance

in decentralized PID control for LTI systems [1], [3], [4].

Considering the SVD decomposition as in the static de-

coupling method at steady-state provides W1 = V0 and

W2 = UT
0 where G0(ρ) = U0(ρ)Σ0(ρ)V T

0 (ρ) is the SVD

decomposition of the LPV system transfer function evaluated

at s = 0. Defining the decoupled system transfer function as

Q(s, ρ) = UT
0 (ρ)G(s, ρ)V0(ρ), considering the compensated

plant output Yt = UT
0 (ρ)Y and using (10) results in

Yt = UT
0 G(s)V0

(

C̄R(s) − CYt

)

or

Yt(s) = H(s, ρ)R(s)

H(s, ρ) = (I + Q(s, ρ)C(s, ρ))−1Q(s, ρ)C̄(s, ρ)

For simplicity of the formulations, we focus our attention

to the case of two-input/two-output LPV systems. Defining

Q(s, ρ) = [qij ]i,j∈{1,2} leads to

H(s, ρ) =

[

1 + q11c1 q12c2

q21c1 1 + q22c2

]−1 [

q11c̄1 q12c̄2

q21c̄1 q22c̄2

]

The definition of Q(s, ρ) results in |det(Q(s, ρ))| =
|det(G(s, ρ))| considering the fact that the matrices U0 and

V0 are unitary for all admissible LPV parameters. Following

the discussion presented in [4], the elements of H(s, ρ)
may be simplified further. The closed-loop bandwidth wb is

limited by the right half-plane zeros of the open-loop system

G(s, ρ). Assuming that there exists a single zero at z > 0,

approximately distributed between the two loops, then the

bandwidth must be less than z
2 rad/sec [1]. Assuming that the

zeros of the frozen plant G(s) are not within the bandwidth

of the closed-loop system and that |det(G(s, ρ))| ≫ 0
for all w < wb, it is deduced that |q11(s, ρ)q22(s, ρ)| ≫
|q12(s, ρ)q21(s, ρ)|. Using the latter inequality, the matrix H
can then be approximated by

H(s, ρ) ≈

[

q11c̄1

1+q11c1

q12c̄2

(1+q11c1)(1+q22c2)
q21c̄1

(1+q11c1)(1+q22c2)
q22c̄2

1+q22c2

]

The off-diagonal elements in H will indicate the amount of

interaction in the MIMO design. Due to the integral action

in the controllers, the interaction is small at low frequencies.

It is easy to observe that

H12 = q12c̄2S1S2, H21 = q21c̄1S1S2 (11)

where S1 and S2 are the sensitivity functions associated with

the first and second loops ignoring the loop interactions. An

upper bound on the magnitude of the off-diagonal terms can

be calculated as

|H12(jw)| ≤ |q12c̄2|Ms1Ms2 , |H21(jw)| ≤ |q21c̄1|Ms1Ms2

where Ms1 and Ms2 are the peaks associated with S1 and

S2, respectively. It is noted that at steady-state, the following

approximation is valid, where (12) is obtained by expanding

G(s, ρ) using the MacLaurin series in s around s = 0.

Q(s, ρ) = UT
0 (ρ)G(s, ρ)V0(ρ)

≈ UT
0

(

G(s = 0, ρ) + s
dG(s, ρ)

ds
(s = 0)

)

V0

= Σ0 + sΣ1 (12)

where

Σ0 = UT
0 G(s = 0, ρ)V0 = diag(σ0(ρ), σ1(ρ))

Σ1 = UT
0

dG(s, ρ)

ds
(0)V0 = [σij ]i,j∈{1,2}.

Then

Q(s, ρ) =

[

σ0(ρ) sσ12(ρ)
sσ21(ρ) σ1(ρ)

]

(13)

and this results in the following upper bounds on the off-

diagonal terms at low frequencies.

|H12(jw)| ≤ h12 = |σ12kI(2)
|Ms1Ms2

|H21(jw)| ≤ h21 = |σ21kI(1)
|Ms1Ms2 (14)
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Also, it is noted that at low frequencies, H11(ρ) ≈
1, H22(ρ) ≈ 1 since, e.g.

H11(ρ) =
q11c̄1

1 + q11c1
≈

σ0kI(1)
/s

1 + σ0kI(1)
/s

=
σ0kI(1)

s + σ0kI(1)

≈ 1

It should be noted that the upper bounds presented in (14)

will become conservative if the bandwidths associated with

the two loops are significantly different.

The results presented in this subsection apply to the SVD

decomposition-based LPV decoupling. Taking into account

the static inverse-based LPV decoupling along with the pre-

and post-compensators as W1(ρ) = G−1(s = 0, ρ) , D0

and W2 = I in (10) and following the same lines as in the

SVD-based decoupling case results in a set of similar results

to (14) except that the diagonal elements of matrix Q in (13)

are now equal to one.

V. NUMERICAL EXAMPLE

In this section, we apply the design procedures presented

in the previous section to decouple and control multivariable

systems. The presented example, which is a parameter-

varying 2× 2 transfer function, is given to validate the LPV

decoupling procedure along with adaptive PI control design

method based on the interaction measure presented in this

paper.

For this example, we follow the theoretical results pre-

sented in the previous section to design a parameter-

dependent decoupled PI controller. Consider the multivari-

able LPV system represented by the following 2×2 transfer

function matrix.

G(s, ρ) =

[

ρ2

s+ρ
ρ

s+1
ρ

s+ρ
2

s+1

]

(15)

A difficulty to control this system is that the open-loop

system’s bandwidth heavily depends on the parameter ρ, and

standard controller design methods such as QFT will result in

conservative designs. We will, however, show that by taking

advantage of the measurement of the LPV parameter, this

can be alleviated. It is readily verified that the system has no

RHP zero, and that after static LPV decoupling the decoupled

system transfer function becomes

Q(s, ρ) =

[

(2ρ−1)s+ρ

(s+1)(s+ρ)
ρ(1−ρ)s

(s+1)(s+ρ)
2(ρ−1)s

ρ(s+1)(s+ρ)
(2−ρ)s+ρ

(s+1)(s+ρ)

]

.

The interaction values can be calculated to be

σ12 = 1 − ρ

σ21 =
2(ρ − 1)

ρ2
.

It is noted that for ρ = 1, the decoupling becomes perfect in

the sense that there is no interaction between the off-diagonal

terms, in which case, the SISO control design is a trivial task.

Throughout the rest of the example under study, we focus

on the case where ρ 6= 1. Requiring the couplings h12 and
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Power approximation of the PI gains

Fig. 1. Power approximation (KP/I = aρb + c) of the PI control gains:
solid lines and dotted lines represent the original data and the power fit
outputs, respectively.

h21 to be 0.2 and the maximum sensitivities Ms1 and Ms2

to be 0.45, the integral gains are determined from

kI(1)
=

ρ2

2|ρ − 1|

kI(2)
=

1

|ρ − 1|

To determine the proportional gains in the PI controllers

for the two loops, we use a direct pole placement [1]. It

is noted that the position of the poles will be dependent on

the LPV parameter ρ and it is ensured that the poles are

all placed in the LHP for any ρ. Following a parameter-

dependent procedure for the pole-placement, we obtain that

kp(1)
=

ρ

2ρ2 − 1
+

ρ2

2|ρ − 1|(ρ + 1)

kp(2)
=

ρ

2 − ρ2
+

1

|ρ − 1|(ρ + 1)

In order to obtain simpler expressions for the PI gains,

we solve a nonlinear least-square problem to fit power

approximations in the form of the y = axb + c to the

PI gains. Figure 1 illustrates the comparison between the

PI control gains and their approximations using a two-term

power equation.

Next, we show the time-domain simulation results to

compare the closed-loop performance of two scenarios using:

(i) LPV decoupling where the PI control gains are not

parameter-dependent, and (ii) LPV decoupling, where in

addition to the decoupling matrices, the PI control gains in

both loops are also scheduled based on the measurement of

the LPV parameter ρ. Note that the latter one uses the fitting

results discussed earlier in this section.

Figure 2 represents the outputs y1 and y2 of the closed-

loop system resulted from the interconnection of the open-

loop LPV system G(s, ρ), the LPV decoupling compensator

and the PI controller. As observed, the closed-loop system
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Fig. 2. Output signals of the closed-loop system using adaptive controllers
(solid line) and fixed gain PI controllers (dotted line)
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Fig. 3. PI controller output signals using adaptive controllers (solid line)
and fixed gain controllers (dotted line)

using the PI controllers whose gains are adapted by the LPV

parameter ρ outperforms the one with fixed control gains.

Shown in Figure 3 is the comparison between the control

signals u1 and u2 of the two control design schemes. Cal-

culations show that the average control input u1 and u2 for

the adaptive control strategy is 0.87 and 1.44, respectively,

and for the fixed control gain is 1.33 and 1.91, respectively.

The results presented verify that the adaptive PI control

scheme demonstrates improved tracking performance, and

at the same time, less control effort compared to the fixed

gain controllers. The time-domain simulation performed in

this section uses the LPV parameter profile shown in Figure

4.

VI. CONCLUSION

The paper presents an effective decoupling method for

addressing nonlinearities and changes in operating conditions

in a multivariable system. The proposed control design

method for such systems uses a two-step procedure: first,
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Fig. 4. Profile of the LPV parameter ρ(t)

we use parameter-dependent transformations, adapted in real-

time, to reduce the coupling between the undesired set of

inputs and outputs, and then for the decoupled system, we

design SISO controllers (fixed or with adaptive gains). The

methods extend the standard decoupling design results in

the literature to the LPV case. Systematic post-design LPV

system stability and performance analysis can be conducted

for the closed-loop system to validate the designs. The paper

also presents a new interaction measure that, in conjunction

with the proposed LPV decoupling technique, can be used for

the adaptive controller design. The computational example

presented in the paper validates the benefits of the proposed

LPV decoupling methodology for nonlinear and parameter-

varying systems compared to standard decoupling methods.
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