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Abstract— In Iterative Learning Control, the ideal learning
filter is defined as the inverse of the system being learned. Model
based learning filters designed from the inverse system transfer
function can provide superior performance over single gain,
P-type algorithms. These filters, however, can be excessively
long if lightly damped zeros are inverted. In this paper, we
propose a method for designing model based finite impulse
response (FIR) learning filters. Based on the ILC injection
point and discrete time system model, these filters are designed
using the impulse responses of the inverse transfer function.
We compare in simulation the ILC algorithms implemented
at two different feedforward injection points and two different
modeling methods. We show that the ILC algorithm injected
at the reference signal and whose model is generated by
discretizing the closed loop continuous time transfer function
results in a learning filter with no lightly damped zeros. As a
result, the learning filter has only two dominant filter taps
much like the PD-type learning filter. We then implement
these ILC algorithms on a wafer stage prototype. In this
motion control application, we show that the model based ILC
algorithm outperforms the P-type system in the plant injection
architecture where longer FIR filters are needed for learning
stability. We also show that the reference injection architecture
provides superior performance to the plant injection for both
model based and P-type ILC algorithms.

I. INTRODUCTION

Learning control is a popular feedforward control method

for systems undergoing a repetitive process. Information

from one run can be used to improve the performance of

the next run. Its popularity can be validated by the various

surveys on learning control [7], [9], [10]. Iterative Learning

Control (ILC), which is discussed in this paper, is one subset

of learning control. As one definition describes, ILC is “an

approach to improve the transient response performance of

an unknown/uncertain hardware system that operates repeti-

tively over a fixed time interval by using the previous actual

operation data to compensate for uncertainty [1].” ILC is

also a popular research subject as described by its own set

of survey papers [1], [3].

The primary challenge to ILC is choosing the learning

filter which will influence how and what information will

be learned. In fact, the learning filter is usually chosen

depending on how well the system is known. Proportional
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(P-) and proportional plus derivative (PD-) type learning

functions are popular because they require very little system

information. To improve the ILC convergence rate, the learn-

ing gains of these two methods are typically tuned. Thus,

every adjustment to the learning gains resets the learning

process. Three of the remaining four popular learning al-

gorithms: model inversion, H∞ and quadratically optimal

are model based [3]. The resulting performance is then

dependent on fidelity of the model. Q-filters, µ-synthesis and

loop shaping approaches are common methods to address

model mismatch. Thus, the design process now focuses on

how well the model is known. It is still common to tune

these methods as there is a balance among ILC robustness,

performance and stability.

For model based learning filters which invert transfer

functions, it is well known that discrete time systems con-

structed by sampling continuous time systems (zero order

hold method) can exhibit unstable zeros [2]. These systems

will result in an unstable inverse which cannot be used for

control. This has been addressed for digital tracking systems

[17] as well as in ILC [11], [15]. By implementing an FIR

filter, we are looking to construct learning filters which avoid

having to invert unstable or lightly damped zeros.

There are also challenges with the structure of model

based learning filters. Inverting system models will result in

an infinite impulse response (IIR) filter acting on a finite

interval. This is generally implementable when the time

interval is assumed to be very long and data at the end

points is carefully handled. For quadratic based learning

methods, the learning filters are designed to be matrices

with dimensions as long as the time interval [8]. This leads

one to question how important the entire time interval is

for each individual update. This has given rise to matrix

order reduced by singular value decomposition, though a

learning matrix structure is still needed [6]. Here, we are

looking to develop an FIR learning filter which contain

enough model information without the need of IIR filters

or learning matrices.

An additional design consideration for feedforward control

is determining where to insert the control signal. Feedfor-

ward control requires a feedback controller when the plant

is unstable. When controlling mechanical systems like servo

and linear motors, a feedback controller is commonly needed

along with feedforward control. Thus, there are two places

to inject a feedforward signal: at the reference and at the

control input. There has been recent research studying the

effectiveness of these two feedforward control methods. The

controller complexity, sensitivity to closed loop dynamics
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and numerical sensitivity were analyzed in [4] and [5].

In [12], various ILC injection points and learning signals

were compared, though only the frequency content of the

learning control was analyzed. Both of these works suggest

that feedforward control acting on the closed loop system is

preferable to injecting control at the plant.

This paper focuses on designing model inverse based ILC

algorithms for SISO, LTI systems which have a short filter

length and are only noncausal to account for the system

delay. In order to do this, we consider the location of the

learning algorithm and the model used for learning. We

analyze the impulse responses and pole-zero mappings of

four models to determine which ILC architecture and system

model can generate an easy, implementable FIR learning

filter. These learning filters are also implemented on a wafer

stage prototype with a position feedback controller. Error

convergence of the model based ILC algorithms are then

compared to a P-type learning filter.

II. ILC PRELIMINARIES

In this section, we cover the ILC notation used in the

remaining sections. Consider the following discrete time,

linear time invariant SISO system

yj(k) = G(q)uj(k) + d(k) (1)

where k is the time step and j is the iteration number.

The system G(q) is an asymptotically stable, proper rational

function of the time shift operator q : q(uj(k)) = uj(k + 1)
with relative degree m and d(k) is an exogenous signal which

is iteration invariant. The control objective is to find uj(k)
such that yj(k) tracks the desired reference yd(k). At this

point, no feedback control has been defined, so uj(k) is an

open-loop control signal.

One common analysis tool used when designing ILC algo-

rithms is to transform (1) into a lifted system representation.

This is made possible in part by assuming the reference

trajectory is finite and fixed in length. The signals in (1)

become

yj = [yj(m), yj(m + 1), . . . , yj(N + m)]T

uj = [uj(0), uj(1), . . . , yj(N − 1)]T

d = [d(m), d(m + 1), . . . , d(N + m)]T .

Second, G(q) can be expanded as an infinite power series

G(q) = gmq−1 + gm+1q
−2 + gm+2q

−3 + . . . .

where {gm, gm+1, . . .} are the impulse response parameters.

The relative degree, m, results in an m-step delay between

the input and output, so g0, ..., gm−1 = 0. Thus, uj(k) is

chosen so yj(k+m) tracks yd(k+m) subject to a disturbance

d(k +m) where k ∈ {0, 1, ..., N −1}. The system matrix G

is lower triangular and Toeplitz

G =











gm 0 · · · 0
gm+1 gm · · · 0

...
...

. . .
...

gN gN−1 · · · gm











. (2)

Thus, (1) becomes yj = Puj + d. Capital and lower case

bold letters (G,u) denote matrices and vectors, respectively,

in the lifted domain.
In a batch process, the system is repeatedly attempting to

follow the same reference trajectory. Plant based disturbances

and transient errors from the feedback controller will repeat-

edly cause tracking errors. These errors cannot be corrected

by conventional feedback control. ILC utilizes information

from the previous iteration to be used as feedforward control

in the next iteration. The task of the ILC algorithm is to

determine the feedforward control input uj(k). A commonly

used ILC algorithm is

uj+1(k) = Q(q)[uj(k) + L(q)ej(k + m)] (3)

where L(q) is the learning filter based on G(q) and a

Q-filter is added for robustness. Tracking error, ej(k) =
yd(k)−yj(k), is used for the learning update. For this paper,

we consider stability and performance issues only in the

lifted domain. That is, the ILC algorithm is asymptotically

stable if and only if the eigenvalues ρ(Q(I−LG)) < 1 and

monotonically convergent if the largest singular value

σ
(

GQ(I − LG)G−1
)

< 1 (4)

which also defines the rate of convergence. Proofs of stability

can be found in [14].
The two learning filters used in this paper are P-type and

model inversion. In P-type ILC,

uj+1(k) = Q(q)[uj(k) + kpej(k + m)] (5)

where the learning filter is a proportional gain and is gener-

ally tuned to achieve suitable convergence rates. The model

inversion method for ILC attempts to invert the system model

in order to achieve perfect tracking.

uj+1(k) = Q(q)[uj(k) + Ĝ(q)−1(ej(k + m)] (6)

In the lifted domain, (6) is equivalent to choosing L such

that I − LG = 0. Equation (4) shows that this choice will

result in a maximum singular value of zero meaning the error

converges in one iteration.

III. ILC IN FEEDBACK CONTROL

Although G(q) is assumed to be asymptotically stable, its

inner structure may contain a feedback controller. That is,

assume C(q) is designed to stabilize the plant P (q). Figure

1 shows the general feedback control system. The output

equation with no learning control becomes

yj(k) =
PC

1 + PC
yd(k) +

P

1 + PC
d(k) (7)

where the argument q is abbreviated. Feedforward control

can be injected at two places in this structure: at the reference

and control input. Not only are the feedforward controller

structure for these two injection points drastically different

[4], the ILC structure is also different. In this section, we

analyze the two feedforward structures as well as look at

two different modeling techniques for developing the model

based ILC algorithm. Using a model for a wafer stage

prototype, we simulate the impulse response and pole-zero

mappings for each combination.
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yd(k) C(q) P (q)ej(k) yj(k)
d(k)

Fig. 1. The system G(q) contains a controller C(q) which stabilizes the
plant P (q)

A. Two ILC architectures

In the plant injection architecture, shown in Fig. 2, the ILC

injection point is placed at the control input. This is com-

monly called a parallel or plant injection feedforward control

because the control acts in parallel to the feedback controller

at the control input. In motion control research, having direct

control of the plant input is desirable. Feedforward control

is used to cancel plant nonlinearities and additional feedback

loops like disturbance observers can be used to cancel out

low frequency disturbances. The output equation is defined

as

yj(k) =
P

1 + PC
(d(k) + uj(k)) +

PC

1 + PC
yd(k) (8)

and the transfer function between the learning control and

the output is P
1+PC

.

yd(k) C(q) P (q) yj(k)
d(k)

ej(k) uj(k)
Q(q)

L(q)

memorymemory

ILC

Fig. 2. The plant injection structure has the learning controller act in
parallel to the feedback controller and is directly injected into the control
input.

Injecting feedforward control into the reference signal is a

common alternative when the there is no direct access to the

control input. Figure 3 shows the reference injection structure

where the ILC injection point is in series with the feedback

control.

yj(k) =
P

1 + PC
(d(k)) +

PC

1 + PC
(yd(k) + uj(k)) . (9)

Now, the ILC algorithm is acting on the inverse sensitivity

function PC
1+PC

.

B. Impulse Response characteristics

In order to develop model based learning filters, we first

introduce a mass-damper plant and PID feedback controller.

This is a continuous time model of wafer stage prototype

used for precision positioning applications. The plant model

is

P (s) =
1

0.47s2 + 0.52s
(10)

yd(k) C(q) P (q) yj(k)
d(k)

ej(k) uj(k)
Q(q)

L(q)

memorymemory

ILC

Fig. 3. The reference injection structure acts in series with the feedback
control loop and injects the learning signal before the controller.

TABLE I

THE SYSTEM TRANSFER FUNCTIONS ARE ORGANIZED BY THE ILC

INJECTION POINT AND SYSTEM MODELING METHOD.

CT DT

reference injection: PC
1+PC

Ga(q) Gb(q)

plant injection: P
1+PC

Gc(q) Gd(q)

and is stabilized with a continuous time controller

C(s) = 50000(1 + 2/s + 0.012s). (11)

Though first modeled in continuous time, implementation

and ILC design is performed in discrete time:

P (z) =
1.702e − 007z + 1.702e− 007

z2 − 2z + 0.9996
(12)

C(z) = 50000(1 + 2
Ts

1 − z−1
+ 0.012

1− z−1

Ts
) (13)

with a sampling time Ts = 0.0004 sec. The discrete time

plant, P (z), is found using the zero order hold of P (s). The

closed loop system transfer functions can then be computed

for both ILC architectures.

A second modeling technique is also considered. Here,

the continuous time, closed loop systems are first computed

and then converted to discrete time. Table I summarizes

the four different system models which are being designed:

two different ILC architectures and two modeling methods.

Before designing learning filters for the four systems (Ga

through Gd), we first look at the impulse responses.

The system impulse responses are shown in fig. 4. Al-

though not entirely apparent, all four discrete time systems

have a relative degree of one. Also, the impulse responses

of the reference injection architecture, (a) and (b), take far

fewer time steps to settle than the plant injection (c) and (d).

The peak response (a) occurs at the first time step after the

delay where (b), (c) and (d) require more than one step to

reach the peak amplitude.

These results can be explained by the pole-zero map

shown in fig. 5. The figure inserts are a large magnification

of the poles and zeros near z = 1. It shows that all

four systems have some pole-zero cancelations though the

relative degree of each system model is still one. In the plant
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Fig. 4. The impulse response of the systems are separated by injection
point and the method by which the transfer function was created.
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Fig. 5. The poles and zeros are shown for each system model.

injection architectures, there is one lightly damped pole that

is uncanceled which causing a slower response.

IV. ILC FIR FILTER DESIGN

Using the lifted domain, ILC based on the model inversion

method is equivalent to choosing L such that I − LG = 0.

One way to compute L is to realize that G, (2), is a full

rank, lower triangular Toeplitz matrix. Thus, its inverse is

also a full rank lower triangular Toeplitz matrix. In fact, this

matrix can be computed algebraically by only looking at the

first column of each matrix. Also note that the first column of

each matrix also corresponds to the first N impulse response

parameters and contains the largest causal set of impulse

response parameters.

The impulse response of L(q) for q : {0, 1, . . . , N − 1} is
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Fig. 6. The impulse response of the learning filters are separated by
injection location and modeling approach.

computed as:

gml0 = 1

gm+1l0 + gml1 = 0

gm+2l0 + gm+1l1 + gml0 = 0
...

...
N−1
∑

n=0

gm+N−1−nln = 0

The filter impulse response at the hth time step, lh, is found

recursively from previous values of g and l.

lh =
−

∑h−1

n=0
gm+h−nln

gm

. (14)

Thus, the FIR learning filter with length h ≤ N is defined

as

L(q) = l0 + l1q
−1 + l2q

−2 + . . . + lhq−h (15)

The learning filters can now be determined using the

systems defined in Section III-B. The learning filter impulse

responses which are the FIR filter coefficients are shown in

fig. 6. The impulse responses in (b) and (d) do converge,

however, they require thousands of time steps to do so.

Referring back to fig. 5, the slow convergence of systems (b)

through (d) can be seen by observing the lightly damped zero

near z = −1. These zeros, when inverted, cause the weakly

damped impulse responses. Fig. 5(a) is the only model that

does not have a zero nearby, and converges in two time steps.

This zero is due to continuous time zeros at s = −∞
being mapped to z = −1. Both Gb and Gd were designed

using the discrete time equivalent P (z). The continuous time

plant P (s) has a relative degree of two which means that

P (z) will exhibit the sampling zero effect will have a zero

at z = −1 [2]. Gc is based on the P (s) and C(s), though

the transfer function P
1+PC

still maintains the relative degree

of two. The discrete time equivalent system will still map at

least one continuous time zero to z = −1. Ga is the only
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Fig. 7. A linear stage is used for wafer positioning

discrete time system where the discrete time transfer function

does not have a lightly damped zero.

It can be seen that Ga(q) will result in the the most

desirable learning filter. The filter can be approximated

with only two taps since the trailing points are orders of

magnitude smaller. Interestingly, fig. 6(a) is very much like

a PD-type ILC where learning is a function of two time

steps: L(q) = kp + kdq
−1. The plant injection architecture

which uses the continuous time model, fig. 6(c), can also

be easily implemented, though considerably longer filters

will be needed to approximate the impulse response. In the

following section, these two learning filters are implemented

and convergence rates are compared as the filter lengths

are varied. Additionally, P-type ILC experimental results are

provided to compare a model based learning control to one

that requires tuning.

V. EXPERIMENTAL RESULTS

ILC algorithms for both reference and plant injection

methods were implemented on a linear motor used for wafer

stage control [13]. The stage prototype, shown in fig. 7, is

supported by air bearings and is modeled using eqns. (10) -

(13).

The high controller gains in (11) and (13) reflect the need

for a high performance control system. The system model

(10) was obtained through sine sweep and iterative feedback

tuning methods specifically for a third order trajectory shown

in fig. 8 [16]. The scanning velocity is 0.1875 m/s with a

maximum acceleration of 5 m/s2. The length of the scan is

0.1m.
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Fig. 8. A third order trajectory is designed for tracking. The scan velocity
is 0.1875 m/s.

An 11-tap zero phase Butterworth filter with 150Hz cuttoff

frequency was designed for the ILC Q-filter was designed

and implemented on all learning controllers. Of the four

models, only Ga(q) and Gc(q) were implemented due to

the excessive filter length required for the other two models.
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Fig. 9. A comparison of RMS error convergence for different ILC
architectures and learning filters

TABLE II

THE ILC FILTER CHOICES FOR COMPARISON ARE BASED ON THE

PREVIOUS FIGURES.

injection point P-type, kp Model based, filter length

reference 1 14

plant 50000 100

Two more ILC algorithms based on the P-type methods were

also compared. These four ILC algorithms:

• plant injection, P-type

• plant injection, model inversion

• reference injection, P-type

• reference injection, model inversion

were compared based on their tuning parameters. For P-type

ILC, the single parameter kp was varied. The length of the

model based filter was also varied. The optimal gain for the

reference injection P-type learning filter in fig. 9(a) is shown

to be kp = 1 while the P-type plant injection ILC in fig. 9(c)

is kp = 50000. This gain is also the proportional gain of the

feedback controller. The model inversion ILC algorithms are

shown in fig. 9(b) and (d). The plant injection architecture

shown in (d) requires a considerably longer filter length

than the reference injection architecture in (b). For the plant

injection architecture, the ILC algorithm became unstable

when the filter length was set to 30. For both figures, the

convergence rates vary little among different filter lengths.

The error convergence of the best performing ILC algo-

rithm are shown in fig. 10 and learning filter parameters are

summarized in Table II. It can be seen that the reference

based injection architecture provides superior performance to

the plant injection methods. In the plant injection architec-

ture, the model based algorithm considerably outperforms the

P-Type ILC algorithm while the two learning filters perform

similarly in the reference injection architecture.

These performance differences of the two ILC algorithms

is largely due to designing P-type ILC algorithms which

model the system inverses. While the plant injection system
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Gc requires at least a 100 tap learning filter, a 14 tap filter is

sufficient for the reference injection system Ga. Even more,

the P-type ILC algorithms can be considered single tap model

based learning filters. As shown in figure in fig. 6(a), the

reference injection architecture closely resembles a single

tap filter where a single tap filter poorly estimates the plant

injection impulse response in (c). This is apparent in fig. 10

as the reference based, P-type ILC algorithm is the slowest

to converge.

The system transfer functions also provide insight as to

why the reference injection ILC architecture outperforms the

plant injection. The reference system is based on the closed

loop transfer function PC
1+PC

which is designed to have zero

gain at zero frequency. Therefore, the inverse also has zero

gain at low frequencies. This is makes P-type algorithms

with kp = 1 a good choice. Any high frequency differences

between the model and the learning filter are dealt with by

the Q-filter.

VI. CONCLUSION

In this paper, two injection architectures and two methods

for system modeling have been presented for model inversion

based ILC. The ILC algorithms were designed so that the

learning filters were finite in length and only noncausal

to account for the system delay. The reference based ILC

algorithms were shown to have better convergence rates

than the plant injection algorithms because the closed loop

transfer function (and its inverse) has good low frequency

characteristics. Because of the unit gain at low frequency,

this resulted in kp = 1 being a choice for P-type ILC. For

the plant injection architecture, faster convergence became

a function of filter length. It was shown that considerably

longer filters were needed to improve convergence though

neither P-type nor model based algorithms performed as well

as their reference injection counterparts.

In addition to injection location, the model choice also

had an effect on ILC learning filter design. The discrete

time models based on the closed loop continuous time

transfer functions limited the effects of sampling zeros. This

allowed for direct implementation of the FIR learning filters.

Even more, the reference injection architecture resulted in

a discrete time system with no sampling zeros at all. The

learning filter closely resembled the two tap PD-type learning

filter and needed a far shorter filter for implementation.
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