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Abstract— Hybrid Vehicle fuel economy and drivability per-
formance are very sensitive to the “Energy Management”
controller that regulates power flow among the various energy
sources and sinks. Many methods have been proposed for
designing such controllers. Most analytical studies evaluate
closed-loop performance on government test cycles. Moreover,
there are few results that compare stochastic optimal control
algorithms to the controllers employed in today’s produc-
tion hybrids. This paper studies controllers designed using
Shortest Path Stochastic Dynamic Programming (SPSDP). The
controllers are evaluated on Ford Motor Company’s highly
accurate proprietary vehicle model over large numbers of real-
world drive cycles, and compared to a controller developed
by Ford for a prototype vehicle. Results show the SPSDP-
based controllers yield 2-3% better performance than the Ford
controller on real-world driving data, with even more improve-
ment on a government test cycle. In addition, the SPSDP-based
controllers can directly quantify tradeoffs between fuel economy
and drivability.

I. INTRODUCTION

Hybrid vehicles have become increasingly popular in

the automotive marketplace in the past decade. The most

common type is the electric hybrid, which consists of an

internal combustion engine (ICE), a battery, and at least

one electric machine (EM). Hybrids are built in several

configurations including series, parallel, and the series-

parallel configuration considered here. Hybrid vehicles are

characterized by multiple energy sources; the strategy to

control the energy flow among these multiple sources is

termed “Energy Management” and is crucial for good fuel

economy. An excellent overview of this area is available in

[13].

This energy management problem has been studied ex-

tensively in academic circles [7], [9], [11], [13]. There are

many proposed methods available for both the non-causal

(cycle known in advance) and causal (cycle unknown in

advance) cases. It is rather unclear how much of this work is

used by industry in actual production vehicles. Many papers

show simulations on representative vehicles, although most
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of this work focuses on the certification test cycles. There are

relatively few results showing how these algorithms perform

in practice [2], [3], [8], [11] and how they compare to the

existing industrial state of the art.

The controller design method studied here is Shortest Path

Stochastic Dynamic Programming (SPSDP), which has been

used in this application several times before [4], [6], [14].

Recent results [10] have developed this method so that real-

world constraints on drivability and powertrain behavior can

be incorporated. In addition to generating a class of optimal

controllers, this method allows direct study of the tradeoffs

between different performance goals, specifically drivability

and fuel economy. The ability to easily generate Pareto

tradeoff curves is perhaps just as interesting as a specific

fuel economy benefit.

We believe that the SPSDP energy management for-

mulation of [10] is the first model-based optimal energy-

management strategy that can be used directly in a produc-

tion vehicle with minimal manual tuning. To validate this

hypothesis, real-world driving data is used to evaluate con-

troller performance for typical drivers. A common customer

complaint is that the fuel economy shown on the “window

sticker” does not match the vehicle performance in practice.

By using large numbers of real-world drive cycles, controller

performance can be evaluated and optimized with respect to

both average drivers and government certification.

The purpose of this paper is to study energy management

controllers in a real-world scenario and compare them to an

industrially-designed controller. It is hoped that these results

can verify the usefulness of this algorithm and take these

methods from academic research papers into industrial labs

and onto the road.

This research is a collaborative effort of the University

of Michigan and Ford Motor Company. This partnership

allows broad access to proprietary in-house tools, albeit with

some restrictions on the level of detail that can be published.

This work uses Ford’s high-fidelity vehicle simulation model

[1], which is used to develop HEV control algorithms and

evaluate fuel economy for production vehicles. The vehicle

studied here is a prototype and does not match any vehicle

currently on the market. As a benchmark, Ford supplied an

energy management controller developed for this prototype.

This paper builds on previous work [10] and focuses on

real-world simulation studies and comparison to industrial

controllers, rather than detailed algorithm descriptions. Brief

descriptions of the methods used are included here, but for

more detail see [10].
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II. VEHICLE

A. Vehicle Architecture

The vehicle model studied in this paper is a prototype

series-parallel electric hybrid. A 2.4 L diesel engine is cou-

pled to the front axle through a clutched 6-speed automated

manual transmission. An electric machine, EM1, is directly

coupled to the engine crankshaft, and can generate power

regardless of clutch state. A second electric machine, EM2,

is directly coupled to the rear axle through a fixed gear ratio

without a clutch, therefore the electric machine is always

rotating at a speed proportional to vehicle speed. Energy is

stored in a 1.5 kWh battery pack. The system parameters are

listed in Table I.

TABLE I

VEHICLE PARAMETERS

Engine Displacement 2.4 L

Max Engine Power 120 kW

Electric Machine Power EM1 (Front) 15 kW

Electric Machine Power EM2 (Rear) 35 kW

Battery Capacity 1.5 kWh

Battery Power Limit 34 kW

Vehicle Mass 1895 kg

B. Vehicle Models

The work presented in this paper uses two different dy-

namic models to represent the same prototype hybrid vehicle.

The first model is quite simple; it has a sample time of

1s, uses lookup tables, and has very few states. It is used

primarily to design the controller and do the optimization,

and is called the “control-oriented” model.

The second model comes from Ford Motor Company and

uses its in-house modeling architecture. This sophisticated

model is used to test fuel economy and controller behavior by

simulating controllers on drive cycles. This model is referred

to as the “vehicle simulation” model in this paper [1].

This combination of models allows the controller to be

designed on a simple model that keeps the problem feasible,

while providing accurate fuel economy results on a complex

model.

C. Control Model

When using Shortest-Path Stochastic Dynamic Program-

ming, the off-line computation cost is very sensitive to the

number of system states. For this reason, the model used to

develop the controller must be as simple as possible. The

vehicle model used here contains the minimum functionality

required to model the vehicle behavior of interest on a

second-by-second basis. Dynamics much faster than the

sample time of 1s are ignored. Long-term transients that

only weakly affect performance are also ignored; coolant

temperature is one example.

The vehicle hardware allows three main operating condi-

tions:

1) Parallel Mode-The engine is on and the clutch is

engaged.

2) Series Mode-The engine is on and the clutch is

disengaged. The only torque to the wheels is through

EM2.

3) Electric Mode-The engine is off and the clutch is

disengaged; again the only torque to the wheels is

through EM2.

The model does not restrict the direction of power flow. The

electric machines can be either motors or generators in all

modes.

The dynamics of the internal combustion engine are ig-

nored; it is assumed that the engine torque exactly matches

valid commands and the fuel consumption is a function only

of speed, ωICE , and torque, TICE . The fuel consumption

F is derived from a lookup table based on dynamometer

testing,

Fuel flow = F (ωICE , TICE).

The automated manual transmission has discrete gears and

no torque converter. The transmission is modeled with a

constant mechanical efficiency of 0.95. Transmission gear

shifts are allowed every time step (1s) and transmission dy-

namics are assumed negligible. When the clutch is engaged,

the vehicle is in Parallel Mode and the engine speed is

assumed directly proportional to wheel speed based on the

current transmission gear ratio Rg ,

ωICE = Rgωwheel.

The electric machine EM1 is directly coupled to the

crankshaft, and thus rotates at the engine speed ωICE ,

ωEM1 = ωICE .

In Parallel Mode, the engine torque TICE and EM1
torque TEM1 transmitted to the wheel are assumed pro-

portional to wheel torque based on the current gear ratio

Rg and the transmission efficiency ηtrans. The rear electric

machine EM2 torque TEM2 transmitted to the wheel is

proportional to the constant EM2 gear ratio REM2 and rear

differential efficiency ηdiff . The total wheel torque Twheel

is thus the sum of the ICE and EM1 torques to the wheel

ηTransRg(TICE + TEM1) and the rear electric machine

EM2 torque to the wheel ηdiffREM2TEM2,

ηtransRg(TICE + TEM1) + ηdiffREM2TEM2 = Twheel.

(1)

The clutch can be disengaged at any time, and power

is delivered to the road through the rear electric machine

EM2. This condition is treated as the ”neutral” gear 0, which

combines with the 6 standard gears for a total of 7 gear states.

If the engine is on with the clutch disengaged, the vehicle

is in Series Mode. The engine-EM1 combination acts as a

generator and can operate at arbitrary torque and speed. The

EM1 command is a speed rather than a torque in Series

Mode. If the engine is off while the clutch is disengaged,

the vehicle is in Electric Mode.

The battery system is similarly reduced to a table lookup

form. The electrical dynamics due to the motor, battery, and

power electronics are assumed sufficiently fast to be ignored.
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TABLE II

VEHICLE MODE DEFINITIONS.

Gear State Clutch State Engine State Mode

0 Disengaged Off Electric

0 Disengaged On Series

1-6 Engaged On Parallel

1-6 Engaged Off Undefined/not used

The energy losses in these components can be grouped

together such that the change in battery State of Charge

(SOC) is a function κ̄ of Electric Machine speeds ωEM1

and ωEM2, torque TEM1 and TEM2, and battery SOC at the

present time step,

SOCk+1 = κ̄(SOCk, ωEM1, ωEM2, TEM1, TEM2). (2)

Assuming a known vehicle speed, the only state variable

required for this vehicle model is the state of charge (SOC).

Changes in battery performance due to temperature, age, and

wear are ignored. During operation, the desired wheel torque

is defined by the driver. If we assume the vehicle must meet

the torque demand perfectly, then the sum of the ICE and EM

contributions to wheel torque (1) must equal the demanded

torque Tdemand,

Twheel = Tdemand.

This adds a constraint to the control optimization, reducing

the 4 control inputs to a 3 degree of freedom problem. In

Parallel Mode the control inputs are Engine Torque, EM1
Torque, and Transmission Gear. In Series Mode, the electric

machine command becomes EM1 Speed.

Optimization using the control-oriented model assumes a

“perfect” driver. The desired road power is calculated as the

exact power required to drive the cycle at that time. Now,

given vehicle speed, demanded road power and this choice

of control inputs, the dynamics become an explicit function

κ of the state Battery SOC and the three control choices as

shown in Table III,

TABLE III

VEHICLE DYNAMIC MODEL

State Control Inputs

Battery Charge (SOC) Engine Torque

EM1 Torque (Parallel) or Speed (Series)

Transmission Gear

SOCk+1 = κ(SOCk, TICE , TEM1, Gear). (3)

In Series Mode, TEM1 is replaced with ωEM1. The engine

fuel consumption can be calculated from the control inputs.

Operational Assumptions:

This control-oriented model uses several assumptions

about the allowed vehicle behavior.

1) The clutch in the automated manual transmission

allows the diesel engine to be decoupled from the

wheels. This allows the engine to shut off during

forward motion.

2) There is no ability to slip the clutch for starts.

3) There are no traction control restrictions on the amount

of torque that can be applied to the wheels.

4) Series Mode is not used. The engine is off if the clutch

is disengaged.

D. Vehicle Simulation Model

As part of this project, Ford provided an in-house model

used to simulate fuel economy. It is a complex, MAT-

LAB/Simulink based model with a large number of parame-

ters and states [1]. Every individual subsystem in the vehicle

is represented by an appropriate block. For each new vehicle,

subsystems are combined appropriately to yield a complete

system.

This vehicle simulation model contains the baseline con-

troller algorithm. To generate simulation results using this

controller, a target drive cycle is provided to the existing

model with no modifications.

To use the vehicle simulation model with the algorithm

developed here, the SPSDP controller is implemented in

Simulink by interfacing appropriate feedback and command

signals: Battery SOC, Vehicle Speed, Engine State, Gear

Command, etc. The vehicle simulation model can then be

“driven” by the SPSDP controller along a given drive cycle.

III. DRIVABILITY CONSTRAINTS

A. Motivation

Drivability is a rather vague term that covers many as-

pects of vehicle performance including acceleration, engine

noise, braking, shifting activity, shift quality [12], and other

behaviors. All of these contribute to consumer perception

of the vehicle, which is crucial in purchasing decisions.

This research addresses the “basic” drivability issues of gear

selection and when to start or stop the internal combustion

engine.

Current academic work in hybrid vehicle optimization

primarily focuses on fuel economy. These tools are somewhat

less useful to industry because of drivability restrictions in

production vehicles, which fuel-optimal controllers usually

violate. If these fuel-optimal controllers are used, drivability

restrictions are typically imposed as a separate step.

In this paper we investigate the usefulness of optimizing

for fuel economy and drivability simultaneously. By includ-

ing these real-world concerns, one can generate controllers

that improve performance and are one step closer to being di-

rectly implementable in production. Specifically, these results

validate the real-world performance of the SPSDP algorithm

and compare it to an industrial controller.

B. Chosen Penalties

In the context of the overall system, two significant

characteristics that are noticeable to the driver are the basic

behaviors of the transmission and engine. These are included

in both vehicle models presented in Section II. To effec-

tively design controllers, qualitative drivability requirements
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must be transformed into quantitative restrictions or metrics.

Drivability experts at Ford Motor Company were consulted

to assist in developing numerical drivability criteria. Two

baseline metrics are used to quantify behavior for a particular

trip. The first is Gear Events, the total number of shift events

on a given trip. The second metric is Engine Events, the total

number of engine start and stop events on a trip.

By definition, engine starts and stops are each counted as

an event. Each shift is counted as a gear event, regardless

of the change in gear number. A 1st − 2nd shift is the

same as a 1st − 3rd shift. In this paper, the transmission

is constrained to one step shifts (i.e. 1st − 2nd) to match

the transmission restrictions of the baseline controller. Gear

shifts that occur while in neutral (clutch disengaged) are not

counted. Engaging or disengaging the clutch is not counted

as a gear event, regardless of the gear before or after the

event.

Despite the relative simplicity of these metrics, simulations

have shown that they capture a wide range of vehicle

behavior and are well correlated with more complicated

metrics.

IV. SHORTEST PATH STOCHASTIC DYNAMIC

PROGRAMMING

A. Cost Function

In order to design a controller with acceptable drivability

characteristics, the optimization goal over a given trip of

length T would ideally be defined as

min
∑T

0
Fuel flow

such that (4)
∑T

0
GE ≤ GEmax ,

∑T

0
EE ≤ EEmax

where GE and EE are the number of Gear and Engine

Events respectively, and GEmax and EEmax are the maxi-

mum allowable number of events on a cycle.

This constrained optimization incorporates the two major

areas of concern: fuel economy and drivability. Constraints

of this type cannot be incorporated in the Stochastic Dynamic

Programming algorithm used here because the stochastic na-

ture of the optimization cannot directly predict performance

on a given cycle. Instead, the drivability events are included

as penalties, and the weights are adjusted until the outcome

is acceptable and meets the hard constraints.

Controllers based only on fuel economy and drivability

completely drain the battery as they seek to minimize fuel.

An additional cost is added to ensure that the vehicle is

charge sustaining over the cycle. This SOC-based cost only

occurs during the transition to key-off, so it is represented

as a function φSOC(x) of the state x, which includes SOC.

The performance index for a given drive cycle is

J =
T∑

0

Fuel flow + α

T∑

0

GE + β

T∑

0

EE + φSOC(xT ).

(5)

The search for the weighting factors α and β involves

some trial and error, as the mapping from penalty to outcome

is not known a priori. Note that setting α and β to zero

means solving for optimal fuel economy, subject to a charge

sustaining penalty.

Now, to implement the optimization goal of minimizing

(5), a running cost function is prescribed as a function only

of the state x and control input u at the current time

cfull(x, u) = F (x, u)+αIGE(x, u)+βIEE(x, u)+φSOC(x)
(6)

where the function I(x, u) is the indicator function and

shows when a state and control combination produces a Gear

Event or Engine Event. Fuel use is calculated by F (x, u).
The SOC-based cost φSOC(x) still applies only at key-off,

when the systems transitions to the key-off absorbing state.

Many other vehicle behaviors can be optimally controlled by

adding appropriate functions of the form φ(x, u); a typical

example is limiting SOC deviations during operation to

reduce battery wear.

B. Problem Formulation

To determine the optimal control strategy for this vehicle,

the Shortest Path Stochastic Dynamic Programming (SPSDP)

algorithm is used [6], [14]. This method directly generates

a causal controller; characteristics of the future driving

behavior are specified via a Markov chain rather than exact

future knowledge. The system model is formulated as

xk+1 = f(xk, uk, wk),

where uk is a particular control choice in the set of allowable

controls U , xk is the state, and wk is a random variable aris-

ing from the unknown drive cycle. Given this formulation,

the optimal cost V ∗(x) over an infinite horizon is a function

of the state x and satisfies

V ∗(x) = min
u∈U

Ew[c(x, u) + V ∗(f(x, u, w))], (7)

where c(x, u) is the instantaneous cost as a function of

state and control; (6) is a typical example. The optimal

control u∗ is any control that achieves the minimum cost

V ∗(x). This equation represents a compromise between

minimizing the current cost c(x, u) and the expected future

cost V (f(x, u, w)). Note that the cost V (x) is a function

of the state only. This cost is finite for all x if every point

in the state space has a positive probability of eventually

transitioning to an absorbing state that incurs zero cost from

that time onward.

In order to use this method, the driver demand is modeled

as a Markov chain. This “driver” is assigned two states:

current velocity vk and current acceleration ak, which are

included in the full system state x. A probability distribution

is then assigned to the set of accelerations at the next time

step. This means estimating the function

P (ak+1|vk, ak) (8)

for all states vk, ak. This Markov chain captures the uncer-

tainty in the problem, which is represented in (7) by the
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random variable w. The specific realization of w determines

ak+1 in (8),

ak+1 = g(vk, ak, wk) (9)

P (ak+1|vk, ak) = P (w : g(vk, ak, wk) = ak+1). (10)

The transition probabilities (8) are estimated from known

drive cycles that represent typical behavior, dubbed the

“design cycles.” The function g represents system dynamics.

The variables vk, ak, and ak+1 are discretized to form a

grid. For each discrete state [vk, ak] there are a variety of

outcomes ak+1. The probability of each outcome ak+1 is

estimated based on its frequency of occurrence during the

design cycle. See [14] for more detail.

In addition to fuel economy, it is desirable to study the

drivability characteristics of the vehicle. The metrics chosen

are gear shifts and engine events as described in Section III.

To track these metrics, two additional states are required: the

Current Gear (0-6) and Engine State (on or off).

Bringing this all together, the full system state vector

x contains five states: one state for the vehicle (Battery

SOC), two states for the stochastic driver (vk, ak), and

two states to study drivability (Current Gear and Engine

State). This formulation is termed the “SPSDP-Drivability”

controller. A summary of system states is shown in Table

IV. The control u contains the three inputs Engine Torque,

EM1 Torque/Speed, and Transmission Gear, as described in

Section II and Table III.

TABLE IV

VEHICLE MODEL STATES

State Units

Battery Charge (SOC) [0-1]

Vehicle Speed m/s
Current Vehicle Acceleration m/s2

Current Transmission Gear Integer 0-6

Current Engine State On or Off

V. DRIVE CYCLE DATA

A major goal of this paper is to demonstrate the real-world

potential of the proposed SPSDP algorithm. Controller per-

formance is often demonstrated on standard test cycles (FTP,

NEDC, US06) for comparison and relevance to government

certification. A common complaint among customers is that

the fuel economy on the window sticker does not match

the actual fuel economy they get in practice. There are two

potential reasons: either the controllers are tuned primarily

for the test cycles, or real-world driving is fundamentally less

fuel-efficient than the test cycles. The real-world data used in

this paper allows a better evaluation of controller robustness

and performance in the “off-cycle” real world.

The drive cycle data used in this paper was collected by

the University of Michigan Transportation Research Institute

(UMTRI) [5]. The “source” data set supplied to us contains

2500 trips made by 87 drivers. Very short trips (less than 3

minutes or 0.5 km) are ignored. We randomly selected two

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Trip Length (miles)

C
D

F

 

 

Full Data Set

Ensemble 1

Ensemble 2
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sets of 100 drive cycles from this group. They are called

“Ensemble 1” and “Ensemble 2.”

To gain some insight into the statistical nature of drive

cycles, we briefly study the characteristics of the drive cycle

distributions. The cumulative distribution functions (CDF) of

trip distance for the source data and both subsets are shown

in Figure 1. The statistics for the two ensemble sets are a

reasonable match for the source data set.

A second statistic is the CDF of vehicle speed, as shown

in Figure 2. This figure is computed by sampling vehicle

velocity every second for the appropriate sets of trips and

taking the CDF of the distribution. Two standard government

test cycles are also shown, the Federal Test Procedure (FTP)

and the New European Drive Cycle (NEDC). This yields

five total curves in the picture: the Source Data, Ensemble

1, Ensemble 2, FTP, and NEDC.

There are three interesting things to notice in this figure.

The first is that the government test cycles seem funda-
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mentally different from the real-world data. The real-world

cycles have substantially higher velocities in general. The

second detail is the step-like nature of the NEDC cycle,

which arises because it is completely contrived. The cycle

is composed of perfect ramps to constant speeds and is

obviously specified by hand. Lastly, Ensemble 2 has lower

velocities than Ensemble 1, which affects the fuel economy

results presented in Section VII.

VI. SIMULATION PROCEDURE

To study the effectiveness of this controller design method-

ology, a large number of controllers are simulated on a

set of real-world driving data as discussed in Section V.

Procedurally, this is conducted as follows:

1) A “family” of controllers is designed according to the

methods of Section IV. A family is generated by fixing

the model driving statistics and most parameters, and

sweeping the 2 drivability penalties.

2) For each controller in the family, the controller is

simulated on each of the 100 cycles in a particular

ensemble using the vehicle simulation model.

3) The results for each ensemble set of 100 cycles are

compiled to generate average or cumulative perfor-

mance for that particular controller.

In the end result, each family of controllers contains a

few hundred individual controllers which have each been

simulated on 100 ensemble cycles. Each controller has

average performance metrics (fuel economy and drivability)

representing cumulative performance on the set of ensemble

cycles. Note that studying 100 controllers on 100 cycles each

means 10,000 simulations.

For additional comparison, controllers are simulated on

a government test cycle, in which case there is only one

simulation per controller.

Several results are presented which compare the SPSDP-

based controllers to a baseline controller developed by Ford

for this prototype vehicle. For proprietary reasons, all fuel

economy numbers are normalized to the baseline Ford con-

troller running the FTP cycle. Both controller design methods

(Ford and SPSDP) use the same vehicle simulation model.

These simulations are all causal, so the final SOC is not

guaranteed to exactly match the starting SOC. This could

yield false fuel economy results, so all fuel economy results

are corrected based on the final SOC of the drive cycle. This

is done by estimating the additional fuel required to charge

the battery to its initial SOC, or the potential fuel savings

shown by a final SOC that is higher than the starting level.

This correction is applied according to

∆Fuel = CBatt∆SOC
BSFCmin

η
Regen
max

(11)

where ∆Fuel is the adjustment to the fuel used, CBatt

is the battery capacity, ∆SOC is the difference between

the starting and ending SOC, BSFCmin is the best Brake

Specific Fuel Consumption for the engine, and ηRegen
max is the

best charging efficiency of the electric system.
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Fig. 3. Typical Simulation Results on FTP of a family of controllers on
a 3-D scatterplot. The SPSDP controller family is shown by small blue
dots. The Ford controller is shown as a large green circle. Fuel economy is
normalized to the Ford controller on FTP for all figures. A response surface
is fitted to raw data like these to generate isoclines of constant gear as in
Figures 4-7.

VII. MAIN RESULTS

The main goal of this research is to use the SPSDP method

to tradeoff fuel economy and drivability requirements by

using a class of optimal controllers, and validate the result

against industrial design methods. The three metrics of in-

terest during vehicle driving are the number of Gear Events,

Engine Events, and the total fuel consumption corrected for

SOC. These metrics yield conflicting goals and there is a

distinct tradeoff among them. To study this tradeoff, several

hundred controllers are designed with varying penalties as-

signed to each Gear Event and Engine Event. This creates

one family of controllers as described in Section VI.

After simulation, the resulting data show the tradeoff

between fuel economy and drivability. The typical result is

a 3-D scatterplot of one family of controllers as shown in

Figure 3. Each point represents a single controller driven

on the cycle in question, FTP in this case. For figures like

this one, the controllers are all driven on the same test

cycle. As mentioned in Section VI, these points could also

represent the average performance on a group of cycles. The

combination of these points form a surface in 3-D space that

shows the tradeoff surface for various operating conditions.

This particular figure shows a family of controllers designed

using FTP statistics running the FTP cycle.

These 3-D plots are difficult to interpret in a single figure,

so the shape of the 3-D surface is presented as lines on a

2-D plot. A response surface is fit to the raw data and used

to generate isoclines of constant gear as shown in Figure

4. This plot shows the performance on the Ensemble 1 set

for one family of SPSDP controllers designed on that same

cycle set. Each line in the plot represents a constant number

of Gear Events, while the horizontal and vertical axes show

the number of Engine Events and normalized fuel economy

respectively. The curves represent a large number of possible
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response surface to raw data like that shown in Figure 3.

controllers, each with different penalty weights. The Ford

controller performance on Ensemble 1 set is still shown as

a large green circle.

Figure 4 shows a distinct “knee” in the curves at 4000

Engine Events in where the fuel economy flattens out at

its maximum. The fuel economy tradeoff is not as severe

for larger numbers of gear events. The remainder of the

figures in this paper compare several families of controllers,

so only one isocline is drawn for each family. Each line still

represents a portion of a 3-D surface like the one in Figure

3.

Simulations are conducted on FTP again in Figure 5

for SPSDP controller families designed on four different

design cycles. This figure fixes the desired number of gear

events at 100, where the tradeoff between fuel economy and

engine events is not as severe. The controllers based on FTP,

Ensemble 1 and Ensemble 2 show similar performance while

the NEDC-based controllers show a noticeable difference.

To study performance in the real world, the controllers are

tested on the set of ensemble cycles. The fuel economy for

the ensemble cycle sets is calculated using the ratio of the

total fuel used on all cycles and the total distance (sum of all

100 cycles). The fuel use is corrected for final SOC for each

individual cycle, before the summation to yield total fuel.

This result approximates the average consumer fuel economy

over about 1000 miles, or 3 tanks of gas.

Figure 6 shows 5 different controller options running the

Ensemble 1 set. The controllers are the same as those in

Figure 5, just running different cycles. As expected, the

controllers based on the ensemble statistics yield the best

performance. The same controller options are simulated on

the Ensemble 2 set as shown in Figure 7. The relatively

slower driving of Ensemble 2 as shown in Figure 2 yields

slightly improved fuel economy compared to Ensemble 1.

In general, the SPSDP design methods are quite robust

to drive cycle variation. They consistently beat an indus-
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Fig. 5. Fuel Economy and Drivability Metrics on the FTP Cycle for
5 controller options. Controller familes are designed with statistics from
FTP, NEDC, Ensemble 1, and Ensemble 2. All fuel economy figures are
normalized to the Ford Controller performance on FTP, shown as a large
green dot. The controllers are the same as those shown in Figures 6 and 7.

trial controller both on a government test cycle and real-

world cycles. The FTP and ensemble cycles show significant

differences both in terms of fuel economy and the relative

performance of different controllers, confirming the statisti-

cal differences noted in Figure 2. Regardless of the design

statistics used, real-world driving does not approach the fuel

economy on FTP, which has a normalized fuel economy of

1.0.

The Ford controller uses 12,328 Gear Events on the

Ensemble 1 set. These results depend on the exact definitions

used for gear and engine events. In this work, any gear shifts

that occur while the clutch is disengaged (including engine

start and shutdown) are not counted as an event and incur

no cost. The SPSDP-based controllers have this definition in

mind when they are designed, but the Ford controller does

not. The Ford controller uses a shifting strategy that does not

directly account for the metrics used here.

VIII. CONCLUSIONS

The energy management controller for a hybrid vehicle

is a major factor in the vehicle’s overall performance.

This paper studies controllers generated using Shortest Path

Stochastic Dynamic Programming (SPSDP) and evaluates

their performance and robustness on real-world drive cycles

using a highly accurate simulation model. The SPSDP-based

controllers use a statistical description of expected driving

behavior to minimize a cost function that is a weighted

sum of consumed fuel and drivability penalties, such as shift

events and engine on-off events. By varying the weights, a

control designer can systematically trade off fuel economy

and drivability. These tradeoffs are optimal for given driving

statistics. The performance of the SPSDP-based controllers

was compared against an industrial-quality controller pro-

vided by Ford Motor Company that was designed by a team

of engineers over several years.
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Fig. 6. Fuel Economy and Drivability Metrics on the Ensemble 1 set for
the Ford Controller and controller familes are designed with statistics from
FTP, NEDC, Ensemble 1, and Ensemble 2. Fuel Economy, Gear Events,
and Engine Events are cumulative for the whole cycle set, approximately
1000 miles. The controllers are the same as those shown in Figures 5 and
7. Results normalized to the Ford Controller on FTP (Fig. 5).

The SPSDP-based controllers deliver 2-3% performance

improvement over the industrial controller on real world driv-

ing patterns, with even more improvement on a government

test cycle. Moreover, the SPSDP design procedure can be

highly automated. For example, for a fixed vehicle model and

set of drive cycle statistics, one hundred SPSDP controllers

representing various combinations of fuel consumption and

weighted drivability penalties can be designed on the Uni-

versity of Michigan computing grid in four hours.

From an academic standpoint, these results are significant

because they validate SPSDP as a reasonable design method

and by extension lend credibility to other methods in the

literature. Comparisons between industrial and academic

controllers are quite rare. From an industrial perspective, this

method has additional benefits. The speed and ease with

which SPSDP controllers can be designed may result in

significant labor savings, faster overall development time,

or the ability to evaluate more hardware design tradeoffs

in the prototyping phase. With the ability to generate opti-

mal tradeoff curves among competing performance metrics,

such as drivability and fuel economy as studied here, the

manufacturer gains additional insight into the operating point

selection process.

This analysis shows that Shortest Path Stochastic Dynamic

Programming is a viable method for designing real-world

controllers. The controllers can be implemented directly

with little manual adjustment, and generate performance

exceeding the current industrial state of the art.
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