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Abstract— Much of the boundary control of wave equations
in 1D is based on a single principle—passivity—under the
assumption that control is applied through Neumann actuation
on one boundary and the other boundary satisfies a homoge-
neous Dirichlet boundary condition. We have recently expanded
the scope of tractable problems by allowing destabilizing anti-
stiffness (a Robin type condition) on the uncontrolled boundary,
where the uncontrolled system has a finite number of positive
real eigenvalues. In this paper we go much further and develop
a methodology for the case where the uncontrolled boundary
condition has anti-damping, which makes the real parts of
all the eigenvalues of the uncontrolled system positive and
arbitrarily high, i.e., the plant is “anti-stable” (exponentially
stable in negative time). Using a conceptually novel integral
transformation, we obtain extremely simple, explicit formulae
for the gain functions. For the case with only boundary
sensing available (at the same end with actuation), we design
backstepping observers which are dual to the backstepping
controllers and have explicit output injection gains. We then
combine the control and observer designs into an output-
feedback compensator and prove exponential stability of the
closed-loop system.

I. INTRODUCTION

We consider the problem of stabilization of a one-

dimensional wave equation which is controlled from one

end and contains instability at the other (free) end (see [1],

[2], [4], [7] for classical passivity-based designs for wave

equations). The nature of instability (negative damping) is

such that all of the open-loop eigenvalues are located on the

right hand side of the complex plane, thus the plant is not

just unstable, it is anti-stable.

Our control design is based on the method of “backstep-

ping” [6], [5], [3], which results in explicit formulae for the

gain functions. In a recent paper [3], backstepping method

was used to design controllers and observers for an unstable

wave equation with destabilizing boundary condition at the

free end. However, in that paper the destabilizing term

was proportional to displacement, while in this paper it is

proportional to velocity, in the form of “anti-damper”, which

results in all eigenvalues being unstable instead of just a

few. The concept of a boundary anti-damper is not of huge

physical relevance, however, the design that we develop for

this anti-stable system is a methodological breakthrough in

boundary control of wave equations.

For the case when only boundary sensing is available

(at the same end with actuation), we design backstepping

observers which are dual to the backstepping controllers and
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have explicit output injection gains. Both setups are con-

sidered: Neumann actuation/Dirichlet sensing and Dirichlet

actuation/Neumann sensing. We then combine the control

and observer designs into dynamic compensators and prove

exponential stability of the closed-loop system.

II. PROBLEM FORMULATION

We consider the plant

utt(x, t) = uxx(x, t) (1)

ux(0, t) = −qut(0, t) (2)

ux(1, t) = U(t) , (3)

where U(t) is the control input and q is a constant parameter.

For q = 0, equations (1)–(3) model a string which is free at

the end x = 0 and is actuated on the opposite end. For q < 0
the system (1)–(3) is stabilized trivially with the feedback

law U = −au(1, t), a > 0. In this paper we assume q > 0,

so that the free end of the string is negatively damped, with

all eigenvalues located on the right hand side of the complex

plane (hence the open-loop plant is “anti-stable”). We also

assume q 6= 1, since for q = 1 the plant is uncontrollable.

The objective is to exponentially stabilize the system

(1)–(3) around the zero equilibrium. The case of Dirichlet

actuation is considered in Section VI.

III. CONTROL DESIGN

Consider the transformation

w(x, t) = u(x, t) −

∫ x

0

k(x, y)u(y, t) dy

−

∫ x

0

s(x, y)ut(y, t) dy

−

∫ x

0

m(x, y)ux(y, t) dy , (4)

where the gains k(x, y), s(x, y), and m(x, y) are to be

determined. We want to map the plant (1)–(3) into the

following target system

wtt(x, t) = wxx(x, t) (5)

wx(0, t) = cwt(0, t) (6)

wx(1, t) = −c0w(1, t) , (7)

which is exponentially stable for c > 0 and c0 > 0 (see,

e.g., [3]). We also assume c 6= 1. As will be shown later,

the transformation (4) is invertible in a certain norm, so that

stability of the target system ensures stability of the closed-

loop system.
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Compared with the backstepping transformations for

parabolic PDEs, there are two additional terms in (4)—the

second and the third integrals in (4). The term with ut is

natural because hyperbolic systems are second order in time

and therefore the state variable is (u, ut) instead of just u.

The need for the term with ux is less obvious and it is in

fact the main conceptual novelty of the paper.

Substituting (4) into (5)–(7) we obtain

wtt(x, t) = wxx(x, t) + 2u(x, t)
d

dx
k(x, x)

+ 2ut(x, t)
d

dx
s(x, x) + 2ux(x, t)

d

dx
m(x, x)

+

∫ x

0

(kxx(x, y) − kyy(x, y))u(y, t) dy

+

∫ x

0

(sxx(x, y) − syy(x, y))ut(y, t) dy

+

∫ x

0

(mxx(x, y) −myy(x, y))ux(y, t) dy

− ky(x, 0)u(0, t)

+ [qmy(x, 0) − sy(x, 0) − qk(x, 0)]ut(0, t)

+ [m(x, 0) − qs(x, 0)]uxx(0, t) . (8)

Matching all the terms we get the following PDE for k(x, y):

kxx(x, y) = kyy(x, y), (9)

ky(x, 0) = 0, (10)

d

dx
k(x, x) = 0, (11)

and two coupled PDEs for s(x, y) and m(x, y):

sxx(x, y) = syy(x, y), (12)

sy(x, 0) = qmy(x, 0) − qk(x, 0), (13)

d

dx
s(x, x) = 0, (14)

and

mxx(x, y) = myy(x, y), (15)

m(x, 0) = qs(x, 0), (16)

d

dx
m(x, x) = 0. (17)

Substituting (4) into the boundary condition (6) we get

0 = wx(0, t) − cwt(0, t)

= [qm(0, 0) − s(0, 0)− q − c]ut(0, t)

− k(0, 0)u(0, t) , (18)

which gives two more conditions:

k(0, 0) = 0, (19)

qm(0, 0) = s(0, 0) + q + c . (20)

The solution to (9)–(11), (19) is simply k(x, y) ≡ 0. This is

a consequence of not changing stiffness of the system (i.e.,

if we were to add the term proportional to w(0, t) to the

boundary condition at x = 0, the gain k(x, y) would not be

zero). To solve the PDEs for s and m, we note that a general

solution to (12) and (14) is s(x, y) = φ(x− y) and similarly

for (15), (17) we have m(x, y) = ψ(x − y) for arbitrary

functions φ and ψ. Using (13) and (16) we obtain

φ′(x) = qψ′(x), (21)

ψ(x) = qφ(x) . (22)

Integrating (21) from 0 to x and using (22), we obtain

(q2 − 1)(φ(x) − φ(0)) = 0 . (23)

Since q 6= 1, we get that both φ(x) and ψ(x) are constant

functions of x. Finally, using the relationship (20) together

with (22), we get

s(x, y) ≡
q + c

q2 − 1
, (24)

m(x, y) ≡
q(q + c)

q2 − 1
. (25)

The transformation (4) can therefore be written in one of the

two forms, either as

w(x, t) = u(x, t) −
q(q + c)

q2 − 1

∫ x

0

ux(y, t) dy

−
q + c

q2 − 1

∫ x

0

ut(y, t) dy , (26)

or as

w(x, t) = −
1 + qc

q2 − 1
u(x, t) +

q(q + c)

q2 − 1
u(0, t)

−
q + c

q2 − 1

∫ x

0

ut(y, t) dy . (27)

Differentiating (27) with respect to x, setting x = 1, and

using the boundary condition (7), we obtain the following

controller

U(t) =
c0q(q + c)

1 + qc
u(0, t) − c0u(1, t)

−
q + c

1 + qc
ut(1, t) −

c0(q + c)

1 + qc

∫

1

0

ut(y, t) dy . (28)

Our main result on stabilization is given by the following

theorem.

Theorem 1. For any initial data (u(·, 0), ut(·, 0)) ∈ H =
H2(0, 1) × H1(0, 1), compatible with the boundary condi-

tions, closed-loop system (1)–(3), (28) has a unique classical

solution (u, ut) ∈ C1([0,∞), H), which is exponentially

stable in the sense of the norm

(
∫ 1

0

ux(x, t)2dx+

∫ 1

0

ut(x, t)
2dx+ u(1, t)2

)1/2

. (29)

Proof. First, let us establish stability of the target system.

With the Lyapunov function

V1(t) =
1

2

∫ 1

0

wx(x, t)2dx+
1

2

∫ 1

0

wt(x, t)
2dx+

c0
2
w(1, t)2

+ δ

∫

1

0

(x− 2)wx(x, t)wt(x, t) dx , (30)
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where δ is sufficiently small (so that V1 is positive definite),

we obtain

V̇1 = −
δ

2

∫ 1

0

(wx(x, t)2 + wt(x, t)
2) dx

−
[

c− δ(1 + c2)
]

wt(0, t)
2

−
δ

2

[

wt(1, t)
2 + c20w(1, t)2

]

≤ −ωV1, (31)

where ω > 0. Since there exist a1 > 0, a2 > 0 such that

a1V2 ≤ V1 ≤ a2V2, (32)

where

V2(t) =

∫ 1

0

wx(x, t)2dx+

∫ 1

0

wt(x, t)
2dx + w(1, t)2 ,

(33)

we obtain

V2(t) ≤
a2

a1

e−ωtV2(0) . (34)

Let us differentiate the transformation (27) with respect to t
and x. We get

wt(x, t) = −
1 + qc

q2 − 1
ut(x, t) −

q + c

q2 − 1
ux(x, t) , (35)

and

wx(x, t) = −
1 + qc

q2 − 1
ux(x, t) −

q + c

q2 − 1
ut(x, t) . (36)

From (35) and (36) it easily follows that

∫

1

0

(wx(x, t)2 + wt(x, t)
2) dx

≤
(c+ 1)2

(q − 1)2

∫ 1

0

(ux(x, t)2 + ut(x, t)
2) dx . (37)

Using the transformation (26) with x = 1, we get

w(1, t)2 ≤ 2u(1, t)2

+
4(q + c)2

(q − 1)2

∫

1

0

(ux(x, t)2 + ut(x, t)
2) dx . (38)

From (37) and (38) we obtain

V2 ≤ 4
(q + c)2 + (c+ 1)2

(q − 1)2
V3, (39)

where

V3(t) =

∫

1

0

ux(x, t)2dx+

∫

1

0

ut(x, t)
2dx + u(1, t)2 . (40)

One can easily show that the inverse transformation to

(35)–(36) is

ut(x, t) = −
1 + qc

c2 − 1
wt(x, t) +

q + c

c2 − 1
wx(x, t) , (41)

and

ux(x, t) = −
1 + qc

c2 − 1
wx(x, t) +

q + c

c2 − 1
wt(x, t) . (42)

Setting x = 1 in (26) and using (41), (42) to express u(1, t)
in terms of w(1, t), wt, and wx, we obtain

V3 ≤ 4
(q + c)2 + (q + 1)2

(c− 1)2
V2. (43)

From (34), (39), and (43) one gets

V3(t) ≤
16a2

a1

(q + c)2 + (c+ 1)2

(c− 1)2(q − 1)2

×
(q + c)2 + (q + 1)2

(c− 1)2(q − 1)2
e−ωtV3(0) . (44)

The existence and uniqueness of the solution follow by

standard arguments as in [3]. First, the abstract operator

describing the system is introduced, it is dissipative due

to estimates above; then it is shown that it has a bounded

inverse; the result follows from Lumer-Phillips theorem.

IV. OBSERVER DESIGN

In this section, we design an observer for the plant (1)–(3)

when only boundary measurements are available. We assume

that displacement and velocity at the end x = 1 are measured

(i.e., u(1, t) and ut(1, t)).
Since we expect this observer to be dual to the controller

designed in the previous section, it is natural to assume

that the observer gains are also constant. We propose the

following observer

ûtt(x, t) = ûxx(x, t) + p1[u(1, t) − û(1, t)]

+ p2[ut(1, t) − ût(1, t)] (45)

ûx(0, t) = −qût(0, t) + p3[u(1, t) − û(1, t)]

+ p4[ut(1, t) − ût(1, t)] (46)

ûx(1, t) = U(t) + p5[u(1, t) − û(1, t)]

+ p6[ut(1, t) − ût(1, t)] . (47)

The observer error ũ = u− û satisfies

ũtt(x, t) = ũxx(x, t) − p1ũ(1, t) − p2ũt(1, t) (48)

ũx(0, t) = −qũt(0, t) − p3ũ(1, t) − p4ũt(1, t) (49)

ũx(1, t) = −p5ũ(1, t) − p6ũt(1, t) . (50)

Consider the transformation

ũ(x, t) = w̃(x, t) + α

∫

1

x

w̃(y, t) dy

+ β

∫ 1

x

w̃t(y, t) dy + γ

∫ 1

x

w̃x(y, t) dy . (51)

Note that unlike in the control transformation (26), here the

integrals run from x to 1. This is because the input and the

output are collocated.

We map the observer error system into the system

w̃tt(x, t) = w̃xx(x, t) (52)

w̃x(0, t) = c̃w̃t(0, t) (53)

w̃x(1, t) = −c0w̃(1, t) , (54)

which is exponentially stable for c̃ > 0, c̃ 6= 1 and c0 > 0.
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First, we differentiate the transformation (51) twice w.r.t.

time (note that ũ(1, t) = w̃(1, t)),

ũtt(x, t) = ũxx(x, t) + αw̃x(1, t) + βw̃xt(1, t) + γw̃tt(1, t)

= ũxx(x, t) − αc0ũ(1, t)

− βc0ũt(1, t) + γũtt(1, t) . (55)

Comparing the above with (48) we get γ = 0, p1 = αc0,

p2 = βc0. From (50) we get

ũx(1, t) = w̃x(1, t) − αw̃(1, t) − βw̃t(1, t)

= −(c0 + α)ũ(1, t) − βũt(1, t) , (56)

which gives p5 = c0 + α, p6 = β. Then, from (49)

ũx(0, t) + qũ(0, t) = −αw(0, t) + qα

∫

1

0

wt(y, t) dy

+ w̃t(0, t)[c̃− β + q − qβc̃]

− qβc0ũ(1, t) (57)

and therefore p3 = qβc0, p4 = 0, α = 0, c̃+ q = β(1 + qc̃).
Finally, we get the following observer

ûtt(x, t) = ûxx(x, t) +
c0(q + c̃)

1 + qc̃
[ut(1, t) − ût(1, t)] (58)

ûx(0, t) = −qût(0, t) +
c0q(q + c̃)

1 + qc̃
[u(1, t) − û(1, t)] (59)

ûx(1, t) = U(t) + c0[u(1, t) − û(1, t)]

+
q + c̃

1 + qc̃
[ut(1, t) − ût(1, t)] . (60)

and the transformation is

ũ(x, t) = w̃(x, t) +
q + c̃

1 + qc̃

∫

1

x

w̃t(y, t) dy . (61)

Note the duality of 4 observer gains in (58)–(60) to 4

control gains in (28) (for c̃ = c), even though the control

and observer transformations are different.

Theorem 2. For any initial data (ũ(·, 0), ũt(·, 0)) ∈ H =
H2(0, 1) × H1(0, 1) compatible with the boundary condi-

tions, the observer error system (48)–(50) has a unique

classical solution (ũ, ũt) ∈ C1([0,∞), H), which is expo-

nentially stable in the sense of the norm

(
∫ 1

0

ũx(x, t)2dx+

∫ 1

0

ũt(x, t)
2dx+ ũ(1, t)2

)1/2

. (62)

Proof. With the Lyapunov function

V4 =
1

2

∫

1

0

w̃x(x, t)2dx+
1

2

∫

1

0

w̃t(x, t)
2dx +

c0
2
w̃(1, t)2

+ δ2

∫ 1

0

(x− 2)w̃x(x, t)w̃t(x, t) dx , (63)

where δ2 is sufficiently small, exactly the same calculation

as in (31) shows that

V̇4 ≤ −ω̃V4, (64)

where ω̃ > 0.

Differentiating the transformation (61) we get

ũx(x, t) = w̃x(x, t) −
q + c̃

1 + qc̃
w̃t(x, t), (65)

and

ũt(x, t) = w̃t(x, t) −
q + c̃

1 + qc̃
w̃x(x, t) −

c0(q + c̃)

1 + qc̃
w̃(1, t) .

(66)

Note also that ũ(1, t) = w̃(1, t). Therefore,

‖ũx‖
2+‖ũt‖

2+ũ(1)2 ≤M6(‖w̃x‖
2+‖w̃t‖

2+w̃(1)2), (67)

where M6 = 3 + 3 max{c20, 1}(q + c̃)2/(1 + qc̃)2.

The inverse to (65), (66) is

w̃x(x, t) =
(1 + qc̃)2ũx(x, t) + (q + c̃)(1 + qc̃)ũt(x, t)

(q2 − 1)(c2 − 1)

+
c0(q + c̃)2

(q2 − 1)(c2 − 1)
ũ(1, t) (68)

w̃t(x, t) =
(1 + qc̃)2ũt(x, t) + (q + c̃)(1 + qc̃)ũx(x, t)

(q2 − 1)(c2 − 1)

+
c0(q + c̃)(1 + qc̃)

(q2 − 1)(c2 − 1)
ũ(1, t) . (69)

Therefore,

‖w̃x‖
2 + ‖w̃t‖

2 + w̃(1)2) ≤M7(‖ũx‖
2 + ‖ũt‖

2 + ũ(1)2),
(70)

where M7 = 3 max{c20, 1}((q + c̃)2 + (1 + qc̃)2)2(q2 −
1)−2(c̃2 − 1)−2. From (64), (67), and (70) we get that the

norm (62) decays exponentially. The existence and unique-

ness of the solution of the observer error system are obtained

as in the proof of Theorem 1.

V. OUTPUT FEEDBACK

In this section we combine the controller and the observer

designed in previous two sections to solve the output-

feedback problem.

Theorem 3. Consider the plant (1)–(3) with the observer

(58)–(60) and the controller

U(t) =
c0q(q + c)

1 + qc
û(0, t) − c0u(1, t)

−
q + c

1 + qc
ut(1, t) −

c0(q + c)

1 + qc

∫

1

0

ût(y, t) dy . (71)

For any initial data (u(·, 0), ut(·, 0), û(·, 0), ût(·, 0)) ∈ H =
H2(0, 1)×H1(0, 1)×H2(0, 1)×H1(0, 1) compatible with

the boundary conditions, the closed-loop system has a unique

classical solution (u, ut, û, ût) ∈ C1([0,∞);H), which is

exponentially stable in the sense of the norm
(

‖ux(t)‖2 + ‖ut(t)‖
2 + u(1, t)2

+‖ûx(t)‖2 + ‖ût(t)‖
2 + ‖û(1, t)‖2

)1/2

. (72)

Proof. Consider two transformations: (61) and

ŵ(x, t) = −
1 + qc

q2 − 1
û(x, t) +

q(q + c)

q2 − 1
û(0, t)

−
q + c

q2 − 1

∫ x

0

ût(y, t) dy. (73)
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It is straightforward to show that these transformations along

with the control law (71) map the system (û, ũ) into (ŵ, w̃)-
system, where w̃ part is given by (52)–(54) and ŵ satisfies

the following PDE:

ŵtt(x, t) = ŵxx(x, t) +A(qw̃t(1, t) − xw̃tt(1, t)) (74)

ŵx(0, t) = cŵt(0, t) −A
q(1 + qc)

q + c
w̃(1, t) (75)

ŵx(1, t) = −c0ŵ(1, t) +
c̃− c

1 + qc̃
w̃t(1, t) , (76)

where

A =
c0(q + c̃)(q + c)

(q2 − 1)(1 + qc̃)
. (77)

Note that the PDE (74)–(76) contains the terms proportional

to w̃t(1, t) and w̃tt(1, t), which are in H2 and H3 respec-

tively, while our Lyapunov functions used in control and

observer designs are H1 norms. To overcome this difficulty,

we introduce a new variable w̆(x, t) = ŵ(x, t) +Axw̃(1, t),
which eliminates the term w̃tt(1, t). The remaining w̃t(1, t)-
terms are handled using the term −w̃t(1, t)

2 in V̇4, which

was simply discarded in the estimate (64) (see (31)).

The variable w̆(x, t) satisfies the following PDE:

w̆tt(x, t) = w̆xx(x, t) +Aqw̃t(1, t) (78)

w̆x(0, t) = cw̆t(0, t) −
c0c(q + c̃)

(1 + qc̃)
w̃(1, t) (79)

w̆x(1, t) = −c0w̆(1, t) +
c̃− c

1 + qc̃
w̃t(1, t)

+ (c0 + 1)Aw̃(1, t) . (80)

Using the Lyapunov function

V5 =
1

2

∫ 1

0

w̆x(x, t)2dx+
1

2

∫ 1

0

w̆t(x, t)
2dx +

c0
2
w̆(1, t)2

+ δ1

∫

1

0

(x− 2)w̆x(x, t)w̆t(x, t) dx+KV4 (81)

one can show that for large enough K and small enough δ1
and δ2

V̇5 ≤ −ω1V5 − αw̃t(1, t)
2, ω1 > 0, α > 0 . (82)

Going back to the old variable ŵ, and using (82) we

obtain exponential stability in (w̃, ŵ) variables. From the

transformations (61) and (73) and their inverses we obtain

exp. stability in (ũ, û) variables, and therefore in (u, û)
variables. The existence and uniqueness of the solutions is

proved as in Theorem 1.

VI. DIRICHLET ACTUATION AND NEUMANN SENSING

In this section we use the control and observer transforma-

tions derived in Sections III and IV to design the controller

and the observer for the case of Dirichlet actuation and

Neumann sensing.

Consider the plant

utt(x, t) = uxx(x, t) (83)

ux(0, t) = −qut(0, t) (84)

u(1, t) = U(t) . (85)

Using the transformation (27), we map this plant into the

target system

wtt(x, t) = wxx(x, t) (86)

wx(0, t) = cwt(0, t) (87)

w(1, t) = 0 , (88)

which is exponentially stable for c > 0, c 6= 1. The controller

is obtained by setting x = 1 in (27):

U(t) =
q(q + c)

1 + qc
u(0, t) −

q + c

1 + qc

∫ 1

0

ut(y, t) dy . (89)

Theorem 4. For any initial data (u(·, 0), ut(·, 0)) ∈ H =
H2(0, 1) × H1(0, 1) compatible with the boundary condi-

tions, the closed-loop system (83)–(85), (89) has a unique

classical solution (u, ut) ∈ C1([0,∞), H), which is expo-

nentially stable in the sense of the norm
(

‖ux(t)‖2 + ‖ut(t)‖
)1/2

. (90)

Proof. Starting with the Lyapunov function

V6(t) =
1

2

∫

1

0

wx(x, t)2dx+
1

2

∫

1

0

wt(x, t)
2dx

+ δ

∫ 1

0

(x− 2)wx(x, t)wt(x, t) dx , (91)

where δ is sufficiently small, we obtain

V̇6 = −
δ

2

∫

1

0

(wx(x, t)2 + wt(x, t)
2) dx

−
[

c− δ(1 + c2)
]

wt(0, t)
2 −

δ

2
wx(1, t)2

≤ −ωV6, ω > 0 (92)

The rest of the proof is very similar to the proof of Theo-

rem 1.

When only measurements of ux(1, t) and uxt(1, t) are

available, we design the observer

ûtt(x, t) = ûxx(x, t) + p1[ux(1, t) − ûx(1, t)]

+ p2[uxt(1, t) − ûxt(1, t)] (93)

ûx(0, t) = −qût(0, t) + p3[ux(1, t) − ûx(1, t)]

+ p4[uxt(1, t) − ûxt(1, t)] (94)

û(1, t) = U(t) , (95)

where p1, p2, p3, p4 are constants to be chosen.

The observer error system is

ũtt(x, t) = ũxx(x, t) − p1ũx(1, t) − p2ũxt(1, t) (96)

ũx(0, t) = −qũt(0, t) − p3ũx(1, t) − p4ũxt(1, t) (97)

ũ(1, t) = 0 . (98)

We use the observer transformation (61), derived for the case

of the Dirichlet sensing to map the observer error system into

the following system:

w̃tt(x, t) = w̃xx(x, t) (99)

w̃x(0, t) = c̃w̃t(0, t) (100)

w̃(1, t) = 0 . (101)
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Substituting (61) into (96)–(98), we get the following con-

ditions: p1 = p2 = 0, p3(1 + qc̃) = −q(q+ c̃), p4(1 + qc̃) =
−q − c̃. Therefore, the observer is

ûtt(x, t) = ûxx(x, t) −
q + c̃

1 + qc̃
[uxt(1, t) − ûxt(1, t)] (102)

ûx(0, t) = −qût(0, t) −
q(q + c̃)

1 + qc̃
[ux(1, t) − ûx(1, t)]

(103)

û(1, t) = U(t) . (104)

Note the duality of two observer gains in (102), (103) to the

two control gains in (89) (for c̃ = c).

Theorem 5. Consider the plant (83)–(85) with the observer

(102)–(104) and the controller

U(t) =
q(q + c)

1 + qc
û(0, t) −

q + c

1 + qc

∫

1

0

ût(y, t) dy . (105)

For any initial data (u(·, 0), ut(·, 0), û(·, 0), ût(·, 0)) ∈ H =
H2(0, 1)×H1(0, 1)×H2(0, 1)×H1(0, 1) compatible with

the boundary conditions, the closed-loop system has a unique

classical solution (u, ut, û, ût) ∈ C1([0,∞);H), which is

exponentially stable in the sense of the norm
(

‖ux(t)‖2 + ‖ut(t)‖
2 + ‖ûx(t)‖2 + ‖ût(t)‖

2

+‖uxx(t) − ûxx(t)‖2 + ‖uxt(t) − ûxt(t)‖
2
)1/2

. (106)

Proof. The transformations (61) and

ŵ(x, t) = −
1 + qc

q2 − 1
û(x, t) +

q(q + c)

q2 − 1
û(0, t)

−
q + c

q2 − 1

∫ x

0

ût(y, t) dy (107)

map (96)–(98), (102)–(104) into (99)–(101) and the follow-

ing system

ŵtt(x, t) = ŵxx(x, t) −
q + c̃

1 + qc̃
w̃xt(1, t)

+
(q + c)(q + c̃)

(q2 − 1)(1 + qc̃)
xw̃xtt(1, t) (108)

ŵx(0, t) = cŵt(0, t) +
q(1 + qc)(q + c̃)

(q2 − 1)(1 + qc̃)
w̃x(1, t) (109)

ŵ(1, t) = 0 . (110)

First, we establish exponential stability of the system (99)–

(101) with the Lyapunov function

V7(t) =
1

2

∫ 1

0

w̃x(x, t)2 dx+
1

2

∫ 1

0

w̃t(x, t)
2 dx

+
1

2

∫

1

0

w̃xx(x, t)2 dx+
1

2

∫

1

0

w̃xt(x, t)
2 dx

+ δ1

∫ 1

0

(x− 2)w̃x(x, t)w̃t(x, t) dx

+ δ2

∫

1

0

(x− 2)w̃xx(x, t)w̃xt(x, t) dx . (111)

It is straightforward to show that

V̇7 ≤ −ωV7 − αw̃xt(1, t)
2, ω > 0, α > 0 . (112)

Note that, unlike in the case of Dirichlet sensing, here the

Lyapunov function has to contain H2 norms for us to be able

to show exponential stability of the observer error system.

This is due to the H2 nature of the terms ũx(1, t) appearing

in (96)–(98).

To eliminate the term proportional to w̃xtt(1, t) in (108)

we introduce a new variable

w̆(x, t) = ŵ(x, t) −
(q + c)(q + c̃)

(q2 − 1)(1 + qc̃)
xw̃x(1, t) . (113)

With the Lyapunov function

V8(t) =
1

2

∫

1

0

w̆x(x, t)2 dx+
1

2

∫

1

0

w̆t(x, t)
2 dx

+ δ

∫ 1

0

(x− 2)w̆x(x, t)w̆t(x, t) dx +KV7(t),

we obtain

V̇8 ≤ −ω2V8, ω2 > 0 (114)

for sufficiently large K and sufficiently small δ, δ1, and δ2.

The rest of the proof is similar to the proof of Theorem 3.

VII. CONCLUSIONS

In this paper we introduced a new integral transformation

for wave equations and used it to obtain explicit controllers

and observers for a wave equation with negative damping at

the boundary. The application of the presented approach to

other hyperbolic systems is very promising and will be the

subject of future work.
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