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Abstract— This paper treats the problem of estimating si-
multaneously the state and the unknown inputs of a class of
nonlinear discrete-time systems. An observer design method
for nonlinear Lipschitz discrete-time systems is proposed. By
assuming that the linear part of this class of systems is time-
varying, the state estimation problem of nonlinear system is
transformed into a state estimation problem for LPV system.
The stability analysis is performed using a Lyapunov function
that leads to the solvability of linear matrix inequalities (LMIs).
Performances of the proposed observer are shown through the
application to an activated sludge process model.

I. INTRODUCTION

In the last decades, the modeling of the activated sludge

wastewater treatment process became an interesting area

of research. The environnement protection and biological

wastewater treatment is essential for the life of human

communities. To fulfill the requirement of the European

Union as regards to environmental protection, control of

the reject water quality by the wastewater treatment plants

in the nature became an obligation. A Benchmark [3] has

been proposed by the European program COST 624 for the

evaluation of control strategies in wastewater treatment plants

(www.ensic.inpl-nancy.fr/COSTWWTP).

Activated sludge wastewater treatment is a highly complex

physical, chemical and biological process, and variations

in wastewater flow rate and its composition, combined

with time-varying reactions in a mixed culture of micro-

organisms, make this process non linear and unsteady. For

modeling the biological process in the activated sludge plant,

several models are proposed : ASM1 (Activated Sludge Pro-

cess Model No.1) [17], ASM2 [18], ASM2d [19] and ASM3

[16]. Due to the complexity of these models (for example

: the ASM1 model contains 11 different components, 20

parameters and 8 processes characterized by their process

rates), different versions of a reduced model for the activated

sludge plant are proposed in the literature. ([10], [21], [31],

[15], [30] and [25]). In this work, a nonlinear reduced model

given by [10] is chosen for modeling the benchmark with
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a single Reactor Activated Sludge Process. This reduced

model contains five state variables and two unknown inputs.

The objective is to estimate conjointly the state and the

unknown inputs. For this, we transform the nonlinear system

with unknown inputs to a nonlinear descriptor systems. The

transformed system is composed of two parts : a linear part

and a nonlinear Lipschitz part.

In practice and among the different models proposed,

for modeling the activated sludge process, there are some

concentrations, states or inputs, which are not measured

online. To solve this problem, various methods are proposed.

We can quote, for example [32], [23], [14], [11], [34] and

lately [6] and references therein. Reference [11] gives an

excellent overview of available results on the state and pa-

rameter estimation approaches for chemical and biochemical

processes. In this paper, we will propose an observer which

takes into account the Lipschitz property of the non linear

part.

The observers design of nonlinear systems has received

great attention in the literature. In the continuous-time case,

various state observation methods for Lipschitz systems have

been proposed. See for example [1], [28], [27], [33], [26] and

[24]. However, few methods are presented in the discrete-

time case ([2], [20], [22], [8], [29] and [4]. In their work,

the linear part is assumed to be time invariant.

In this paper, we will present an observer for state and

unknown inputs estimation using the LMIs technique for

a class of nonlinear Lipschitz discrete-time systems with

the linear parameter-varying (LPV) approach. Our approach

extends the recent results of [2] and [5].

This paper is structured as follows : In the second section,

an observer design for a class of nonlinear discrete-time

systems using LPV approach is introduced. In the third

section, the reduced model of the activated sludge process

is presented and the effectiveness of the proposed observer

is shown via the reduced order model of the activated

sludge processin the fourth section. Finally, the fifth section

concludes the paper.

This paper is organized as follows : the reduced model

of the activated sludge process is presented in section II.

In section III, an observer design for a class of nonlinear

discrete-time systems using LPV approach is introduced and

the effectiveness of the proposed observer is shown via

the reduced order model of the activated sludge process in

section IV.
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Notation : The following notations will be used

throughout this work :

• ‖.‖ is the usual Euclidean norm;

• (⋆) is used for blocks induced by symmetry;

• AT represents the transposed matrix of A;

• Is represents the identity matrix of dimension s.

II. MODEL DESCRIPTION

A WasteWater Treatment Plant (WWTP) usually consists

of a set of activated sludge tanks, combined with a sedi-

mentation tank, with a range of electron acceptor conditions

occurring in the tanks. Depending on the concentrations

of dissolved oxygen (SO) and nitrate present in the tanks,

aerobic (oxygen present), anoxic (nitrate present, no oxygen)

or anaerobic (no oxygen, no nitrate) tanks can be distin-

guished. Figure 1 shows a typical activated sludge WWTP

lay-out, without considering the different pretreatment steps

that normally precede the activated sludge tanks. The term

WWTP model is used to indicate the ensemble of activated

sludge model, hydraulic model, oxygen transfer model and

sedimentation tank model needed to describe an actual

WWTP. The term activated sludge model is used in this

paper to indicate a set of differential equations that represent

the biological (and chemical) reactions taking place in one

activated sludge tank.

The ’simulation benchmark’ plant design is comprised of

five reactors in series with a 10-layer secondary settling tank.

Figure 1 shows a schematic representation of the layout.

In this work, we consider only a part of the COST

Benchmark. We have chosen the third tank with a settler

as shown in Figure 1. We assume, because of absence of

measurement in the settler tank, that this one is perfect,

i.e. no sludge leaves by the overflow the settler tank. The

COST Benchmark has been proposed by the European

program COST 624 for the evaluation of control strategies in

wastewater treatment plants [3]. The Benchmark is based on

the most common wastewater treatment plant: a continuous

flow activated sludge plant, performing nitrification and

pre-nitrification. In this work and for simplicity, we will

take only the case of one aerated tank with a settler. The

volume of the tank is 1333 m3. The objective of this

study is the application of the simulation results in the

Bleesbrück wastewater plant (in Luxembourg). Note that

the measured concentrations of this station are the dissolved

oxygen (SO), concentration that is routinely measured in

activated sludge wastewater treatment plant, both nitrate

(SNO) and ammonia (SNH ) concentrations can be also

measured on-line. Using the Software SIMBA and ASM1

model, the data are generated by the team of modeling and

simulation of the LTI-CRP Henri Tudor in Luxembourg.

The comparison between the data generated by ASM1

model and the data from simulation of the reduced model

presented in this paper is not evoked here. In this paper,

only the dry weather files are used.

In this section a reduced model of the ASM1 model will

be presented briefly. This model is based on the reduced

nonlinear model given by [10].

• Simplification of model dynamic. Theory of the sin-

gular perturbations makes possible to consider that XI ,

XBH and XBA have slow dynamic. Thus these vari-

ables are considered constant over a few days. Eliminat-

ing these 3 state variables, along with the concentrations

of soluble inert organic compounds (SI ), resulted in a

7-dimensional dynamic model.

• Simplification of the organic compounds. The mea-

surement of the chemical oxygen demand (COD), does

not make possible to distinguish between the soluble

part (SS) and the particulate part (XS) ([30]). a single

organic compound (denoted as XDCO) is formed by

adding soluble and particulate organic compound con-

centrations.

• Simplification of the nitrogenized compounds. The

mathematical expression that describes the organic ni-

trogen hydrolysis process is simplified so that the dy-

namics with respect to soluble and particulate organic

nitrogen are independent. We have chosen to use only

the soluble organic nitrogen SND.

Unlike in [9], the concentration of Sin
NO will be taken into

account in the proposed model here. The reduced nonlinear

model is composed of five variables : biodegradable substrate

XDCO, nitrate concentration SNO, ammonia concentration

SNH , soluble biodegradable organic nitrogen concentration

SND and dissolved oxygen concentration SO. The reduced

nonlinear model is given by the following set of equations:

ẊDCO = Din

(

Xin
DCO −

KS

KDCO

XDCO

)

−
(ρ1 + ρ2)

YH

+ θ2

ṠNO = Din
(

Sin
NO − SNO

)

−
1 − YH

2.86 YH

ρ2 +
1

YA

ρ3

ṠNH = Din
(

Sin
NH−SNH

)

−iNBM (ρ1+ρ2)−
ρ3

YA

+ρ6

ṠND = Din
(

Sin
ND − SND

)

− ρ6 + ρ8

ṠO = DinSO −
1−YH

YH

ρ1 −
4.57

YA

ρ3 + kLa
(

Ssat
O −SO

)

with

ρ1 = θ1
XDCO

XDCO + KDCO

SO

SO + KO,H

ρ2 = θ1 ηNO,g

XDCO

XDCO + KDCO

KO,H

KO,H + SO

SNO

SNO + KNO

ρ3

YA

= θ3
SNH

SNH + KNH,A

SO

SO + KO,A

ρ6 = θ4SND

ρ8 = θ5
XDCO

XDCO + KND

(

SO

SO + KO,H

+ ηNO,h

KO,H

KO,H + SO

SNO

SNO + KNO

)
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influent effluent

excess sludge

Fig. 1. Schematic representation of the ’simulation benchmark’ configuration showing tanks 1 and 2 mixed and unaerated, and tanks 3, 4 and 5 aerated.

Par Values Range of variation

YH 0.67 0.38 - 0.75

iNBM 0.08 -

KS 175 5 - 225

KO,H 0.20 0.01 - 0.20

KNO 0.50 0.01 - 0.50

KNH,A 1.0 -

KO,A 0.40 0.40 - 2.0

ηNO,g 0.8 0.6 - 1.0

ηNO,h 0.8 -

YA 0.24 0.07 - 0.28

frXI 0.08 -

µH 4.0 0.60 - 13.2

bH 0.30 0.05 - 1.6

µA 0.5 0.20 - 1.0

bA 0.05 0.05 - 0.3

κa 0.05 -

κh 3.0 -

fSS 0.79 -

TABLE I

KINETIC AND STOICHIOMETRIC PARAMETERS OF THE ASM1 MODEL

and

θ1 = µH XB,H , θ3 =
µA

YA

XB,A, Din =
Qin

V

θ2 = (1 − frXI)(bH XB,H + bA XB,A)

θ4 = κa XB,H , θ5 = κh

XND

XS

XB,H

KDCO = KS

XDCO

SS

=
KS

fSS

, KND = KX

XDCO

XS

XB,H

The various values of the kinetic and stoichiometric parame-

ters of the ASM1 model are presented in table I. The values

of the specific parameters θi, KDCO and KND which are

calculated in function of the variables and parameters of the

ASM1 model and other parameters are given in table II.

Let us take the sample time Ts, then the discretized model

can be written as follows

ξk+1 = Jξk + φ (ξk, uk) + Bdk (1a)

yk = Cξk (1b)

where the state, input, output and unknown input vectors are

defined as :

ξ =
[

XDCO SNO SNH SND SO

]T
(2)

u = [θ2; kLa] (3)

y = [SNO SNH SO]T (4)

d = [Ts DinSin
NO TsD

inSin
NH ]T (5)

Parameter Value

θ1 9956

θ2 693

θ3 283

θ4 124

θ5 480

KDCO 220

KND 258

XB,A 136 gDCO.m−3

XB,H 2489 gDCO.m−3

XND 6 gN .m−3

kLa 240 d−1

VO 1333 m3

TABLE II

DIFFERENT PARAMETERS VALUES

and

J =













1 − TsD
in KS

KDCO
0 0

0 1 − Ts Din 0
0 0 1 − TsD

in

0 0 0
0 0 0

0 0
0 0

Tsθ4 0
1 − TsD

in − Tsθ4 0
0 1 − TsD

in













(6)

B =













0 0
1 0
0 1
0 0
0 0













, C =





0 1 0 0 0
0 0 1 0 0
0 0 0 0 1



 (7)

φ (ξk, u)=

















−Ts
1

YH
(ρ1+ρ2)+Tsu1+ TsD

inXin
DCO

−Ts
1−YH

2.86 YH
ρ2 + Ts

1
YA

ρ3

−TsiNBM (ρ1 + ρ2) − Ts
1

YA
ρ3

Tsρ8 + TsD
inSin

ND

−Ts
1−YH

YH
ρ1 − 4.57 Ts

1
YA

ρ3

+Tsu2 (Ssat
O − ξ5,k)

















Now, let us introduce the following notations :

J(̺) = J0 + ̺J1 (8)
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with

J0 =













1 0 0 0 0
0 1 0 0 0
0 0 1 Tsθ4 0
0 0 0 1 − Tsθ4 0
0 0 0 0 1













(9)

J1 =













−Ts
KS

KDCO
0 0 0 0

0 −Ts 0 0 0
0 0 −Ts 0 0
0 0 0 −Ts 0
0 0 0 0 −Ts













(10)

̺ = Din (11)

then, the system (1) can be written in the following form

ξk+1 = J(̺)ξk + φ (ξk, uk) + Bdk (12a)

yk = Cξk (12b)

where the matrices J(̺), B and C are given respectively

by (8) and (7).

Remark 1: In the Bleesbrück station (Luxembourg), the

concentrations Xin
DCO and Sin

ND are not measured online.

If we take these concentrations as unknown inputs, the

system becomes unobservable. To avoid this problem, we

will take the daily mean values for these concentrations, this

approximation is often used in the practice.

Remark 2: In this paper, we are interested to the wastew-

ater treatment station with only a period aerobic. We assume

that this station does not have a period of significant anoxia

(SO2 = 0,kLa = 0).

III. NONLINEAR OBSERVER FOR LIPSCHITZ

DISCRETE-TIME SYSTEMS USING LPV APPROACH

Consider a nonlinear discrete-time descriptor system de-

scribed by

Exk+1 = A(̺k)xk + f (xk, uk) (13a)

yk = Hxk (13b)

where A(̺k) = A0 + ̺kA1 and E ∈ ℜq̄×n̄, A0 ∈ ℜq̄×n̄,

A1 ∈ ℜq̄×n̄, H ∈ ℜp̄×n̄ are known constant matrices

with q̄ ≤ n̄, when q̄ = n̄, E is singular. The variable

̺k is the scheduling variable measurable online. The vector

xk ∈ ℜn represents the state vector, uk ∈ ℜr represents the

input vector, and yk ∈ ℜp denotes the output system. The

nonlinearity f(xk, uk) is assumed to be Lipschitz in x with

a known Lischitz constant γ, i.e.,

‖f (x1,k, uk) − f (x2,k, uk) ‖ ≤ γ‖x1,k − x2,k‖ (14)

for all x1, x2∈ ℜn and γ > 0 is independent of uk.

Our objective is to design an asymptotic observer to

estimate the state xk. The following assumption is made

throughout the paper :

Assumption 1: In this paper, we assume that the following

condition holds [12], [13] :

rank

[

E
H

]

= n̄ (15)

The dynamical matrix A(̺k) depends on a time varying

parameter ̺k. We assume that the parameter ̺k ranges be-

tween known extremal values ̺k ∈
[

̺ , ̺
]

. Let us introduce

the following notations

A = A(̺) and A = A(̺) (16)

Remark 3: The result presented in this paper can be

extended easily to the case where A(̺k) = A0 +

j
∑

i=1

̺iAi.

Consider the following state observer for system (13):

zk+1 = N(̺k)zk + L(̺k)yk + g (zk, uk) (17a)

x̂k = zk + Qyk (17b)

where x̂k is the state estimation vector of xk. Matrices

N , L, Q and the nonlinear vector field g (zk, uk) must be

determined such that x̂k converges asymptotically to xk.

From [5], the parameter varying gain matrices N , L can

be chosen affine in ̺k and are obtained by an interpolation

of the gains Ni and Li, respectively :

N = N0 + ̺kN1 (18a)

L = L0 + ̺kL1 (18b)

Under assumption 1, there exist two matrices T ∈ ℜn̄×q̄ and

Q ∈ ℜn̄×p̄ such as

TE + QH = In̄. (19)

The estimation error be

ek = x̂k − xk (20)

then by substituting (17b) and (13b) into (20) we obtain

ek = zk + (QH − In̄)xk (21)

and by using (19), we find

ek = zk − TExk (22)

then, the dynamics of the estimation error is given by :

ek+1 = zk+1 − TExk+1 (23)

from (17a) and (13a), we obtain

ek+1 = N(̺k)ek + (N(̺k) + F (̺k)H − TA(̺k))xk

+ g (zk, uk) − Tf (xk, uk) (24)

with

F (̺k) = L(̺k) − N(̺k)Q (25)

let us taking

N(̺k) = TA(̺k) − F (̺k)H (26)
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and

g (zk, uk) = Tf (x̂k, uk)

= Tf (zk + Qyk, uk) (27)

then, the error dynamics becomes

ek+1 = (TA(̺k) − F (̺k)H) ek + T△fk (28)

where

△fk = f (x̂k, uk) − f (xk, uk) (29)

From (25) and (18), we can deduce that the matrix F is

affine in ̺k and is given by the following interpolation :

F (̺k) = F0 + ̺kF1 (30)

where F0, F1 are constant matrices to be determined such

that the estimation error converges asymptotically towards

zero.

The problem is reduced to find the gain matrix F . Before

giving the method of the design of this gain, we can

summarize the procedure as follows : Since E and H are

known, from (19) we can deduced matrices T and Q. Then

after calculating matrices F0 and F1, we can deduce the

matrix F , matrix N and be obtained from (26) and then

we can deduce L from (25). The following theorem gives

sufficient conditions for the existance of matrix F .

Theorem 1: The estimation error (20) converges

asymptotically towards zeros if there exist scalar τ > 0 and

matrices P = PT > 0 and R of appropriate dimensions

such that the linear matrix inequalities (LMI) given by

(31)-(32) are satisfied. In this case, the gain matrices F0

and F1 are given by F0 = P−1RT
0 and F1 = P−1RT

1 . ¥

Proof: Consider the following quadratic Lyapunov

function

V (k) = eT
k Pek (33)

where P = PT > 0. The difference of V (k) along the

solutions of (28) is given by

△V (k)=V (k + 1) − V (k) (34)

=eT
k (TA(̺k)−F (̺k)H)

T
P (TA(̺k)−F (̺k)H) ek

+ 2eT
k (TA(̺k) − F (̺k)H)

T
PT△fk

+ △fT
k TT PT△fk − eT

k Pek (35)

which is equivalent to

△V = ζT
k

[

N(̺k)T PN(̺k) − P N(̺k)T PT
∗ TT PT

]

ζk

(36)

where ζk =
[

eT
k △fT

k

]T
. From (14) and (28), we have

Γ = γ2eT
k ek −△fT

k △fk ≥ 0 (37)

Consequently, ∀τ > 0 :

△V (k) ≤ △V (k) + τΓ

≤ ζT
k

[

NT PN − P + τγ2In̄ NT PT
∗ TT PT − τIq̄

]

ζk

for all ̺k ∈
[

̺, ̺
]

. The difference △V (k) < 0 if

[

NT PN − P + τγ2In̄ NT PT
∗ TT PT − τIq̄

]

< 0 (38)

for all ̺k ∈
[

̺, ̺
]

, or equivalently, by using the Schur

complement [7], to





−P + τγ2In̄ NT PT NT P
∗ TT PT − τIq̄ 0
∗ ∗ −P



 < 0 (39)

Then, as (39) is affine according to the parameter ̺k, the

inequality (39) is satisfied for all possible ̺k ∈
[

̺, ̺
]

if it is

satisfied on the vertices of
[

̺, ̺
]

. By putting PF0 = RT
0 and

PF1 = RT
1 , we deduce that the inequality (39) is equivalent

to (31)-(32). This completed the proof.

IV. SIMULATION RESULTS

In this section, simulation results are provided to show

the performance of the proposed approach. Defining the

augmented state xk = [ξk, dk−1]
T

∈ ℜ7, system (12) can

be written as follows

Exk+1 = A(̺)xk + f (xk, uk) (40)

yk = Hxk (41)

where E =
[

I5 −B
]

, A(̺) =
[

J(̺) O5×2

]

, H =
[

C 03×2

]

and f = φ (ξk, uk). The initial for the system

and the observer are :

x0 = [51 5 5 1 1 1.4814 2.1956]T

x̂0 = [100 10 10 5 5 5 5]T

with Ts = .004s. The Lipschitz constant of f is γ =

0.186. Note that matrix

[

E
H

]

is full column rank, then

the condition (15) is verified. From (19), we can deduce

T =





















1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0.5
0 −1 0 0 0
0 0 −1 0 0





















, Q =





















0 0 0
1 0 0
0 1 0
0 0 0
0 0 0.5
1 0 0
0 1 0





















.

We consider that available measurements are

perturbed by a Gaussian white noise whose empirical

standard deviations is 10% of that of y. We

obtain, after solving the LMIs (31) and (32) using

YALMIP (http://control.ee.ethz.ch/˜joloef/

wiki/pmwiki.php), the following results :
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



−P + τγ2In̄ AT T T PT − HT R0T − ̺HT R1T AT T T P − HT R0 − ̺HT R1

∗ T T PT − τIq̄ 0

∗ ∗ −P



 < 0 (31)





−P + τγ2In̄ A
T

T T PT − HT R0T − ̺HT R1T A
T

T T P − HT R0 − ̺HT R1

∗ T T PT − τIq̄ 0

∗ ∗ −P



 < 0 (32)

P =





















1.38 0 0 0 0 0 0
0 3.52 0 0 0 0 0
0 0 3.52 0 0 0 0
0 0 0 3.23 0 0 0.32
0 0 0 0 3.67 0 0
0 0 0 0 0 3.214 0
0 0 0 0.32 0 0 2.4





















,

R0 =

[

0 0 0 0 0 −3.21 0

0 0 0 −0.32 0 0 −2.4

0 0 0 0 0.07 0 0

]

,

R1 = 10−3





0 0 0 0 0 12.9 0
0 0 0 1.3 0 0 9.6
0 0 0 0 −7.3 0 0



 ,

F0 =















0 0 0

0 0 0

0 0 0

0 0 0

0 0 0.02

−1 0 0

0 −1 0















, F1 = 10−3






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





0 0 0

0 0 0

0 0 0

0 0 0

0 0 −2

4 0 0

0 4 0















,

L0 =















0 0 0

0 0 0

0 0 0

0 0 0

0 0 0.02

−1 0 0

0 −1 0















, L1 = 10−3















0 0 0

0 0 0

0 0 0

0 0 0

0 0 −2

4 0 0

0 4 0















and τ = 5.9473.

The gain L ensures convergence of the states and unknown

inputs estimation error toward zero as shown in (2).

V. CONCLUSION

In this paper, a nonlinear observer for Lipschitz discrete-

time systems using LPV approach is presented with

application to a nonlinear reduced model of an activated

sludge process for Bleesbrück station. The stability analysis

is performed using the Lyapunov function that leads

to the solvability of linear matrix inequalities (LMIs).

Performances of the proposed observer have been shown

through the simulation results.
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Fig. 2. States and unknown inputs estimation error (XDCO , SNO , SNH ,
SND , SO , Sin

NO and Sin
NH )
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VII. NOMENCLATURE

SI Concentration of soluble inert organic matter

SS Concentration of readily biodegradable substrate

SO Concentration of dissolved oxygen

Ssat
O Dissolved oxygen saturation concentration

SNO Concentration of nitrate and nitrite nitrogen

SNH Concentration of ammonia nitrogen

SND Concentration of soluble biodegradable organic

nitrogen

XI Concentration of particulate inert organic matter

Xs Concentration of slowly biodegradable substrate

XB,H Concentration of active heterotrophic biomass

XB,A Concentration of active autotrophic biomass
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XND Concentration of particulate biodegradable

organic nitrogen

bA Decay rate coefficient for autotrophic organisms

bH Decay rate coefficient for heterotrophic organisms

frXI Fraction of biomass generating the particulate

products

iNBM Mass of nitrogen in the biomass

iNXI Mass of nitrogen in the inert particulate organic

matter

kLa Coefficient of oxygen rate

K(.) Half-saturation coefficient:

KNH,A of ammonia for autotrophs

KN0 of nitrate for denitrifying heterotrophs

KO,A of oxygen for autotrophs

KO,H of oxygen for heterotrophs

KS for heterotrophic organisms

KX for hydrolysis of slowly biodegradable substrate

YA Yield coefficient for autotrophic organisms

YH Yield coefficient for heterotrophic organisms

µA Maximum specific growth rate for autotrophic

organisms

µH Maximum specific growth rate for heterotrophic

organisms

ηNO3g Correction factor for anoxic growth of

heterotrophs

ηNO3h Correction factor for anoxic hydrolysis

VO The volume of the aeration tank

Din Influent flow rate
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