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Abstract— In this paper decentralized controllers are de-
signed for mean square stability of large scale systems with
linear time-invariant distributed subsystems. The subsystems
are subject to Gaussian process and measurement noise. For
the stability analysis of the system we also consider the effects
of noisy and limited capacity communication channels used
for exchanging information between subsystems. Hence, the
proposed scheme is suitable for controlling networks of Micro
Electro Mechanical Systems (MEMS).

I. INTRODUCTION

Development in electronics has given birth to small size

embedded systems such as Micro Electro Mechanical Sys-

tems (MEMS). These embedded systems, in general, consist

of sensors, data processor, communication and actuator. As

discussed in [1] distributed parameter systems (which are

described by partial differential/difference equations) can be

approximated by a large number of interconnected finite

dimensional systems. In recent years, technological develop-

ment in MEMS has made it possible the idea of placing these

devices in each interconnected subsystem for efficient control

(of distributed parameter systems). As discussed in [1] some

examples are: distributed flow control for drug reduction and

smart mechanical structures.

Due to limited power supply, the transmission of information

from MEMS is subject to short distance, noise, and limited

capacity. References [1]-[6] can be viewed as an attempt to

address some of the technical issues concerning communi-

cation and control of distributed finite dimensional systems

equipped with these microscopic embedded systems.

In the present paper we address similar questions by devel-

oping a uniform Time Division Multiple Access (TDMA)

scheme and use of information theoretic tools for analysis.

TDMA scheme is used to avoid collision. The large scale

system considered in this paper consists of distributed linear

time-invariant partially observed subsystems with Gaussian

process and measurement noise. The information is ex-

changed between subsystems via slow fading Additive White

Gaussian Noise (AWGN) channels subject to path loss. Thus,

dynamic model and communication channel considered in

this paper are the major generalization of the ones addressed

in [2]-[6], in which the dynamic system and channel are

noiseless. For the linear large scale system, as described

above, the quadratic cost functional is used. Encoders, de-

coders and decentralized controllers are designed for reliable
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data reconstruction and mean square stability. Encoders

and decoders are obtained using Source-Channel matching

technique [7]. And the stabilizing controllers are obtained

from a suboptimal control solution. In designing the control

laws the effects of noisy and limited capacity of transmission

are considered. Hence, the proposed scheme is suitable for

controlling networks of MEMS.

The paper is organized as follows: In Section II, problem

formulation is described. In this section we also present a

TDMA scheme. In Section III, we present the dynamic model

for the large scale system; and in Section IV we present

encoders, decoders and controllers.

II. PROBLEM FORMULATION

Throughout the paper we adopt the following notations:

Logarithm of base 2 is denoted by log(·). The transpose

of A where A can be either matrix or vector is denoted

by A
′

. Euclidean norm with weight R on any finite

dimensional space is denote by || · ||R. The space of all

matrices A ∈ ℜq×o is denoted by M(q × o). The inverse

of a square matrix A ∈ M(q × q) is denoted by A−1; and

diag(·) denotes block diagonal matrix. The covariance of

a Random Variable (R.V.) X is denoted by Cov(X). The

cross covariance matrix of two R.V.’s X and Y is denoted

by Cov(X, Y ). The nominal (Gaussian) density function

with mean x̄ and covariance V̄ is denoted by N(x̄, V̄ ).
Gaussian R. V. X described by the density function N(x̄, V̄ )
is denoted by X ∼ N(x̄, V̄ ).

Dynamic System: Consider a large scale system with

M interconnected subsystems. Let x
(i)
t ∈ ℜni be the state,

u
(i)
t ∈ ℜdi be the control and w

(i)
t ∈ ℜgi be the process

noise of the ith subsystem (i ∈ {1, 2, ...,M}). Also, let

y
(i)
t ∈ ℜmi be the observation and v

(i)
t ∈ ℜhi be the

measurement noise. Moreover, let the set oi denote the set

of subsystems that can affect the ith subsystem dynamics

via their state variables and control signals. In many

applications, such as applications involving MEMS, it is

more reasonable to assume that the ith subsystem is affected

by the neighboring subsystems. In other words, in such

applications, oi is a finite set which includes neighboring

subsystems. It is also assumed that each subsystem is linear

time-invariant subject to Gaussian process and measurement

noise, as described below:
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where x
(k)
t ∈ ℜnk (k ∈ oi) is the state and u

(k)
t ∈ ℜdk

is the control signal of the kth subsystem that affect the

ith subsystem dynamics. Ai ∈ M(ni × ni) is the system

matrix and Bi ∈ M(ni × di) is the control matrix of

the ith subsystem. Matrices Dik ∈ M(ni × nk) and

Eik ∈ M(ni × dk) are interconnection matrices. Moreover,

Ci ∈ M(ni × gi), Fi ∈ M(mi ×ni) and Gi ∈ M(mi ×hi).
Gaussian R.V. ξ(i) is described by the density function

N(x̄
(i)
0 , V̄

(i)
0 ). Furthermore, w

(i)
t i.i.d. ∼ N(0,Σ

(i)
w )

and v
(i)
t i.i.d. ∼ N(0,Σ

(i)
v ). R.V.’s {ξ

(i)
0 , w

(p)
t , v

(q)
t }

(i, p, q ∈ {1, 2, ...,M}) are mutually independent.

Also, {w
(i)
t , w

(j)
t } and {v

(i)
t , v

(j)
t } (i ∈ {1, ...,M},

j(6= i) ∈ {1, ...,M}) are mutually independnet. But R.V.’s

ξ
(i)
0 and ξ

(j)
0 may be stochastically dependent with known

cross covariance matrix Cov(ξ
(i)
0 , ξ

(j)
0 ).

Time Division Multiple Access (TDMA) Scheme:

Each subsystem broadcasts information about observation

and control signal to neighboring subsystems. Therefore,

there is a possibility of collision in the broadcasted

information; and in order to avoid such collision we need

to employ an appropriate technique.

As it has been discussed in [8], in problems such as MEMS

with components having access to limited power supply,

TDMA based schemes may be more energy efficient than

other protocols. Therefore, we employ a TDMA scheme, as

described below, to avoid collision.

Based on the communication range of the broadcasted

information about control signals, the large scale system

can be decomposed into disjoint groups of subsystems,

denoted by groups 1, 2, ..., N1, in which subsystems in

each group have non-overlapping communication range.

Similarly, based on the communication range of the

broadcasted information about observation signals, the

large scale system can be decomposed into disjoint groups

N1 + 1, ..., N2. Note that for two groups i ∈ {1, 2, ..., N1}
and j(6= i) ∈ {1, 2, ..., N1}; or i ∈ {N1 + 1, ..., N2}
and j(6= i) ∈ {N1 + 1, ..., N2}, the set i ∩ j is empty.

But for i ∈ {1, 2, ..., N1} and j ∈ {N1 + 1, ..., N2}, the

set i ∩ j may be non-empty. Subsystems in each group

can broadcast information about control or observation

signals simultaneously. At the same time the neighboring

subsystems are waiting to receive this information; and they

will receive the broadcasted information without collision.

Following this fact, we divide each time step into N2 equal

size, non-overlapping time slots. In the first N1 time slots

we exchange information about control signals and in the

rest of time step we exchange information about observation

signals, as described below:

We allocate the first time slot to all subsystems in group 1 to

broadcast information about control signals simultaneously.

At this time the transmitters of all subsystems in other

groups (i.e.,2, 3, ..., N1) are shut down; while the receivers

of the neighboring subsystems of the systems in group 1
are on; and they are waiting to receive the broadcasted

information. Similarly, we allocate the second time slot to

all subsystems in group 2; and we follow this procedure

until we allocate the N1th time slot to all subsystems in

group N1 to broadcast information about control signals

simultaneously. We follow similar procedure for time

slots N1 + 1, ..., N2; and we broadcast information about

observation signals.

Communication Channel: The communication link

from the ith subsystem to the jth neighboring subsystem

is modeled by a multi input, multi output AWGN channel

with channel input (i.e., transmitter output of the ith

subsystem) T
(i)
t and channel output (i.e., receiver input

of the jth subsystem) R
(ji)
t . This channel is subject to

path loss and slow fading. Depending on the transmitted

signal, the channel input is either T
(i)
t = f i

t (y
(i)(t)) or

T
(i)
t = ei

t(u
(i)(t)), where f i

t (·) and ei
t(·) are encoding

functions (f
(i)
t (·) and e

(i)
t (·) are invertible functions and in

general they can be nonlinear).

When the information about observation signal is transmitted

through the channel (i.e., T
(i)
t = f i

t (y
(i)(t))) the channel is

described by

R
(ji)
t = h

(ji)
t · f

(i)
t (y(i)(t)) + ζ

(ji)
t ,

T
(i)
t = f

(i)
t (y(i)(t)) ∈ ℜpi , R

(ji)
t ∈ ℜqi , ζ

(ji)
t ∈ ℜqi ,

E||T
(i)
t ||2 ≤ P

(i)
t , ζ

(ji)
t i.i.d. ∼ N(0,Γ(ji)), (2)

in which the channel gain h
(ji)
t is given by

h
(ji)
t

△
= α

(ji)
t /(dji)

aji , (3)

where dji is the line of sight distance and aji

(aji ∈ {0, 1, 2, ...}) is the path loss factor. The random

matrix α
(ji)
t having components with Rayleigh distribution

represents the fading effect. In expression (2) R.V. ζ
(ji)
t

represents the additive Gaussian channel noise and P
(i)
t

denotes the channel input power constraint.

Throughout, it is assumed that the communication channel

is subject to slow fading. That is, at any time t ∈ N+, the

channel gain h
(ji)
t is known to both transmitter and receiver.

Furthermore, it is assumed that limt→∞ α
(ji)
t = α(ji),

almost surly, where α(ji) is fixed. The communication

model similar to (2) has been used in networks of MEMS

and sensor networks, in which the path loss factor aji = 3
has been used (e.g., see [8]).

Objective: Mean square stability means that the

state variables have bounded second moment. The

objective of this paper is to find control sequence

{u
(i)
t ; i = 1, 2, ...,M, t ∈ N+} to stabilize all subsystems

given by (1) in the mean square sense. That is,

sup
t∈N+

E||x
(i)
t ||2 < ∞, ∀i ∈ {1, 2, ...,M}. (4)

Information Available at Each subsystem: The information

available at the ith subsystem which is used to produce

the control signal u
(i)
t consists of its past observation and

past control signal as well as a noisy version of the past
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observation and past control signals of the neighboring

subsystems.

It is well known that for a linear system with a quadratic

cost functional having positive weighting matrices, the op-

timal/suboptimal control solution results in the mean square

stability. For large scale linear systems, when the controllers

have limited access to the observation and control signals of

other subsystems, the optimal solution is unknown. There-

fore, in addressing the stability question of such systems

we look for a suboptimal solution. Hence, the stabilizing

controllers for system (1) subject to available information, as

indicated above, can be obtained from a suboptimal control

solution with the following quadratic payoff functional

J = lim
T→∞

1

T

T
∑

t=0

E
[

M
∑

i=1

(||x
(i)
t ||2Ki

+ ||u
(i)
t ||2Hi

)
]

, (5)

where Ki = K ′
i ∈ M(ni × ni) is positive semi-definite and

Hi = H ′
i ∈ M(di × di) is positive definite.

III. DYNAMIC MODEL FOR LARGE SCALE

SYSTEM

As discussed in [9] a large scale system can be decomposed

into clusters of subsystems, in which each cluster includes

subsystems which are strongly coupled. The overall system

is then represented as a system of weak interconnection of

the resulting clusters.

In this paper we are concerned with the large scale system

(1) which can be decomposed into disjoint clusters Sr, r =
1, 2, ..., l, where each cluster includes a set of neighboring

subsystems which are strongly interconnected. Clusters Sr

and Sr+1 weakly affect their dynamics. Cluster Sr+1 weakly

affects the dynamics of cluster Sr via its state variables and

control signals; and cluster Sr affects weakly the dynamics

of cluster Sr+1 via its control signals. We level the full (large

scale) system as follows: Cluster S1 includes subsystems

{a1,...,b1} (a1 = 1, b1 ≥ a1), cluster S2 includes subsystems

{a2,...,b2} (a2 = b1 +1, b2 ≥ a2), ..., and cluster Sl includes

subsystems {al, ..., bl} (al = bl−1 + 1, bl = M ≥ al). Note

that subsystem ar+1 (r ∈ {1, 2, ..., l − 1}) is the closest

subsystem of cluster Sr+1 to the subsystems of cluster Sr.

The information about control and observation signal of each

subsystem of cluster Sr (r ∈ {1, 2, ..., l}) is available at

other subsystems of this cluster. Moreover, information about

those control signals of clusters Sr and Sr+1 which affect

their dynamics is available at the subsystems of clusters Sr+1

and Sr which are affected. Furthermore, information about

control signal of subsystem ar+1 in cluster Sr+1 is available

at the subsystems of cluster Sr which are affected by the

state variables of cluster Sr+1.

Let X
(r)
t denote the vector of state variables of all subsys-

tems of cluster Sr at time t. Similarly, let U
(r)
t denote the

vector of control signals, W
(r)
t the vector of process noises,

Y
(r)
t the vector of observation signals and V

(r)
t the vector of

measurement noises of all subsystems of cluster Sr. Then,

cluster Sr is described by the following dynamic model










X
(r)
t+1 = A(r)X

(r)
t + B(r)U

(r)
t + C(r)W

(r)
t +

D(r+1)X
(r+1)
t + M (r+1)U

(r+1)
t + N (r−1)U

(r−1)
t

Y
(r)
t = F (r)X

(r)
t + G(r)V

(r)
t , r = 1, 2, ..., l,

(6)

where matrices A(r), B(r), C(r), F (r), and G(r) represent

the interconnection among subsystems of cluster Sr. In-

terconnection matrices D(r+1) and M (r+1) represent the

effect of state variables and control signals of cluster Sr+1,

respectively, on the subsystems of cluster Sr. Similarly,

interconnection matrix N (r−1) represent the effect of the

control signals of cluster Sr−1. Note that D(l+1) = 0,

M (l+1) = 0, and N (0) = 0. Also note that interconnection

matrices mostly contain zero components because of the

weak interconnection among clusters.

Thus, the overall system is described by the following system

of equations.
{

Xt+1 = AXt + BUt + CWt,
Yt = FXt + GVt,

(7)

where Xt =
(

X
(1)′

t ... X
(l)′

t

)
′

is the state of the full

(large scale) system, Ut = (U
(1)′

t ... U
(l)′

t )
′

is the control

vector, Wt =
(

W
(1)′

t ... W
(l)′

t

)
′

is the process noise,

Vt =
(

V
(1)′

t ... V
(l)′

t

)
′

is the measurement noise, and

Yt =
(

Y
(1)′

t ... Y
(l)′

t

)
′

is the observation vector. In (7) C =
diag(C(1) C(2)... C(l)), F = diag ( F (1) F (2) ... F (l) )
and G = diag (G(1) G(2) ... G(l) ). Furthermore, matrices

A and B are given by the following block matrices:

A =















A(1) D(2) 0 0 0 0
0 A(2) D(3) 0 0 0
0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 0 · D(l)

0 0 0 0 0 A(l)















,

B =















B(1) M (2) 0 0 0 0
N (1) B(2) M (3) 0 0 0

0 0 · 0 0 0
0 0 0 · 0 0
0 0 0 N (l−2) · M (l)

0 0 0 0 N (l−1) B(l)















IV. CONTROL THROUGH COMMUNICATION CHANNELS

WITH LIMITED POWER

In some applications such as sensor networks and applica-

tions involving MEMS with components having access to

limited power supply, the power for transmission is limited.

Hence, the transmission is subject to limited capacity and

noise. Therefore, in such applications, it is important to

exchange all or at least some information under minimum

capacity (power). This is the subject of study in this section.

Here, for simplicity of analysis, we assume information about

control sequences is exchanged without communication con-

straints. But, information about observation sequences is

exchanged via AWGN channel (2) subject to limited power.
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We also assume the observation signals y
(i)
t ’s are scalar.

Also, the AWGN channel (2) is single input, single output.

In this section, we present a methodology for designing

encoders and decoders for reliable transmission of the ob-

servation sequences when the capacity (power) used for

transmission is minimum. We also present decentralized

controllers for mean square stability. Note that the informa-

tion available at each subsystem is available at the encoder,

decoder, and controller of that subsystem.

Consider system (7). In view of the system decomposed as

suggested above, the payoff functional (5) for system (7) can

now be written as follows

J = J (1) + J (2) + ... + J (l), (8)

where for r = 1, 2, ..., l

J (r) = lim
T→∞

1

T

T
∑

t=0

E(||X
(r)
t ||2Qr

+ ||U
(r)
t ||2Rr

),

Qr = diag(Kar
...Kbr

), Rr = diag(Har
...Hbr

) (9)

corresponds to cluster Sr. The steps taken to design decen-

tralized control laws are described below: For each cluster

we choose the control vector in an appropriate way such

that we compensate the weak interconnection effects from

other clusters. For cluster Sr this compensation is achieved

using the information available from clusters Sr−1 and

Sr+1 which is used to regulate the dynamics of cluster Sr.

Then, the stabilizing controllers for cluster Sr are obtained

independently by finding a suboptimal control solution for

the payoff functional J (r). Finally, the stability of the whole

system, when these controllers are enforced, is proved.

According to the interconnection matrices A and B of system

(7), it is convenient to start designing stabilizing controllers

from cluster Sl which is affected only by the control vector

of cluster Sl−1. We then design stabilizing controllers for

cluster Sl−1, cluster Sl−2, ..., till cluster S1.

A. Control Law For Cluster Sr (r = l, ..., 1)

Consider cluster Sr, as described by expression (6). In the

followings we present a methodology for designing encoders,

decoders, and stabilizing controllers, for mean square stabil-

ity such that the capacity (power) used for transmission is

minimum.

Linear Encoders and Decoders for Subsystems of Cluster

Sr: The information about observation signal y
(i)
t of subsys-

tem i ∈ {ar, ar + 1, ..., br} in cluster Sr is transmitted to

subsystem j(6= i) ∈ {ar, ar + 1, ..., br} in this cluster via

AWGN channel (2). Let the non-negative scalars β
(ji)
t and

γ
(ji)
t be the encoding and decoding gain, respectively. Also,

let F
(i)
t−1 denote the available information at subsystem i for

each t ∈ N+. Subsystem i uses this information and pro-

duces the mean square state estimation x̂
(ii)
t

△
= E[x

(i)
t |F

(i)
t−1].

This estimation is used in the encoding function, T
(ji)
t =

f
(ji)
t (y

(i)
t ), where

f
(ji)
t (y

(i)
t )

△
= β

(ji)
t k

(i)
t ∈ ℜ, k

(i)
t

△
= y

(i)
t − Fix̂

(ii)
t ∈ ℜ. (10)

The message T
(ji)
t is broadcasted via the AWGN channel (2)

to the neighboring subsystems and it receives at subsystem

j.

Subsystem j receives ǩ
(ji)
t

△
= h

(ji)
t T

(ji)
t + ζ

(ji)
t ∈ ℜ, where

ǩ
(ji)
t is the received signal, h

(ji)
t is the channel gain as

described by expression (3), and the channel noise ζ
(ji)
t is

an i.i.d. sequence with distribution N(0,Γ(ji)).

The decoding function for this subsystem is ȳ
(ji)
t =

f̄
(ji)
t (ǩ

(ji)
t ), where ȳ

(ji)
t is the reconstructed version of the

observation signal y
(i)
t at subsystem j; and

f̄
(ji)
t (ǩ

(ji)
t )

△
= k̄

(ji)
t + Fix̂

(ii)
t ∈ ℜ,

k̄
(ji)
t

△
= (h

(ji)
t )−1γ

(ji)
t ǩ

(ji)
t ∈ ℜ, (11)

where k̄
(ji)
t is the reconstructed version of the innovation

sequence k
(i)
t , at sub-system j.

Note that the decoding function (11) involves the state

estimation x̂
(ii)
t . As it will be shown later this estimation is

available at subsystem j via the control signal of subsystem

i . Also, note that the encoder and decoder, as described

above, are causal functions of the source messages.

Control Law for Subsystem j in Cluster Sr: For each t ≥
0, in addition of the observation signal y

(j)
t , a noisy version

of the observation signal of subsystem i(6= j) ∈ {ar, ar +
1, ..., br} is available at subsystem j. That is, the following

observation vector Ȳ
(rj)
t

△
= (ȳ

(jar)′

t ... y
(j)′

t ... ȳ
(jbr)′

t )′ is

available.

Let Z̄
(rj)
t

△
= (z′ar

... z′j ...z′br
)′, where zj = y

(j)
t , zi =

ȳ
(ji)
t + γ

(ji)
t β

(ji)
t Fix̂

(ii)
t − Fix̂

(ii)
t . Also, let

F
(rj)
t

△
= diag(γ

(jar)
t β

(jar)
t Far

...Fj ...γ
(jbr)
t β

(jbr)
t Fbr

)

G
(rj)
t

△
= diag(γ

(jar)
t β

(jar)
t Gar

...Gj ...γ
(jbr)
t β

(jbr)
t Gbr

)

ϑ
(rj)
t

△
= (ζ̄

(jar)′

t ... ζ̄
(jj)′

t ... ζ̄
(jbr)′

t )′, ζ̄
(jj)
t = 0,

ζ̄
(ji)
t = (h

(ji)
t )−1γ

(ji)
t ζ

(ji)
t .

The control vector U
(r)
t = (u

(ar)′

t ... u
(br)′

t )′ is applied by

the subsystems of cluster Sr. Control signal u
(ar)
t is applied

by subsystem ar,..., and the control signal u
(br)
t is applied

by subsystem br at time t ∈ N+. By choosing U
(r)
t in

an appropriate way, we can compensate the interconnection

effects caused by clusters Sr−1 and Sr+1. Hence, we can

design controllers for cluster Sr independently of other

clusters.

Recall that at time t, those control sequences of clusters

Sr−1 and Sr+1 which affect the subsystems of cluster Sr

via matrices N (r−1) and M (r+1), respectively, are available

at the subsystems which are affected. Therefore, subsystems

of cluster Sr can use this information to regulate their

dynamics.

The appropriate choice for control signal U
(r)
t is given by

U
(r)
t = Ũ

(r)
t + B(r)′(B(r)B(r)′)−1

(

− M (r+1)U
(r+1)
t

−D(r+1)X̂
(r+1 ar+1)
t − N (r−1)U

(r−1)
t

)

, (12)
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where the new control vector Ũ
(r)
t = (ũ

(ar)′

t ... ũ
(br)′

t )′

is available at all subsystems of cluster Sr. Note that

X̂
(r+1 ar+1)
t is the mean square estimation of the state

variables of cluster Sr+1 produced at subsystem ar+1 (in

cluster Sr+1). This estimation is available at those subsys-

tems of cluster Sr which are affected by the state vari-

ables of cluster Sr+1, via the control signal ũ
(ar+1)
t =

−∆ar+1
X̂(r+1 ar+1), where ∆ar+1

is the controller gain

(it will be defined shortly). Hence, these subsystems can

compute X̂
(r+1 ar+1)
t = −(∆

′

ar+1
∆ar+1

)−1∆
′

ar+1
ũ

(ar+1)
t ;

and therefore can use it in (12). Note that for cluster Sl,

we set ũ
(al+1)
t = 0, M (l+1) = 0 and D(l+1) = 0.

Using the state dynamics (6) and by substituting the control

vector U
(r)
t , as given by (12), we have X

(r)
t+1 = A(r)X

(r)
t +

B(r)Ũ
(r)
t + C(r)W

(r)
t + D(r+1)E

(r+1 ar+1)
t , r = l, ..., 1,

E
(r+1 ar+1)
t

△
= X

(r+1)
t − X̂

(r+1 ar+1)
t , where the estimation

error E
(r+1 ar+1)
t is an orthogonal Gaussian sequence with

distribution N(0,Ξ
(r+1 ar+1)
t ). Note that for the lth cluster

we set Ξ
(r+1 ar+1)
t = 0.

Following the information available at the subsystems of

cluster Sr, we use the dynamic model (13), as given below,

and we design the control law for subsystem j.











X
(r)
t+1 = A(r)X

(r)
t + B(r)Ũ

(r)
t + C(r)W

(r)
t

+D(r+1)E
(r+1 ar+1)
t

Z̄
(rj)
t = F

(rj)
t X

(r)
t + G

(rj)
t V

(r)
t + ϑ

(rj)
t .

(13)

Let J̃ (r) denote the payoff functional J (r), as

given by expression (9), where the control vector

U
(r)
t has been replaced by Ũ

(r)
t . For above system

with the payoff functional J̃ (r), we follow LQG

methodology [10] and we find the optimal control

Ũ
(r∗)
t = (ũ

(ar∗)
′

t ... ũ
(j∗)′

t ... ũ
(bl∗)

′

t )′, in which just the

control signal ũ
(j∗)
t is applied at time t.

Here, we shall assume γ
(ji)
t and β

(ji)
t asymptotically

converge to fixed limits γ(ji) and β(ji), respectively. Fol-

lowing this assumption we have limt→∞ F
(rj)
t = F (rj) △

=
diag(γ(jar)β(jar)Far

... Fj ... γ(jbr)β(jbr)Fbr
), limt→∞

G
(ji)
t = G(ji) △

= diag(γ(jar)β(jar)Gar
... Gj ... γ(jbr)β

(jbr)
t

.Gbr
). Moreover, Σ

(ji)
t

△
= Cov(ζ̄

(ji)
t ) =

(

γ
(ji)
t (dji)

aji/α
(ji)
t

)2

Γ(ji), in which under assumption that

the limit, limt→∞ α
(ji)
t = α(ji) exists, which was made

earlier, the limit Σ(ji) △
= limt→∞ Σ

(ji)
t exists and it is given

by Σ(ji) =
(

γ(ji)(dji)
aji/α(ji)

)2

Γ(ji).

The optimal control Ũ
(r∗)
t is obtained under the following

assumptions:

(a1) : The pair (A(r), B(r)) is stabilizable.

(a2) : The pair (F (rj), A(r)) is detectable.

(a3) : The pair (Q
1
2
r , A(r)) is detectable.

(a4) : The pair (A(r), (C(r)Σ
(r)
W C(r)′ +

D(r+1)Ξ
(r+1 ar+1)
∞ D(r+1)′)

1
2 ) is stabilizable where

Σ
(r)
W = Cov(W

(r)
t ) and Ξ

(r+1 ar+1)
∞ = limt→∞ Ξ

(r+1 ar+1)
t .

Under above assumptions, the optimal control which

minimizes the payoff functional J̃ (r) follows from the

standard LQG results [10]. The optimal control is given

by Ũ
(r∗)
t = (ũ

(ar∗)
′

t ... ũ
(j∗)′

t ... ũ
(br∗)

′

t )′ = −∆(r)X̂
(rj)
t

where the controller gain ∆(r) is given by ∆(r) =
(Rr + B(r)′Λ(r)B(r))−1B(r)′Λ(r)A(r), with Λ(r) being

the unique positive semi-definite solution of the following

Algebraic Riccati equation Λ(r) = A(r)′Λ(r)A(r) −

A(r)′Λ(r)B(r)
(

B(r)′Λ(r)B(r) + Rr

)−1

B(r)′Λ(r)A(r) + Qr.

Note that the controller gain ∆(r) has the following

representation.

∆(r) =



























∆ar

.

.

.
∆j

.

.

.
∆br



























∈ M
(

(dar
+ ... + dj + ... + dbr

) ×

(nar
+ ... + nj + ... + nbr

)
)

,

where ∆j ∈ M(dj × (nar
+ ... + nj + ... + nbr

)).(14)

Therefore, Ũ
(r∗)
t = (ũ

(ar∗)
′

t ... ũ
(j∗)′

t ... ũ
(br∗)

′

t ) =

−∆(r)X̂
(rj)
t ⇔ ũ

(j∗)
t = −∆jX̂

(rj)
t , j ∈ {ar, ar +

1, ..., br}, where the state estimation X̂
(rj)
t is given by the

following recursive equation

X̂
(rj)
t+1 = A(r)X̂

(rj)
t + B(r)(ũ

(ar)′

t ... ũ
(j∗)′

t ... ũ
(br)′

t )′

+L
(rj)
t (Z̄

(rj)
t − F

(rj)
t X̂

(rj)
t ),

X̂
(rj)
0 = (x̄

(ar)′

0 ... x̄
(br)′

0 )′, ũ
(j∗)
t = −∆jX̂

(rj)
t ,

j ∈ {ar, ar + 1, ..., br}. (15)

In above expression the estimation gain L
(rj)
t is

given by L
(rj)
t = A(r)Ξ

(rj)
t F

(rj)′

t

(

F
(rj)
t Ξ

(rj)
t F

(rj)′

t +

G(rj)Σ
(r)
V G(rj)′ + Υ

(rj)
t

)−1

, Υ
(rj)
t

△
= Cov(ϑ

(rj)
t ) =

diag(Σ
(jar)
t ...Σ

(jj)
t ... Σ

(jbr)
t ), Σ

(jj)
t = 0, with

the covariance of the estimation error Ξ
(rj)
t being the

solution of the following Riccati equation Ξ
(rj)
t+1 =

A(r)Ξ
(rj)
t A(r)′ − A(r)Ξ

(rj)
t F

(rj)′

t

(

F
(rj)
t Ξ

(rj)
t F

(rj)′

t +

F
(rj)
t Σ

(r)
V F

(rj)′

t + Υ
(rj)
t

)−1

F
(rj)
t Ξ

(rj)
t A(r)′ +

C(r)Σ
(r)
W C(r)′ + D(r+1)Ξ

(r+1 ar+1)
t D(r+1)′ , Ξ

(rj)
0 =

Cov(ξ
(ar)′

0 ... ξ
(br)′

0 )′, Σ
(r)
V = Cov(V

(r)
t ). Note that, as we

discussed earlier, just the control signal ũ
(j∗)
t = −∆jX̂

(rj)
t

is applied at time t. Also, note that the state estimation x̂
(ii)
t

is available at subsystem j via ũ
(i)
t = −∆iX̂

(ri)
t .

Subsystem j uses this information and computes

X̂
(ri)
t = (x̂

(iar)′

t ... x̂
(ii)′

t ...x̂
(ibr)′

t )′ = −(∆′
i∆i)

−1∆
′

iũ
(i)
t .

Selection of the Encoding and Decoding Gain

β
(ji)
t and γ

(ji)
t : Consider the encoding and decoding

functions (10) and (11), respectively. The encoding and
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decoding gain β
(ji)
t and γ

(ji)
t are chosen such that i)

E||y
(i)
t − ȳ

(ji)
t ||2= E||k

(i)
t − k̄

(ji)
t ||2 = D

(ji)
v where

D
(ji)
v ≥ 0 is the desired distortion level (it is an auxiliary

parameter). ii) The capacity used for transmission is

minimum.

Solution to above problem is obtained using Source-Channel

matching technique [7]. Applying this technique we have

[11] β
(ji)
t =

(dji)
aji

α
(ji)
t

√

Γ(ji)η
(ji)
t

D
(ji)
v

,γ
(ji)
t =

α
(ji)
t

(dji)
aji

√

η
(ji)
t

D
(ji)
v

Γ(ji) ,

η
(ji)
t

△
= 1 −

D(ji)
v

Ψ
(i)
t

, where Ψ
(i)
t

△
= FiΘ

(i)
t F

′

i + GiΣ
(i)
v G′

i

(i ∈ {ar, ar + 1, ..., br}), in which Θ
(i)
t ∈ M(ni × ni)

is the (i − ar + 1)th matrix on the diagonal of the block

matrix Ξ
(ri)
t ∈ M

(

(nar
+ ... + ni + ... + nbr

) × (nar
+

... + ni + ... + nbr
)
)

, as described above. Note that

under the stabilizability and detectability assumptions

(a2) and (a4) we have limt→∞ Ξ
(ri)
t = Ξ

(ri)
∞ , where

Ξ
(ri)
∞ is the unique positive semi-definite solution of

the following Algebraic Riccati equation Ξ
(rj)
∞ =

A(r)Ξ
(rj)
∞ A(r)′ − A(r)Ξ

(rj)
∞ F (rj)′

(

F (rj)Ξ
(rj)
∞ F (rj)′ +

F (rj)Σ
(r)
V F (rj)′ + Υ(rj)

)−1

F (rj)Ξ
(rj)
∞ A(r)′ +

C(r)Σ
(r)
W C(r)′ + D(r+1)Ξ

(r+1 ar+1)
∞ D(r+1)′ , Υ(rj) =

limt→∞ Υ
(rj)
t = diag(Σ(jar) ... Σ(jj) ... Σ(jbr)), Σ(jj) = 0.

Following above selection for β
(ji)
t and γ

(ji)
t , we have

[11] E||y
(i)
t − ȳ

(ji)
t ||2 = E||k

(i)
t − k̄

(ji)
t ||2 = D

(ji)
v

and C
(ji)
y = C

(ji)
k = Ry,ȳ

SRD(D
(ji)
v )= Rk,k̄

SRD(D
(ji)
v ) =

Rk,k̄(Dji
v )= 1

2 log
Ψ(i)

∞

D
(ji)
v

, where C
(ji)
y and C

(ji)
k are the

capacity used for transmission of sequence {y
(i)
t , t ∈ N+}

and {k
(i)
t , t ∈ N+}, respectively, from subsystem i to

j, Ry,ȳ
SRD(D

(ji)
v ) and Rk,k̄

SRD(D
(ji)
v ) are sequential rate

distortion [12], and Rk,k̄(D
(ji)
v ) is the rate distortion

function [13] with single letter mean square distortion

measure. Note that Ψ
(i)
∞ = limt→∞ Ψ

(i)
t and the capacity

used for reliable data reconstruction up to the distortion

level D
(ji)
v , as described above, is minimum.

B. Stability Analysis

The stability of subsystems of cluster Sr, when the con-

trollers as indicated above are enforced, is shown in the

following lemma.

Lemma 4.1: (Stability of Clusters Sr, r = l, ...,1): Con-

sider cluster Sr and suppose assumptions (a1)-(a4) hold.

Also, let the distortion level D
(ji)
v (j ∈ {ar, ar + 1, ..., br},

i(6= j) ∈ {ar, ar+1, ..., br}, r = l, ..., 1) be sufficiently small

such that the following condition holds: L
(r j+1)
t −L

(rj)
t ≈ 0.

Then, the subsystems of cluster Sr are stable in the mean

square sense when the controllers , as indicated by expression

(12) with ũ
(j∗)
t = −∆jX̂

(rj)
t and X̂

(rj)
t as given by (15),

are enforced.

Proof: It follows by employing a similar methodology as

used in [14]. The complete proof can be found in [11].

Note that from the expression for the estimation gain L
(rj)
t

follows that the estimation gains L
(rj)
t and L

(r j+1)
t are

similar. The only difference comes from covariance matrices

Υ
(rj)
t = diag(Σ

(jar)
t ... Σ

(jj)
t ... Σ

(jbr)
t ), (Σ

(jj)
t = 0)

and Υ
(r j+1)
t = diag(Σ

(j+1 ar)
t ...Σ

(j+1 j+1)
t ... Σ

(j+1 br)
t ),

(Σ
(j+1 j+1)
t = 0). But, Σ

(ji)
t = (1 −

D(ji)
v

Ψ
(i)
t

)D
(ji)
v ; and

therefore when the distortion level D
(ji)
v is sufficiently small,

we have L
(r j+1)
t − L

(rj)
t ≈ 0.

Next, in the following theorem, under assumptions of Lemma

4.1, the stability of the whole system is proved.

Theorem 4.2: (Stability of Full System): Consider the

large scale system (7) and suppose assumptions (a1)-(a4)

hold. Also, let the distortion level D
(ji)
v (j ∈ {ar, ar +

1, ..., br}, i(6= j) ∈ {ar, ar + 1, ..., br}, r = 1, 2, ..., l) be

sufficiently small (as described in Lemma 4.1). Then, subject

to the control laws as indicated in Lemma 4.1, the subsystems

of the large scale system (7) given by (1) are stable in the

mean square sense.

Proof: It follows from stability of clusters Sr. The complete

proof can be found in [11].

Note that the results of this paper can be extended to also

account for the cases where the information about control

signals is transmitted with finite power.

REFERENCES

[1] B. Bamieh, F. Paganini, and M. A. Dahleh (2002), Distributed con-
trol of spatially invariant systems, IEEE Transactions on Automatic

Control, 47(7), pp. 1091-1107.
[2] S. Tatikonda (2003). Some scaling properties of large distributed

control systems. Proceedings of 42nd IEEE Conference on Decision

and Control, Hawaii, pp. 3142-3147.
[3] G. N. Nair, R. J. Evans and P. E. Caines (2004). Stabilising decen-

tralised linear systems under data rate constraints. Proceedings of 43rd

IEEE Conference on Decision and Control, Atlandis, Paradise Island,
Bahamas, pp. 3992-3997.

[4] K. Li and J. Baillieul (2005). Problems in decentralized sensor-actuator
networks. Proceedings of 44th IEEE Conference on Decision and

Control, Seville, pp. 3207-3212.
[5] Alexey S. Matveev and Andrey V. Savkin (2005). Decentralized

stabilization of linear system via limited capacity communication
networks. Proceedings of 44th IEEE Conference on Decision and

Control, Seville, pp. 1155-1161.
[6] S. Yuksel and T. Basar (2007). Information theoretic study of the sig-

naling problem in decentralized stabilization of noisy linear systems.
Proceedings of the 46th IEEE Conference on Decision and Control,
New Orleans, pp. 328-333.

[7] M. Gastper, B. Rimoldi and M. Vetterli (2003). To code, or not to code:
lossy source-channel communication revisited. IEEE Transactions on

Information Theory, 49(5), pp. 1147-1158.
[8] J. C. F. Li, S. Dey and J. Evans (2008). Maximal lifetime power

and rate distortion allocation for wireless sensor systems with data
distortion constraints. IEEE Trans. on Signal Processing, 56(5), pp.
2076-2090.

[9] M. E. Sezer and D. D. Siljak (1986). Nested ǫ-decomposition and
clustering of complex systems. Automatica, 22(3), pp. 321-331.

[10] P. E. Caines (1988). Linear stochastic systems. John Wiley and Sons.
[11] A. Farhadi and N. U. Ahmed (2009). Stability and reliable data re-

construction of distributed control and communication systems subject
to capacity constraints. Submitted to Automatica, available on line at
www.site.uottawa.ca/∼afarhadi

[12] S. Tatikonda, A. Sahai, and S. Mitter (2004). Stochastic linear control
over a communication channel. IEEE Transactions on Automatic

Control, 49(9), pp. 1549-1561.
[13] Toby Berger (1971). Rate distortion theory: A mathematical basis for

data compression. Prentice-Hall.
[14] K. Shoarinejad, I. Kanellakopoulos, J. D. Wolfe and J. L. Speyer

(1999). A two-station decentralized LQG problem with noisy commu-
nication. Proceedings of the 38th Conference on Decision and Control,
Arizona, pp. 4953-4958.

3530


