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Abstract— This paper extends the iterative linear matrix
inequality algorithm (ILMI) for systems having non-ideal PI,
PD and PID implementations. The new algorithm uses the
practical implementation of the feedback blocks to form the
equivalent static output feedback plant. The LMI based synthe-
sis techniques are used in the algorithm to design a multi-loop,
multi-objective fixed structure control. The benefits of such a
control design technique are brought out by applying it to the
lateral stabilizing and tracking feedback control problem of a
30cm wingspan micro air vehicle.

I. INTRODUCTION

Automatic PID tuning algorithms have been extensively

worked upon. Algorithms based on modern control tech-

niques like genetic algorithm, fuzzy logic [1] and multi-

objective robust tuning [2] are widely used. A brief summary

of all these is given by Cominos & Munro [3]. Algorithms

based on genetic algorithm and fuzzy logics, search in a wide

space and are heuristic. Multi-objective robust tuning meth-

ods based on LMI, on the other hand, are less heuristic and

use the convex nature of the problem to arrive at the solution.

Most of the control design techniques like H2/H∞ stability

and performance criteria, pole placement and µ-synthesis

have equivalent LMI formulations. The simultaneous use of

these makes multi-disciplinary control design possible.

To aid the control designers, the LMI based techniques

have efficient tools under MATLABr. Its capabilities are

used to design automated algorithms for fixed order multi-

objective control designs by ([2], [4], [5]). Linear matrix

inequality formulations for analysis of closed loop stability,

pole placement in specific region [6] and, H2/H∞ robust per-

formance and stability are well developed. For static output

feedback systems, many of these formulations for analysis

are also used for synthesis. The PID control formulations are

therefore converted to equivalent static output feedback(SOF)

forms. This conversion is done to take advantage of the

multiple loop tuning capability of LMI for SOF systems.

The LMI formulations for robust control design and pole

placement are used to tune the SOF gains in this paper.

For systems with ideal proportional, differentiated and in-

tegrated outputs available for feedback, the SOF formulation

can be done as shown by Zheng et al. [4]. Systems like the

flight control system on a micro air vehicle are time critical

and have low computational power. They use first order

practical implementations of integrator and differentiators.
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In theory, the PID feedback of pitch rate can give a short

period damping of 1 for the micro air vehicle when ideal PID

implementation is considered. But in practise, this damping

reduces due to the extra dynamics introduced by non-ideal

integrator and differentiator algorithms used for feedback on

the real system. Design using ideal PID implementation is

misleading. To obtain more accurate results, the SOF formu-

lation is done while taking into account the computationally

less expensive non-ideal PID feedback control structures .

The unique mapping of SOF gains to the PID gain domain

is guaranteed for the practical integrator and differentiator

implementations used.

Modifications are made to the iterative linear matrix al-

gorithm proposed by Bervani & Hiyama [5] for obtaining

the SOF gains. Additional constraints, based on gain margin

and phase margin, are put to avoid premature termination

of the algorithm. The paper proposes the SOF formulation

for systems using practical PID implementations in the

first section. The next section discusses the modification of

previous algorithm. After this the lateral control design for

micro air vehicle, Sapthami-flyer, is presented. Simulation

results for loiter mode of micro air vehicle is given next,

followed by the conclusion.

II. CONTROL FORMULATION

The original system is converted to its equivalent static

output feedback representation. In order to meet the con-

flicting performance and stability requirements, frequency

weighted cost function are augmented to the plant dynamics

to obtain the generalized plant.

A. SOF formulation for practical PID implementation

The SOF formulation for the feedback structure in Fig. 1 is

sought. Consider that the LTI system G(s) has the following

state space representation:

ẋ = Ax + Bu; y = Cx + Du; u = u1 + r (1)

Here, r is the reference input and u is the control input to

plant G(s). The output is y and differentiated and integrated

outputs are yi and yd respectively. The ideal differentiator

is a non-causal system and hence cannot be ideally imple-

mented. Due to computational limitation, in practice, inte-

grator and differentiator are usually implemented by adding

a non-zero pole and zero respectively, far away to minimize

their effects. The commonly used non-ideal continuous time
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Fig. 1. The Feedback System

implementations of them in the s-domain are I(s) and D(s).

I(s) =
c1s + c0

s
(2)

D(s) =
c3s + c2

s + a1

(3)

The feedback u1 to the plant is given below:

u1 = Kpy(t) + Kiyi(t) + Kdyd(t)

Transfer function for the PID feedback block can be rep-

resented by a second order transfer function H(s). Its first

companion state space representation is used for the SOF

formulation and is given in (4) and (5).

H(s) =
U1(s)

Y (s)
= Kp + KiI(s) + KdD(s)

=
b2s2 + b1s + b0

s(s + a1)

ẋc = Acxc + Bcuc; yc = Ccxc + Dcuc

ẋc =

[

−a1 0

1 0

]

xc +

[

1

0

]

uc (4)

yc =
[

b1 − a1b2 b0

]

xc + b2uc (5)

The system states in (1) are augmented with the xc states

of the controller to get the augmented states x̃ of the closed

loop system, i.e.,

x̃ =
[

x xc

]′
; ˙̃x = Ax̃ + B̃r

[

ẋ

ẋc

]

=

[

A + BDcC BCc

BcC Ac

] [

x

xc

]

+

[

B

0

]

r (6)

The equivalent SOF representation of the system is found by

decomposing the closed loop system as shown in (7). The

decomposition is performed such that the SOF gain K̃ is a

function of the closed loop PID gain matrix K of the fixed

PID control structure. Ã, B̃ and C̃ define the open loop SOF

system and are therefore required to be not a function of K.

A = Ã + B̃K̃C̃ (7)

The decomposed matrix is given below:

Ã =







A 0
[

BcC

0

]

Ac






; B̃ =

[

B

0

]

; C̃ =

[

C 0

0 I

]

(8)

The PID gain matrix can be obtained from the SOF gain

matrix K̃ by invertible matrix M from relation (9). Here, K

= [Kp Ki Kd]′. The invertibility of M is proved next.

K̃ = M K (9)

Proposition 1: For the above SOF representation M is always

invertible.

Proof: An expression for the matrix M is obtained by substi-

tuting (4), (5) and (8) in (7). Substituting K̃ = [K1 K2 K3]

gives us the following expression for M :

M =







1 c1 c3

0 c0 c2 − a1c3

0 a1c0 0






(10)

det(M) = a1c0(c2 − a1c3) (11)

We prove that M is invertible by contradiction. Suppose

det(M) is 0. This implies, one of the following cases is true:

1) a1 = 0: if a1 = 0 then the transfer function of differen-

tiator in (3) will have a dominant pole at the origin. Bode

magnitude plot for the transfer function will show a fall,

instead of rise when the zero is not at the origin. When it is

at the origin then it will balance the pole, hence making

it a proportional gain system instead of a differentiator.

Therefore, a1 is not equal to 0.

2) c0 = 0: if c0 is equal to 0 then the integrator transfer

function (2) will reduce to a constant gain c1. Therefore,

this is not possible.

3) c2 = a1c3 : if this is true then the differentiator transfer

function have its zero and pole at the same location. These

cancel each others effect and it reduces to a gain c3. This is

again not possible.

As none of the above three cases can be true, therefore

det(M) is not equal to zero and M is always invertible.

Similarly, systems with multiple feedback loops will have

M as a block diagonal matrix with each block invertible.

B. Generalized Plant for H2/H∞ Control Design

The SOF plant dynamics is augmented by frequency

weighted cost functions to obtain the generalized plant Gi(s).

The new states of the SOF generalized plant function are x̄.

Here, w is the input disturbance vector and, z2 and z∞ are

robust H2 and H∞ performance output vectors respectively.

The state space representation of Gi(s) is given below.

˙̄x = Aix̄ + Byu1 + Brr + Bww (12)

z∞ = C∞x̄ + D∞ww + D∞u1
u1 (13)

z2 = C2x̄ + D2ww + D2u1
u1 (14)

y = Cyx̄ + Dyu1 (15)
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Fig. 2. The Generalized SOF closed loop system

III. THE ALGORITHM

The static output feedback representation for PID feed-

back is extended to practical integrator and differentiator

implementations (see the previous section) for use in ILMI

algorithm. It is also proved in the previous section that PID

gains can be uniquely obtained from the SOF gains. We

now consider the lemma 1 which is used to construct the

algorithm.

Lemma 1 [5]: The generalized plant, after feedback, has a

H2 performance index γ and all its poles are at the left hand

side of σ = α/2 in the complex plane, if there exist a SOF

gain matrix K̃ and P such that,

[

AiP + PA′
i + BwB′

w + Σ ByK̃ + PC′
y

(ByK̃ + PC′
y)′ −I

]

<

[

αP 0

0 0

]

(16)

Σ = XC′
yCyX − XC′

yCyP − PC′
yCyX (17)

P = P ′ > 0 (18)

trace(C2PC′
2) < γ2 (19)

A. Modification on the existing ILMI algorithm

The ILMI algorithm given by Bervani & Hiyama [5] is

modified in three aspects. These are listed below.

(1) The dynamics introduced by the non-ideal implemen-

tation of PID controllers are used to define the SOF

system.

(2) Constraints are put on the gain margin and phase margin

of the loop transfer function. Gain and phase margin

of the system are best indicator of system stability in

the classical sense. It also avoids premature termination

of the algorithm and gives the designer one more

design parameter to tune the algorithm to obtain desired

performance.

(3) Problem: The previous algorithm can get into an infinite

loop when the solution for α(j) > 0 and α(j − 1) > 0. In

this case the algorithm will keep minimizing trace(X) to

get X come close to P but may never come out of that

loop. Solution: The solution is to increase the optimum

H2 performance index(γ(j)) for which solution is sought.

The algorithm may have α(j) > 0 and α(j − 1) > 0 for

the initial iterations. This is the case for higher order system

where the PID feedback may has less control authority as

compared to a full order robust controller. Hence, the mixed

sensitivity H2 performance index for a full order controller

may not be close to the performance index achieved by the

PID feedback structure.

The QMI in (16) does not guarantee a monotonously

decreasing α with an increase in γ. This is due to the positive

semi-definite term BwK̃K̃′B′
w which is added to the left hand

side of the original inequality, for converting it to QMI form.

The QMI formulation is given by Cao et al. [2], and is used

in the ILMI algorithm. This will lead to situations when both

α(j) > 0 and α(j−1) > 0 are true and the algorithm gets into

an infinite loop.

B. The algorithm

1. Find out the SOF representation of the system.

2. Augment the SOF output to obtain the generalized plant.

3. Compute the optimal guaranteed H2 performance index,

γopt, using hinfmix function of MATLAB. This serves as

the starting point.

4. Initialize γ to γopt and increment in γ = dγ.

5. For Q > 0 , obtain the initial X from the riccati equation

below.

AiX + XA′
i − XC′

yCyX + Q = 0 (20)

Where, X = X′ > 0

Initialize j = 1

6. Using X from previous step, solve for P, K̃(j), α(j) to

minimize α(j) and satisfy the matrix inequalities below,
[

AiP + PA′
i + BwB′

w + Σ ByK̃ + PC′
y

(ByK̃ + PC′
y)′ −I

]

<

[

P 0

0 0

]

(21)

Σ = XC′
yCyX − XC′

yCyP − PC′
yCyX (22)

P = P ′ > 0 (23)

trace(C2PC′
2) < γ2 (24)

7. If α(j) < 0 then put γ = γ - dγ

j = j + 1 ; GOTO step 5

8. Else if j = 1 or if n > 0 and n < 10

Solve, for minimizing trace(P), the below LMI using

α(j) and γ(j) as constants
[

AiP + PA′
i + BwB′

w + Σ ByK̃ + PC′
y

(ByK̃ + PC′
y)′ −I

]

<

[

α(j)P 0

0 0

]

(25)

Σ = XC′
yCyX − XC′

yCyP − PC′
yCyX (26)

P = P ′ > 0 (27)

trace(C2PC′
2) < γ2 (28)

a. If P has feasible solution then

Put X = P ; n = n + 1; j = j + 1 ; GOTO Step 6

b. Else Put γ = γ + dγ; GOTO Step 6

9. Else if j 6= 1 and α(j − 1) > 0 Put γ = γ + dγ; j = j +1

; GOTO Step 6

10. Else if j 6= 1 and α(j − 1) ≤ 0

Form the closed loop system with feedback gain K(j-1)

Acl = Ai + ByK̃(j − 1)Cy

Find γ∞ using normhinf function in MATLAB.

(If the same control is used at different operating point

then find the lowest Gain(GM) and Phase(PM) margin

for multiple operating points using the same controller)

a. If γ∞ < 1 and GM > GM0 and PM > PM0 then

GOTO Step 11
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b. Else γ = γ + dγ; j = j + 1; GOTO Step 5

11. Final Gain K̃f = K̃(j-1)

γopt = γ - dγ

12. Find KPID = M−1K̃f

13. END

Fig. 3. Flow Chart for Modified-ILMI

IV. CONTROL DESIGN FOR MICRO AIR VEHICLE

A majority of commercially available low cost hardware

that can be put on a micro air vehicle (MAV) permit

implementation of simple control logic, such as, P, PI, PD

and PID based feedback [8]. These logics use non-ideal im-

plementation of output integrator and differentiator. In order

to achieve good performance and stability characteristics,

multiple feedback loops of multi-sensor outputs are needed.

The feedback has various contradicting requirements like

noise rejection, robustness to parameter uncertainty and time

domain performance specifications.

The dynamics of Sapthami-flyer, a micro air vehicle, are

lowly damped and their natural frequencies of operation are

high. This makes it difficult for the pilot to control the

aircraft. Unlike conventional aircraft MAV usually employ

only aileron control and no rudder control. This is to reduce

weight and power consumption. But the dutch roll mode is

most effectively controlled by a yaw rate feedback to rudder.

The autopilot hardware also has a fixed and limited control

structure. Therefore, it is most difficult to get good flying

qualities with limited control inputs and limited feedback

structures.

A. The system

Sapthami-flyer (see Fig. 4) is an indigenously developed

micro air vehicle. It has a span of 31.5 cm which is also

its maximum dimension. It carries a camera for a payload

and has a requirement for a stable and smooth flight to do

ground imaging. More information about the vehicle is given

in table I.

TABLE I

DESIGN PARAMETERS OF SAPTHAMI-FLYER MODEL

Total Weight 191 grams

Wing Profile Inverse Zimmermann

Wing area 0.074 m2

Aspect Ratio 1.38

Span 0.315m

Mean Aerodynamic Chord 0.25m

Center of Gravity(X,Y,Z)from nose (0.077,0,0)m

Aerodynamic Center 0.11m

(Ixx,Iyy ,Izz) (0.00041, 0.0026, -0.00004) kg-m2

Ixz -0.00004 kg-m2

Tail area 0.0055m2

Control Surface Area 0.007 m2

Fig. 4. Sapthami-flyer

B. Control Formulation

A single control is designed to give satisfactory perfor-

mance throughout the flight envelop. The six degrees of

freedom equation of motion for an aircraft are decoupled and

linearized into the longitudinal and lateral motion [7]. The

equations of motion are linearized for straight and leveled

flight at 10 degree angle of attack (α) and are used for

control design. Constraints are put while designing to have at

least specified gain and phase margins for closed loop linear

models at other operating points. The lateral transfer function

for sideslip (β), roll angle (φ) and yaw rate (ψ̇) with respect

to commanded aileron (uδa
) are given below. The dutch roll

mode is lowly damped (ξ=0.014) and therefore needs to be

improved by feedback.

β

uδa

=
426.294(s2 + 2.311s + 53.46)

(s + 11.41)(s + 0.006091)(s2 + 0.2433s + 82.06)
(29)

φ

uδa

=
426.294s(s2 + 2.311s + 53.46)

(s + 11.41)(s + 0.006091)(s2 + 0.2433s + 82.06)
(30)

ψ̇

uδa

=
−7.2777(s + 43.7)(s + 11.03)(s − 8.684)

((s + 11.41)(s + 0.006091)(s2 + 0.2433s + 82.06)
(31)
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The controller is implemented on the Kestrel2.22r [9] au-

topilot hardware which is mounted onboard. The Fig. 5 show

the lateral control loop implemented in Kestrel autopilot

system. Here, d is the disturbance input of the system and

φd is the desired roll angle. The control helps in performing

Fig. 5. Lateral Control Loop for Sapthami-flyer

a turn with less sideslip in the absence of rudder control. It

tracks the desired roll angle while reducing the side slip. The

loop for tracking roll angle uses a PID feedback while the

roll rate stabilizing loop uses PD feedback. A desired yaw

rate, rd is commanded as a function of desired roll angle.

This is based on the kinematics relation for a coordinated

turn given in (32).

rd =
gcosθ tanφ

Vt

(32)

Kφr =
gcosθ

Vt

(33)

This desired yaw rate is passed through a low pass filter

to avoid high rate of change of desired yaw rate due to

measurement noise. The error in yaw rate is fed back through

a PD block to the aileron. The performance weights are

selected as per guidelines set by the H2 and H∞ controller.

These are given below and are shown in Fig. 5.

W∞ =
s + 1.5

s + 4
; Wu =

s + 2.2

s + 22
; We =

100

s + 1
(34)

Consider the state space system representation given below.

ẋ=Ax + Bu; y = [C1 C2 C3]′x + Du; u = u1 + u2 + u3

ẋe =Aexe + Be(φd − C1x); ye = Cexe + De(φd − C1x)

˙xd1
=Ad1

xd1
+ Bd1

C2x; yd1
= Cd1

xd1
+ Dd1

C2x

˙xd2
=Ad2

xd2
+ Bd2

(rd − C3x); yd2
= Cd2

xd2
+ Dd2

(r − C3x)

˙x
φd

=Aφdxφd
+ B

φd
φd; rd = C

φd
x

φd
+ D

φd
φd

Here, the system with states x represent the plant dynamics

without the robust weight augmentation. The non-ideal roll

rate and yaw rate PD feedback system dynamics are defined

by the states xd1
and xd2

respectively. The PID block for

roll error feedback has system states xe. The system with

states x
φd

gives the desired yaw rate for a desired roll angle.

Using the above representations, the SOF formulation for the

system in red (see Fig. 5) is found and is given below.
















ẋ

ẋe

˙xd1

˙xd2

˙xφd

















=

















A 0 0 0 0

−BeC1 Ae 0 0 0

Bd1
C2 0 Ad1

0 0

−Bd2
C3 0 0 Ad2

Bd2
Cφd

0 0 0 0 Aφd

































x

xe

xd1

xd2

xφd

















+

















B

0

0

0

0

















K̃





















C 0 0 0







0

0

−Cφd







0 I 0 0 0

0 0 I 0 0

0 0 0 I 0





















+

















BDe + BDd2
Dφd

Be

0

Bd2
Dφd

Bφd

















φd

The open loop SOF system is now augmented with the

robust performance weights to obtain the generalized plant

function. The augmented system is then used in the algorithm

to obtain the PID gains.

V. RESULTS

The feedback tuned gains are given in table II. It must be

noted how the derivative gain of roll rate and yaw rate feed-

back have signs opposite to those of the proportional gains.

When the transfer function of I(s) and D(s) are considered

then the total feedback transfer function H(s) is found to be

stable and minimum phase. If the feedback is designed with

the ideal PID implementation, then the actual feedback is

very different from that which is designed. The phase margin

TABLE II

FEEDBACK GAINS FOR SAPTHAMI-FLYER

Loop Proportional Integral Derivative

Roll Rate -0.1012 0 0.0014

Yaw rate -0.0110 0 0.0058

Roll 0.0838 0.0320 0.0004

achieved for the closed loop system is 57.5 degrees. The bode

plot of the system is shown in Fig. 6. Design parameters

like phase margin and gain margin are crucial. The system

is often subjected to control delay. The main reason for

the delay being the disturbance in the communication link

between the ground station and the autopilot. The autopilot

and ground control software itself introduces computation

delay upto 0.02ms. In such a situation it is very important to

ensure that the feedback control does not make the system

unstable. A gain margin ensures system stability in presence

of change in loop gain.

A. Simulation study for Loiter Mode

The micro air vehicle under study is flown in various

autonomous modes of operation. The loiter mode, is one such

mode in which the micro air vehicle circles above the ground

with a specific turn radius. In this mode a constant roll angle

is commanded by the higher navigation loop. The autopilot

employs altitude control also to maintain height. Altitude

error commands a pitch angle which in turn commands an

elevator deflection. Closed loop nonlinear tracking response

to 5 degree roll angle commanded by the navigation loop is
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shown in (Fig. 7 to 9). The settling time for the roll angle
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the directional motion. The mission performed by the vehicle

do not have requirement for perfect coordinated turn, hence

the response is satisfactory.
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VI. CONCLUSION

The iterative matrix inequality algorithm has been

improved and extended for the systems having non-ideal
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Fig. 9. Lateral states and control

PID implementations. The integrator and differentiator

implementations effect the feedback and reduces its

authority. The design presented takes into account

constraints to come up with an acceptable controller

that can be implemented on a practical hardware onboard

an MAV.
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