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Abstract— This paper deals with the adaptive control of linear

systems with periodically time-varying parameters (referred

to as LTP systems) in discrete-time. While a large literature

exists on the adaptive control of linear time-invariant (LTI)

systems, practically very little is known regarding adaptation

when the parameters vary periodically. This may be attributed

to the fact that adaptive control can be attempted only after

the properties of the corresponding deterministic systems (i.e

systems with all parameter known) are well understood and

design procedures are well established. In contrast to LTI sys-

tems, even though LTP systems have been studied for decades,

their properties are not well understood and design procedures

for stabilizing and controlling them are not straightforward.

However, as discussed in this paper, there are compelling

reasons for dealing with the adaptive control of such systems.

In the following chapters, an attempt is made to answer several

questions related to LTP systems, some of which are listed

below: How much of adaptive control theory of LTI systems

can be extended to the LTP case? What accounts for the

difficulties encountered in such extensions? To what extent

are the methods used in the two cases similar, and when are

they different? Further, when they are different, what reasons

can be attributed for the differences? Throughout the paper

many comments are included to improve its readability.

I. INTRODUCTION

Ordinary differential equations with periodic coefficients

have a long history in mathematics and physics going back

to the contributions of Faraday, Mathieu, Floquet, Rayleigh,

Hill and Poincare [3-8] in the nineteenth century. They

form an important intermediate class of systems bridging

the time-invariant realm to the general time-varying one.

With major advances in control theory, systems theory, and

signal processing in the second half of the twentieth century,

there was renewed interest in the study of periodic systems

in both continuous and discrete time. One of the reasons

for this interest in periodic systems was the appearance of

a larger number of industrial processes which work in a

periodic regime in steady-state conditions, often leading to

periodically varying parameters. These include helicopters

[9-12], engines [13-14], and satellites [15-18] As in the case

of linear time-invariant systems, parametric uncertainties

are invariably present in such systems which, in turn, call

for adaptive solutions. However, while control methods

have been investigated extensively for deterministic systems

where the periodic parameters are known, the corresponding

adaptive control problems have not received the same

degree of attention, and it is safe to say that very few results

currently exist in this area.

The main results related to the adaptive control of discrete

LTP systems are included in this paper. The discrete SISO

LTP system considered is described by

Σd : x(k + 1) = A(k)x(k) + b(k)u(k) A(k) ∈ R
n×n

y(k) = cT (k)x(k) b(k), c(k) ∈ R
n

(1)

where A(k), b(k), and c(k) are N -periodic matrix and vec-

tors respectively, and N is specified. In the time-invariant

case the following increasingly complex problems:

a) adaptive stabilization, regulation, and tracking with all

state variables accessible, and

b) adaptive control of LTI systems with only the input

and output of the plant accessible.

II. STABILIZATION - STATE VECTOR ACCESSIBLE

For LTI systems, controllability assures stabilizability. This

is generally demonstrated by showing that a nonsingular

transformation exists which transforms the system into

controllable canonical form. For LTP systems such a trans-

formation does not in general exist, However, using the

Riccati equation [24] it has been shown that a periodic

time-varying gain g(k) exists such that A(k)+b(k)gT (k) is

asymptotically stable. It is this result together with adaptive

laws derived for static systems in [23] that we use to solve

the adaptive stabilization problem in this section.

The general problem of adaptively stabilizing a dynamical

system can be stated in terms of a plant of the form

described by

Σd : x(k + 1) = A(k)x(k) + b(k)u(k)

y(k) = cT (k)x(k)
(2)

where A(k) is an unknown and unstable matrix, b(k) is

an unknown, bounded, and N -periodic vector, and c(k)

is specified and N -periodic. The aim is to determine a

bounded control input u so that all the signals in the system

remain bounded and

lim
k→∞

y(k) = 0, or equivalently,, lim
k→∞

x(k) = 0. (3)

To meet this control objective, we assume:
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I. the pair (A(k), b(k)) is controllable and the pair (c(k),

A(k)) is observable.

II. cT (k + 1)b(k) is sign definite and is assumed to be

positive.

III. |cT (k + 1)b(k)| < η, and η is known.

IV. the state vector x(k) is accessible.

Comment: If (A(k), b(k)) is controllable, it has been shown

[24] that a vector g(k) exists such that A(k) + b(k)gT (k)

is asymptotically stable. If y(k) can be regulated around

zero, the observability of (c(k), A(k)) assures that the state

vector x(k) will be bounded, and that limk→∞ |x(k)| = 0.

Assuming g(k) has the form

g(k) = −
cT (k + 1)A(k)

cT (k + 1)b(k)
+ am

cT (k + 1)

cT (k + 1)b(k)
(4)

where |am| < 1, the plant Σd is stabilized and can be

written as

y(k + 1) = amy(k). (5)

When A(k) and b(k) are unknown, the control input u is

chosen to have the form

u(k) = ĝT (k)x(k) (6)

where ĝ(k) is the adjustable parameter. The adaptation of

ĝ(k) should be such that ĝ(k) evolves to the periodic gain

g(k). Defining the parameter error g̃ as

g̃(k) = ĝ(k) − g(k), (7)

the plant Σd together with the controller in (6) can be

described by

y(k + 1) = cT (k + 1)[A(k)x(k) + b(k)gT (k)]x(k)

+cT (k + 1)b(k)g̃T (k)x(k)

= amy(k) + cT (k + 1)b(k)g̃T (k)x(k).
(8)

or equivalently

y(k + 1) − amy(k) = cT (k + 1)b(k)g̃T (k)x(k) (9)

The rule for updating ĝ(k) is given by

ĝ(k + N) = ĝ(k) −
ǫ(k)

η
x(k) (10)

where ǫ(k) = y(k + 1) − amy(k). Since (c(k), A(k)) is

observable, the convergence of output y(k) to the origin

implies that limk→∞ x(k) = 0.

III. REGULATION AND TRACKING - STATE VECTOR

ACCESSIBLE

Regulation and tracking are fundamental problems of both

control theory and adaptive control theory. In Section II

the problems of stabilization of an LTP system was studied

under the assumption that (A(k), b(k)) is controllable.

Given the system Σd in (2), the problems of regulation

and tracking are treated in Sections III-A- III-C respectively

when the plant state vector x(k) is assumed to be accessible.

A. Output Set Point Regulation

In this section the problem of regulating y(k) around any

non-zero value y∗ is addressed. It is known that if the input

to a stable LTI system is a constant the output in general has

a constant value. The exception is when the plant transfer

function H(z) (H(z) = cT (zI −A)−1b) has a zero at 1, or

equivalently cT (I−A)−1b = 0. This implies that in general

, by scaling a constant input, the output can be regulated

around any desired constant value. In the LTP case, the

problem is obviously more complex. A constant input does

not result in a constant output, and the input needed to

maintain the output constant is not immediately evident

even when the parameters are known. Hence determining

conditions under which the output can be regulated around

a constant value in the periodic case need to be derived.

1) Algebraic Part: In the previous section, it was shown

that if {A(k), b(k)} is controllable, the time-periodic system

could be stabilized using a periodic feedback parameter, so

that the output y is regulated around y(k) ≡ 0. Therefore,

without loss of generality, A(k) is assumed to be stable in

the rest of this section. Further, from Floquet theory [5] it

is known that a periodic non-singular matrix P (k) exists

such that the transformation x̄(k) = P (k)x(k), results in

the equations

Σ̄d :
x̄(k + 1) = Āx̄(k) + b̄(k)v(k)

y(k) = c̄(k)T x̄(k)
(11)

where b̄(k) = P (k)b(k), c̄T (k) = cT (k)P−1(k), and Ā =

P (k + 1)A(k)P−1(k) is a constant matrix.

Comment: Given Ā is stable and time-invariant and b̄(k) is

N -periodic, we have

y(k) = c̄T (k)x(k) = c̄T (k)Āk−1x(1)+

k
∑

τ=1

Āk−τ−1b̄(τ)u(τ).

It is evident from the above equation that u(τ) must be N -

periodic for regulation of y(k) around a nonzero constant.

From equation (11) it follows that

y(k + 1) = c̄T (k + 1)R[ĀN−1b̄(k)u(k)

+ĀN−2b̄(k − 1)u(k − 1)

+ · · ·+ b̄(k + 1)u(k + 1)]

y(k + 2) = c̄T (k + 2)R[ĀN−1b̄(k + 1)u(k + 1)

+ĀN−2b̄(k)u(k)

+ · · ·+ b̄(k − N)u(k − N)]
...

y(k + N) = c̄T (k)R[ĀN−1b̄(k − 1)u(k − 1)

+ĀN−2b̄(k − 2)u(k − 2)

+ · · ·+ b̄(k)u(k)]
(12)

where R = (I− ĀN )−1. Note that for any initial state, only

N values of the input u(k), u(k+1), · · · , u(k+N−1) need

to be determined.
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If y(k+1) = y(k+2) = · · · = y(k+N) = y∗ (a constant),

Equation (12) can be modified as

M











u(k)

u(k − 1)
...

u(k − N + 1)











=











1

1
...

1











y∗ (13)

where matrix M is defined in Equation (14)

Using a result from linear algebra, it can be shown that if

the following condition is satisfied:

[1 1 · · · 1]T ∈ image M, (15)

then there exists at least one solution u(k) to the regulation

problem. Further, a unique solution u(k) exists if matrix M

is nonsingular.

In summary, we have the following theorem:

Theorem 1: The output of Σd can be regulated around

a constant value y∗, if (A(k), b(k)) is controllable and

[1 1 · · · 1]T ∈ image M . A unique input sequence {u(k)}

exists, if and only if the matrix M defined in (14) is

nonsingular.

Comment: Unlike LTI systems, set-point regulation of an

LTP system requires a periodic control input. Also, note that

the solution to the regulation problem may not be unique.

2) Analytical Part: Having established the conditions for

the existence of solutions for the deterministic problem, we

turn our attention to the analytical part.

Relative degree: The importance of the relative degree in

the adaptive control of LTI systems is well known. For an

LTI system d = n − m (the number of poles - the number

of zeros of the transfer function) represents the relative

degree. It is the number of time instants after which an input

affects the output. By definition, since the system is time-

invariant, this applies to every instant of time and hence is

well defined. In the time-periodic case, since the parameters

are time-varying, the question arises whether a well defined

relative degree exists. From equation (2) it follows that

y(k + 1) = cT (k + 1)x(k + 1)

= cT (k + 1)A(k)x(k) + cT (k + 1)b(k)u(k).
(16)

If cT (k +1)b(k) �= 0, the input u(k) affects the output y at

time (k+1). For a well defined relative degree, it therefore

follows that the above condition should hold for all k. Since

the system is time-periodic, this implies

cT (k + 1)b(k) �= 0 ∀k0 ≤ k < k0 + N. (17)

Similarly for a well defined relative degree 2, we have

y(k + 2) = cT (k + 2){A(k + 1)a(k)x(k)

+A(k + 1)b(k)u(k) + b(k + 1)u(k + 1)}
(18)

since

cT (k + 2)b(k + 1) = 0

cT (k + 2)A(k + 1)b(k) �= 0
∀k0 ≤ k < k0 + N

This can therefore be generalized to the case of any relative

degree d > 1 and can be stated as follows.

cT (k + j)
k+1
∏

i=k+j−1

A(i)b(k) = 0, (j < d)

cT (k + d)
k+1
∏

i=k+d−1

A(i)b(k) �= 0.

(19)

In the following discussions, we shall assume that the plant

to be controlled has a well defined relative degree. Also, for

convenience in the discussions and practical purposes, we

shall first assume that the relative degree d = 1, and then

extend the results to cases where d > 1.

In the earlier discussion it was assumed that the matrix A(k)

was asymptotically stable. In the general case, A(k) may be

unstable and may have to be stabilized on-line using state

feedback. This problem may now be stated as follows:

Problem Statement: A linear time-periodic system is de-

scribed by equation (2). It is not known a priori that

A(k) is stable. The conditions for stabilizability and output

regulation are satisfied by the plant. Determine a control

input of the form

u(k) = gT (k)x(k) + v(k) (20)

such that limk→∞ y(k) = y∗, a specified constant. To meet

this control objective, we assume

I. the sign of cT (k + 1)b(k) is known, and without loss

of generality cT (k + 1)b(k) > 0, ∀ k ∈ Z
+.

II. |cT (k + 1)b(k)| < η, and η is known.

III. the state vector x(k) is accessible.

We assume that periodic parameters g∗(k) ∈ R
n and

v∗(k) ∈ R exist (and are unknown) such that the desired

objective is achieved. To realize the parameters adaptively,

g(k) and v(k) are adjusted on-line. Defining g(k)−g∗(k) =

g̃(k), v(k)− v∗(k) = ṽ(k), the regulation error e(k + 1) =

y(k + 1) − y∗ can be expressed as

e(k + 1) = cT (k + 1)b(k)[g̃(k)x(k) + ṽ(k)]. (21)

Since sgn(cT (k + 1)b(k)) > 0 and |cT (k + 1)b(k)| < η, ∀

k ∈ Z
+, the adaptive laws can be derived as

gT (k + N) = gT (k) − γ
η
e(k + 1)xT (k)

v(k + N) = v(k) − γ
η
e(k + 1).

(22)

Comment: In the above solution it was tacitly assumed that

the relative degree of the plant is well defined and is unity.

The same procedure can also be extended to cases where

d > 1 . In such a case, the adaptive law has the form

gT (k + N) = gT (k) − γ
η
e(k + d)xT (k)

v(k + N) = v(k) − γ
η
e(k + d).

(23)
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M =











c̄T (k + 1)RĀN−1b̄(k) c̄T (k + 1)RĀN−2b̄(k − 1) · · · c̄T (k + 1)Rb̄(k + 1)

c̄T (k + 2)RĀN−2b̄(k) c̄T (k + 2)RĀN−3b̄(k − 1) · · · c̄T (k + 2)RĀb̄(k + 1)
...

...
. . .

...

c̄T (k)Rb̄(k) c̄T (k)RĀN−1b̄(k − 1) · · · c̄T (k)RĀb̄(k + 1)











(14)

Comment:Note that a well defined relative degree has to be

assumed in the analytical part, while it is not required in

the algebraic part.

B. Tracking an N -Periodic Signal y∗(k)

The general problem of determining a control input u(k)

so that the output of a given system follows an arbitrary

desired output y∗(k) asymptotically is referred to as the

tracking problem. The method discussed in the previous

section to track a constant signal y∗ can be directly extended

to a periodic signal, where the period of y ∗(k) is also N -

periodic. However, as described below the consequences are

somewhat different.

Modify Eq (13) as

M











u(k)

u(k − 1)
...

u(k − N + 1)











=











y∗(1)

y∗(2)
...

y∗(N)











. (24)

It can be shown, in a straightforward way, that a unique

solution of u(k) exists if and only if matrix M is invertible.

Comment: Unlike the regulation problem, where the right

handside of equation (24) was a constant vector, all of

whose elements are unity, the r.h.s. in the present case

consists of arbitrary vectors. Hence, the solution of tracking

any N -periodic signal y∗(k), if it exists, must be unique.

C. Tracking a General Signal y∗(k)

We have thus far considered the regulation problem and

the problem of tracking an N -periodic signal that is math-

ematically equivalent to it. We now proceed to consider the

more general case where the output y∗(k) to be followed

is any arbitrary signal, and as in the previous cases, the

state of the system Σd is assumed to be accessible. This

in turn, leads to the concepts of the normal form of the

system and zero dynamics, which are central to both the

statement as well as the solution of the general tracking

problem. To facilitate the discussion, we express the plant

in normal form as shown below.

Normal Form and Zero Dynamics: Consider the linear pe-

riodic system Σd with well defined relative degree d. Let

z1 = y, then

z+
1 (k) = cT (k+1)x+ = cT (k+1)A(k)x+cT (k+1)b(k)u

If cT (k + 1)b(k) = 0, define z2 = cT (k + 1)A(k)x, then

z+
2 = cT (k + 2)A(k + 1)A(k)x + cT (k + 2)A(k + 1)b(k)u

Similarly, defining zd = cT (k+d−1)A(k+d−2) · · ·A(k)x

we have

z+
3 = cT (k + d)A(k + d − 1) · · ·

A(k)x + cT (k + d)A(k + d − 1)

· · ·A(k + 1)b(k)u

Let T (k) be a nonsingular matrix such that cT (k), cT (k +

1)A(k), · · ·, are its first three rows. The periodic transfor-

mation

z = T (k)x

will transform the system into the normal form

zi(k + 1) = z+
i (k), ∀1 ≤ i ≤ d − 1

z+
d (k) = P (k)z̄ + Q(k)η + l(k)u(k)

η+(k) = R(k)z̄ + S(k)η + w(k)u

y(k) = z1(k)

(25)

where z̄ = [z1(k), z2(k), · · · , zd(k)]T , η = [zd+1(k),

zd+2(k), · · · , zn(k)]T , P (k) ∈ R
d, Q(k) ∈ R

n−d, R(k) ∈

R
(n−d)×d, S(k) ∈ R

(n−d)×(n−d), l(k) = cT (k + d)A(k +

d − 1) · · ·A(k + 1)b(k) ∈ R. As in LTI systems, it can be

shown that T (k) can be chosen so that w(k) = 0, and this

is assumed in the following discussions.

Now we consider the case when y∗(k), and zi(k) are

identically zero. Then

η+(k) = S(k)η, (26)

which defines the zero dynamics of the LTP system Σd. If

S(k) is asymptotically stable, then η(k) tends to zero. In

such a case, given a bounded desired signal y ∗(k), η(k) is

a bounded vector for all k ∈ Z
+.

Our interest is for y(k) = z1(k) to follow a desired

trajectory y∗(k). From (25) it follows that if the system

has a well defined relative degree, i.e. l(k) is nonzero ∀

k ∈ Z
+, a u(k) exists such that

u(k) = l(k)−1(y∗(k + d) − P (k)z̄ − Q(k)η) (27)

However to assure that u(k) is bounded, the zero dynamics

of the plant must be asymptotically stable. Under such an

assumption it follows that

u(k) = l−1(k)(y∗(k + d) − P̄ (k)x(k))

= g∗T (k)x(k) + g∗0(k)y∗(k + d)
(28)
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exists which achieves the objective of tracking if x(k) is

accessible.

Theorem 2: If the linear periodic system Σd has a well

defined relative degree, and if the zero dynamics (26) is

asymptotically stable, the a control law (28) exists such

that the output of Σd follows any desired signal y∗(k).

Adaptive Control: If y∗(k + d) is provided as a desired

signal at time k. u(k) can be generated adaptively by

choosing

u(k) = gT (k)x(k) + g0(k)y∗(k + d) (29)

and adjusting gT (k) and g0(k) adaptively. Once again, it

can be shown that the adaptive laws

g(k + N) = g(k) − γe(k + d)x(k)

g0(k + N) = g0(k) − γe(k + d)y∗(k + d)
(30)

have the same form as in the previous cases.

IV. EXISTENCE OF SOLUTIONS - INPUT AND OUTPUT

ACCESSIBLE

In Section III, the problems of adaptive stabilization ,

regulation, and tracking were solved assuming that the state

vector of the system is accessible. In this section, the same

problems are considered assuming that adaptation has to be

carried out only using input-output data.

A. Re-construction of the State

Let Σd be defined by the state equation (1), and let x(k),

the state vector at any time k not be accessible. It can be

demonstrated that if the system is observable, the state can

be reconstructed from the values of the inputs and outputs.

In particular, x(k) can be expressed as

x(k) = T1(k)Y(k−nN+1,k−1)+T2(k)U(k−nN+1,k−1) (31)

where T1 and T2 ∈ R
n×(nN) are N -periodic matrices.

In Section III the periodic system Σd is controlled by a

periodic state feedback law If, in place of the state variable

x(k), its reconstructed value from input and output is used,

then Σd can also be stabilized.

B. Input-Output Representation - Periodic ARMA Model

Our objective here is to represent the state of the system Σd

as a function of the past values of the output y and input

u. From equation (31) we have

Σio: y(k) = cT (k)x(k)

= cT (k)T1(k)Y(k−nN+1,k−1)

+cT (k)T2(k)U(k−nN+1,k−1)

�

nN
∑

i=1

αi(k)y(k − i) +
nN
∑

i=1

βi(k)u(k − i)

= θT (k)ω(k)
(32)

where the N -periodic vector θ(k) ∈ R
2nN =

[α1, . . . , αnN , β1, . . . , βnN , ]T and the repression vector is

ω(k) = [y(k − 1), . . . , y(k − nN), u(k − 1), . . . , u(k −

nN)]T .

Comment: Unlike an n-th order LTI system, which can

always be represented as an n-th order difference equation,

the order of input-output representation of an n-th order

LTP systems depends upon its period as well.

The above representation Σio is derived only when Σd is

observable and its relative degree d = 1. Suppose that

Σd has relative degree d > 1. It can be shown that

β1(k), · · · , βd−1(k) = 0, and βd(k) �= 0 ∀ k ∈ Z
+.

Therefore u(k), · · · , u(k− d + 1) do not affect y(k). Using

(32), we can recursively replace these future outputs with

past outputs, and system Σd with relative degree d can be

shown to be the alternate form

y(k + d) = β̄0(k)u(k)

+

nN
∑

i=1

ᾱi(k)y(k − i) +

nN
∑

j=1

β̄j(k)u(k − j)

= β̄0(k)u(k) + θ̄T (k)ω̄(k)
(33)

where θ(k) ∈ R
2nN = [ᾱ1, . . . , ᾱnN , β̄1, . . . , β̄nN , ]

C. General Tracking Problem

From the discussion in Section IV-B, it follows that, if the

desired value y∗(k+d) is given at time k, a desired control

law can be determined as

u∗(k) =
1

β0(k)

(

y∗(k + d) − θ(k)ω̄(k)
)

= g∗T (k)ω̄(k) + g∗0(k)y∗(k + d)
(34)

The role of zero dynamics was discussed in Section III. We

now look at its counterpart in the input-output representa-

tion. When the output y(k) is identically zero for all k, the

zero dynamics in the input output representation has the

form:

u(k) = 1
β1

(β2u(k − 1) + β3u(k − 2)+

· · · + βnNu(k − nN + 1))
(35)

determines the evolution of u(k) which is an nN th order

difference equation, and if it is asymptotically stable, so is

the zero dynamics associated with η(k).

Theorem 3: If system Σd is observable and has a well

defined relative degree, it has an input output representation

(32). If the zero dynamics (35) is asymptotically stable, then

using the control law controller (34), the output y(k) will

follow any reference signal y∗(k).

At this stage either a direct method or an indirect method

may be used for the computation of the control input. In

the former, the fact that the plant is observable is used

to reconstruct the state, which, in turn, is used as in the

previous section to generate the control input adaptively.
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In indirect adaptive control, a model of the plant is set up

as

ŷ(k + 1) = β̂0(k)u(k) + θ̂(k)ω(k) (36)

where θ̂(k) is the estimate of the periodic parameter. u(k)

is computed at instant k as

u(k) =
1

β̂0(k)

(

y∗(k + 1) − θ̂(k)ω̄(k)
)

= gT (k)ω̄(k) + g0(k)y∗(k + d)
(37)

(Taking the usual precautions when the estimate β̂0(k) is

close to zero). Defining the parameter errors g(k)−g ∗(k) =

g̃(k), g0(k)− g∗0(k) = g̃0(k), the tracking error e(k + 1) =

y(k + 1) − y∗ can be expressed as

e(k + 1) = g̃(k)ω̄(k) + g̃0(k)y∗(k + 1)] (38)

As in Section III, the adaptive laws can be chosen as

g(k + N) = g(k) − γe(k + 1)ω̄(k)

g0(k + N) = g0(k) − γe(k + 1)y∗(k + 1).
(39)

In this section, the input-output representation of a periodic

discrete-time system is established, based on the results of

observability. The problem of tracking a general desired

signal considered in SectionIII, is extended to the case

when only input and output are accessible using such a

representation.

V. CONCLUSIONS

The problems of adaptive control in discrete linear periodic

systems are considered. It is shown that most of the results

of classical adaptive control can be derived under suitable

assumptions concerning the plant in the discrete case.
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