
  

 

Abstract—Migration of the identified system poles for a 

dynamical system indicates changes in its global properties.  In 

civil engineering structures, these changes are most often due to 

changes in global stiffness or damping parameters associated 

with both environmental effects as well as deterioration of the 

structure.  In structures that employ automated feedback 

control systems to mitigate unwanted vibrations, feedback 

control laws and state estimators (if used) are reliant upon a 

theoretical or identified model of the plant.  Any loss in fidelity 

between the plant model and its actual condition will result in 

degradation of the controller performance.  Low-cost, wireless 

control networks that by nature are more likely to utilize state-

estimation, are therefore more vulnerable to problems 

associated with property changes in the system.  In this paper, 

recursive identification of system poles is proposed for use in a 

wireless sensing network engaged in feedback control.  Because 

it is based on system poles, the algorithm is ideally suited for 

adaptive control methods that update control and estimation 

gains as system properties change.  The algorithm proposed is 

based on the fast transversal filter and is designed to minimize 

computation as well as data transmission requirements to 

optimally utilize the distributed data that is stored within a 

low-power wireless sensor network. 

I. INTRODUCTION 

EEDBACK control is gaining popularity in civil 

engineering applications for mitigation of undesirable 

mechanical vibrations induced by natural sources, such as 

wind and seismic loads, as well as artificial sources, such as 

mechanical equipment [1-3].  Such systems enhance the 

safety and comfort level of occupants and may also aid in 

the proper operation of sensitive equipment housed within 

the structure.  In civil engineering control applications, 

economy and reliability are especially critical.  Semi-active 

actuators that indirectly generate control forces (e.g. 

variable-orifice dampers, magnetorheological dampers, etc.) 

are one solution for addressing the cost and reliability 

concerns associated with active control technologies.  

Significantly less expensive than large, centralized actuators, 

semi-active actuators may be installed in large numbers (in 

the hundreds) reducing the susceptibility of the control 

system to single-points of failure [4-6].  In coordinated 
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control networks though, a large number of actuators will 

require extensive cabling to connect the actuators to the 

sensing and control computation portions of the network.  

Such cabling can quickly erode the cost savings benefits 

realized from use of semi-active dampers [7].  Wireless 

networks may be used to eliminate the costs associated with 

cables (thousands of dollars per channel [8]) but come with 

their own challenges, namely battery power limitations and 

spatially distributed data.  Limiting the amount of data 

transmitted between nodes of the wireless network, is 

important to conserve battery power.  Instead, leveraging the 

local computing power of the wireless node to reduce 

transmissions will conserve power [9].  In control 

applications, spatially distributed data may be estimated 

locally to decrease dependence upon limited wireless 

bandwidth [7, 10]. 

As with any feedback control system, proper operation is 

dependent upon good design, based on knowledge of the 

dynamic characteristics of the plant.  In systems reliant on 

state estimation, this fact is especially true.  Over the years 

many techniques have been developed to ensure robust 

controller performance in the face of uncertain, or 

incompletely characterized plant models.  More difficult still 

are cases in which the plant dynamics change over time in 

which, depending upon the degree of the changes, adaptive 

control methods may become necessary. 

 In civil structural systems, changes in the global 

vibrational characteristics are inevitable over time.  In the 

short term, environmental factors such as temperature and 

humidity have a significant influence upon the stiffness of 

civil structures affecting the location of the poles of the 

plant.  Longer term effects such as damage due to overstress, 

fatigue, or loss of connectivity between components (e.g. 

loss of tension in bolts) will also lead to changes in the plant.  

Even effects that are considered normal for civil structures 

(and are accounted for in design) such as cracking in 

concrete within its design operational range and creep 

effects (particularly in concrete and wood structures) while 

not qualifying as damage, per se, do change the vibrational 

characteristics of the structure and will adversely affect 

feedback control performance.   

 In this paper, a plant model updating method is proposed 

for adaptive control applications in civil structures using 

low-cost wireless control networks.  The method is based on 

Structural Health Monitoring (SHM) methods for correlating 

changes in dynamic properties of the system to damage.  The 

method presented utilizes spatially distributed acceleration 

data to calculate and recursively update system poles of a 
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civil structure.  The method is based on auto-regressive with 

exogenous inputs (ARX) models calculated by the fast 

transversal filter (FTF), a computationally efficient recursive 

least-squares filter well suited to use in low-power wireless 

networks.  Results of the FTF are used to assemble the 

discrete-time transfer function corresponding to a given 

output.  The roots of the characteristic equation represent the 

poles of the system.  These roots are calculated from the 

QR-decomposition of the polynomial’s companion matrix.  

Tracking the migration of system poles is well suited for 

updating state-space control algorithms that are based on 

optimal placement of poles on the complex z-plane.  The 

method is demonstrated on a six-story shear structure with 

removable bracing elements that are gradually weakened to 

simulate damage.  Results are presented in the form of 

system pole migration and quantified in terms of three 

damage indices that track the extent of change. 

 

II. THEORY AND BACKGROUND 

Of the wide array of models available for modeling the 

relationship between inputs and outputs in linear time-

invarient (LTI) systems, one that is simple and useful is the 

linear difference equation.  The discrete-time model consists 

of m and n weighted observations of the output, y[k], and 

input, u[k], respectively:  

 

 

(1) 

 

where e[k] is the error at the kth time step, a and b are the 

observation weights and, for models not including a direct 

transmission term, b0 = 0.  One can rearrange the difference 

equation to form an estimate of the kth output based on the 

weighted past observations [11]: 

 

 

(2) 

 

This equation represents the auto-regressive with exogenous 

inputs (ARX) time-series model.  The difference equation is 

transformed into a transfer equation through means of the Z-

transform: 

 

 
(3) 

the discrete-time analog of the Laplace transform.  In the z-

domain, the ARX derived transfer function relating an input 

to an output takes the familiar form (setting the number or 

input and output observations to p): 

 

 
(4) 

The denominator of (4) is the characteristic equation whose 

roots are the poles of the system.  These poles encapsulate 

the modal properties of the system including modal 

frequencies and damping ratios.  The numerator of the 

transfer function is also a polynomial function whose roots 

are the zeros of the system. 

To determine the ARX model weighting coefficients (a 

and b), typically linear least-squares methods are used.  For 

example, if large amounts of memory and computational 

throughput are available, a batch least-squares solution will 

be adequate.  However, if one desires to implement the batch 

least-squares methods in resource-constrained computing 

environments (e.g. wireless sensors) real-time or near real-

time execution would likely not be possible.  An alternative 

approach to ARX model determination would be through the 

use of recursive methods such as the fast transversal filter 

(FTF).   

 In this study, the FTF is employed for embedment in 

wireless sensors because it represents a significant reduction 

in computational overhead compared to many of the other 

recursive least-squares algorithms available.  In the FTF, the 

number of computations needed and required memory 

increase linearly with the model order, O(p), unlike classical 

recursive least-squares which increase by the square of the 

model order, O(p
2
) [12].  In low-power wireless sensor 

applications, these computational savings are necessary to 

compute the transfer function with reasonable speed.  The 

FTF takes advantage of the shifting property, including a 

forward-time and backward-time output estimator.  The 

coefficients of the forward-time estimator are the ARX 

coefficients that define the transfer function to be identified.  

The FTF employs the a priori and a posteriori errors in the 

backward and forward time estimators to update the 

estimators and the estimator update gains.  A complete 

derivation of the FTF may be found in [13] or [14].  A 

description of the FTF derived for a single-input single-

output (SISO) system with a direct transmission term is 

given by Juang [12] and presented in Table 1.  The FTF 

may be initialized from theoretical values, assuming zero 

initial conditions [14], or based on an offline batch FTF 

solution using pre-recorded data [12].  In this study, the 

latter approach is utilized, employing a forgetting factor, , 

multiplying the old error squares terms in (9) and (21) to de-

emphasize older observations so that new trends will 

become apparent. 

 

 While the FTF can be executed faster than the recursive 

least-squares algorithm, it does suffer from instabilities 

when implemented on a finite precision computer.  Unstable 

modes exist within the filter that are not excited by infinite 

precision arithmetic.  In real systems with finite precision, 

the stability of the filter is dependent upon both the degree of 

precision of the processor as well as the characteristics of the 
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excitation signals [15, 16].  This effect is exacerbated if a 

forgetting factor is used [17].  Slock and Kailath [15] present 

a stabilization solution for the FTF taking advantage of 

quantities in the FTF algorithm that are computed using both 

the forward-time and backward-time estimator.  In infinite 

precision systems these quantities will be calculated to be 

the same for both estimators.  As precision errors are 

introduced, there exists an error between the forward-time 

and backward-time calculations.  Slock and Kailath 

essentially use these errors as feedback signals to stabilize 

the FTF filter.  A simpler method presented by Binde [17] 

will be used in this paper.  In this second method, “leakage 

correction factors” that are less than, but nearly equal to 1 

are introduced into the filter equations (10) and (18) to 

control the propagation of errors.  Soh and Douglas [18] 

confirm the effectiveness of the leakage correction method 

for real-world signals and forgetting factors ( ) that are 

nearly 1. 

 In this study, the FTF is implemented on a finite precision 

microcontroller (fixed-point, 8-bit) with a leakage factor 

included to ensure stability of the filter.  Data is then 

collected and run through the FTF algorithm updating the 

forward-time estimation weighting factors.  Those weighting 

factors corresponding to the characteristic equation are then 

assembled to form its companion matrix.  A QR-

decomposition algorithm [19] is then run on the companion 

matrix to find its eigenvalues which are the roots of the 

characteristic equation and thus, system poles.  This method 

works well when eigenvalues are not repeated, otherwise it 

will run into numerical problems. 

III. NARADA WIRELESS SENSOR 

The wireless sensing platform employed in this study is 

based on the Narada wireless sensor developed at the 

University of Michigan [20].  The sensor is designed around 

Table 1.  Summary of FTF Algorithm 

 

Forward-time Estimation 

data history 

vector, vp[k-1] 
 (5) 

new data 

vector,  
 (6) 

a priori error, 

 
 (7) 

a posteriori 

error,  
 (8) 

error squares, 

 
 (9) 

observation 

weights,  
 (10) 

augmented 

gain,  
 

(11) 

augmented 

conversion 

factor,   
(12) 

decompose 

augmented 

gain 
 (13) 

Backward-time Estimation 

data history 

vector, vp[k] 
 (14) 

data vector, 

 
 (15) 

a priori error, 

 
 (16) 

gain,   (17) 

observation 

weights,  
 (18) 

conversion 

factor,  
 (19) 

a posteriori 

error,  
 (20) 

error squares, 

 
 (21) 

 

 
Fig. 1.  Six-story test structure. 

3916



  

a computational core including the 8-bit Atmel Atmega128 

microcontroller.  It has 128k of flash memory, 4k of SRAM, 

and an additional 128k of external SRAM for data storage is 

included in the sensor design.  The sensing interface consists 

of a 4-channel, 16-bit Texas Instruments (TI) ADS8341 

analog to digital converter (ADC). The communications 

interface consists of a TI CC2420 2.4 GHz spread spectrum 

radio that conforms to the IEEE 802.15.4 protocol.  To 

participate in control networks, the sensor also includes a 2-

channel, 12-bit TI DAC7612 digital to analog converter 

(DAC) as an actuation interface.  

A library of embedded algorithms has been developed for 

the Narada wireless sensor for a number of applications.  

Data collection algorithms are at the core of its operation, 

but additional algorithms including FFT, wavelet transform, 

singular value decomposition, eigenvalue and eigenvector 

solver, static Kalman estimation, state-feedback control, 

peak picking, frequency-domain decomposition, random 

decrement, batch least squares, classical recursive least 

squares, and FTF have been developed for structural health 

monitoring, modal analysis, and feedback control 

applications.  This study will specifically leverage the data 

collection, FTF, and eigenvalue solver algorithms to identify 

and update system poles of the structure being monitored. 

IV. EXPERIMENTAL SETUP 

The test structure that is the subject of this study is a six-

story, one-third scale, steel building located at the National 

Center for Research in Earthquake Engineering (NCREE) at 

National Taiwan University (NTU).  The structure has a 

floor-to-floor height of 1.0 m, width of 1.0 m, and depth of 

1.5 m.  Floors are 2.0 cm thick plates supported on four sides 

by 5 cm x 5 cm L-sections.  The L-sections are bolted to 2.5 

cm x 15 cm bar columns that run continuously the entire 

height of the structure (Fig. 1).  To simulate damage, first 

the structure is stiffened using very stiff chevron bracing 

between adjacent floors.  At the bottom of each brace, 

stiffness elements consisting of 1.0 cm x 10.5 cm plates, 

loaded in their weak direction are connected between the 

bracing and the floor below.  This stiffened structure is 

considered to be the baseline, or initial, undamaged 

structure, that the control models are to be based upon.  

Damage is then introduced by replacing original stiffness 

elements with weaker elements to simulate reduced story 

stiffness due to damage.  Table 2 tabulates which braces are 

used in each damage case (case 1 through 5), Fig. 2 depicts 

the weak bracing elements, while Table 3 summarizes the 

size of the brace elements used. 

The structure is placed on a 5 m x 5 m, 6 degree of 

freedom (DOF) shaking table to simulate earthquake 

excitation.  The structure is then instrumented with a 

network of 19 Narada wireless sensors with accelerometers 

attached, two on each floor measuring acceleration in the 

structure’s weak lateral direction, one on each floor 

measuring acceleration in the structure’s strong lateral 

direction, and one at the base measuring lateral ground 

motion.  The base unit is configured to broadcast ground 

Table 2. Damage case bracing element schedule. 

FLOOR BI 1 2 BII 3 4 5 

6F B3 B3 B3 B3 B3 B3 B3 

5F B3 B3 B3 B3 B3 B3 B3 

4F B3 B3 B3 B3 B3 B3 B3 

3F B3 B3 B3 B3 B3 B2 B3 

2F B3 B3 B3 B3 B2 B1 B3 

1F B3 B2 B1 B3 B1 Removed B4 
 

Table 3. Bracing description. 

 Length Width Thickness 

 (cm) (cm) (cm) 

Columns 95 15 2.5 

Brace B1 21 3 1 

Brace B2 21 5 1 

Brace B3 21 10 1 

Brace B4 10 3 0.5 

 

 

 
Fig. 2. Bracing elements, (a)left to right, B3, B2, and 

B1, (b) B3 installed, (c) B2 installed, (d) B1 installed, 

(e) braces removed. 

(a)

(b) (c)

(d) (e)
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motion measurements to the rest of the network to be used as 

the input signal and, as such, is supplied with a permanent 

power supply whereas the remote units rely on battery packs 

for power.  A tethered data acquisition system is also 

installed on the structure for comparison to the wireless 

system results.  Operation of the wireless system was done 

through a laptop computer with its own CC2420 transmitter.  

Test runs consist of unidirectional (lateral weak direction) 

and bidirectional (both lateral directions) broad spectrum 

excitations of the structure using the shaking table.  

Migration of the system poles is measured through use of a 

migration index adapted from Swartz and Lynch [21]: 

 

 
(24) 

 

V. RESULTS 

An ARX model with equal numbers of inputs and outputs 

and a direct transmission term is constructed for the six-story 

test structure.  A model order of p=36 is required to cause 

the lower frequency poles to converge to the theoretical 

values.  Then the poles corresponding to the lowest set of six 

resonant frequencies are selected for migration tracking as 

these are the poles that would be used in a state-space model 

for feedback control.  The remaining poles are ignored.  Due 

to environmental variability and sensor noise, repeated 

identifications of the system poles will yield small variations 

in pole locations independent of damage.  The result is that 

multiple identification runs will produce roughly Gaussian 

“clusters” of poles around their true locations.  Pole clusters 

of 8 to 14 poles per damage case are calculated (some by 

cabled data to fill out the data set despite limited availability 

of shaking table time).  Those pole clusters corresponding to 

the damage cases of Table 2 are plotted in Fig. 3.  Zoomed 

in views of pole cluster 2 for the twelve weak direction 

sensors are plotted in Fig. 5 to show pole cluster migration.  

Greater losses in stiffness yield greater pole migration.  For 

the revisited baseline case, the pole clusters revert back to 

their original location. 

In order to combine the damage indices that quantify the 

degree of pole migration as well as decide on updated 

system poles to use for control, the network must decide 

which results are most trustworthy by examining the 

expected signal-to-noise ratio (requires mode shapes).  Lack 

of adequate excitation of a given mode at a given sensor will 

produce pole migration results that may not correspond to 

the true changes in the behavior of the system.  Operational 

deflection shapes based on broad-band, white excitation are 

computed from the imaginary portion of the frequency 

response functions at the resonant frequencies.  A damage 

index based on the normalized separation distance between 

the centers of the identified test pole clusters versus the 

baseline pole clusters has been developed.  The resulting 

damage cases (along with their average) are presented in 

Fig. 6.  The separation index also indicates the greater 

degree of pole separation as the properties of the system 

change. 

VI. CONCLUSION 

In this paper a method for updating plant models for 

feedback control in civil structures is presented.  The method 

is computationally efficient and requires minimal 

transmission of data between spatially separated data 

repositories, such as is the case in wireless networks.  A 

separation index developed to track these changes may then 

be used to indicate the severity of the changes in the 

underlying plant.  The updated plant models can be then 

leveraged to update control gains using pole placing 

techniques and improve controller performance. 

The time required to compute an updated system model 

on the embedded system is highly dependent upon both 

model size and model structure both due to the relatively 

 
Fig. 3. Identified poles in the upper right quadrant of the 

unit circle for baseline (BI and BII) and damage cases 1-5. 

 

 
 

Fig. 4.  Stability diagram generated by the 5
th

 floor, front 

sensor. 
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high computational overhead inherent in this sort of power-

constrained system and the more stringent bandwidth 

limitation inherent in wireless networking.  For the model 

sizes and architecture used in this study, the algorithm runs 

at approximately 15 Hz, meaning that it will run behind real-

time applications, updating the model periodically rather 

than continuously.  The advantage of this approach over 

more network-centric system identification approaches (e.g. 

the Eigenvalue Realization Algorithm or Subspace 

Identification) is that it produces a reasonable solution while 

minimizing the amount of raw data transmission, which 

incurs not only significant additional (and non-deterministic) 

latency, but quickly exhausts battery power through radio 

usage.  As with any engineering algorithm, speed, accuracy, 

cost, and power requirements must be carefully considered. 

REFERENCES 

 

[1]  G. W. Housner, L. A. Bergman, T. K. Caughey, A. G. 

Chassiakos, R. O. Claus, S. F. Masri, R. E. Skelton, T. T. Soong, 
B. F. Spencer Jr., and J. T. P. Yao, "Structural control: past, 

present, and future," Journal of Engineering Mechanics, vol. 

123, pp. 897-971, 1997. 
[2]  T. T. Soong, Active Structural Control: Theory and Practice. 

Essex, England: Longman Scientific and Technical, 1990. 

[3]  B. F. Spencer and S. Nagarajaiah, "State of the art of structural 
control," Journal of Structural Engineering, vol. 129, pp. 845-

856, 2003. 

[4]  N. Kurata, T. Kobori, M. Takahashi, N. Niwa, and H. 
Midorikawa, "Actual seismic response controlled building with 

semi-active damper system," Earthquake Engineering and 

Structural Dynamics, vol. 28, pp. 1427-1447, 1999. 

[5]  P.-Y. Lin, P. N. Roschke, and C.-H. Loh, "System identification 

and real application of a smart magneto-rheological damper," 
presented at 2005 International Symposium on Intelligent 

Control, Limassol, Cyprus, 2005. 

[6]  S. J. Dyke, B. F. Spencer Jr., and M. K. Sain, "An experimental 
study of MR dampers for seismic protection," Smart Materials 

and Structures, vol. 7, pp. 693-703, 1998. 

[7]  R. A. Swartz and J. P. Lynch, "Strategic Utilization of Limited 
Bandwidth in a Wireless Control System for Seismically Excited 

Civil Structures," Jornal of Structural Engineering, In Press. 

[8]  M. Celebi, "Seismic Instrumentation of Buildings (with 
emphasis on federal buildings)," United States Geologic Survey 

(USGS), Menlo Park, CA, U.S.A. 0-7460-68170, 2002. 

[9]  E. Straser and A. S. Kiremidjian, "Modular, Wireless Damage 
Monitoring System for Structures," John A. Blume Earthquake 

Engineering Center, Stanford, CA 128, 1998. 

[10]  Y. Wang, R. A. Swartz, J. P. Lynch, K. H. Law, K.-C. Lu, and 
C.-H. Loh, "Decentralized civil structural control using real-time 

wireless sensing and embedded computing," Smart Structures 

and Systems, vol. 3, pp. 321-340, 2007. 
[11]  L. Ljung, System Identification, Theory for the User, 2nd ed. 

Upper Saddle River, NJ: Prentice Hall, 1999. 

[12]  J.-N. Juang, Applied System Identification. Upper Saddle River, 
NJ: Prentice Hall, 1994. 

[13]  J. M. Cioffi and T. Kailath, "Fast, Recursive-Least-Squares 

Transversal Filters for Adaptive Filtering," IEEE Transactions 
on Accoustics, Speech, and Signal Processing, vol. ASSP-32, 

pp. 304-337, 1984. 
[14]  S. Haykin, Adaptive Filter Theory, 2nd ed. Englewood Clifs, NJ: 

Prentice Hall, 1991. 

[15]  D. T. M. Slock and T. Kailath, "Numerically Stable Fast 
Transversal Filters for Recursive Least Squares Adaptive 

Filtering," IEEE Transactions on Signal Processing, vol. 39, pp. 

92-114, 1991. 
[16]  S. Haykin, Adaptive Filter Theory, vol. 3rd. Upper Saddle River, 

NJ: Prentice Hall, 1996. 

[17]  S. Binde, "A Numerically Stable Fast Transversal Filter with 
Leakage Correction," IEEE Signal Processing Letters, vol. 2, pp. 

114-116, 1995. 

[18]  J. K. Soh and S. C. Douglas, "Analysis of the stabilized FTF 
Algorithm with Leakage Correction," presented at 1996 30th 

Asilomar Conference on Signals, Systems & Computers, Pacific 

Grove, CA, USA, 1997. 
[19]  W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. 

Vetterling, Numerical Recipes in C: The Art of Scientific 

Computing, 2nd ed. Cambridge, U.K.: Cambridge University 
Press, 1992. 

[20]  A. Swartz, D. Jung, J. P. Lynch, Y. Wang, D. Shi, and M. P. 

Flynn, "Design of a wireless sensor for scalable distributed in-
network computation in a structural health monitoring system," 

presented at 5th International Workshop on Structural Health 

Monitoring, Stanford, CA, 2005. 
[21]  R. A. Swartz and J. P. Lynch, "Damage Characterization of the 

Z24 Bridge by Transfer Function Pole Migration," presented at 

Proceedings of the 26th International Modal Analysis 
Conference (IMAC XXVI), Orlando, FL, U.S.A., 2008. 

 

 

 
Fig. 6.  Separation index results by damage case. 
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Fig. 5. Pole cluster migration by damage case for the first 

two modal frequencies. 
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