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Abstract—In recent years, networked control systems have
gained the attention of the control community, since they allow
to re-use the preexisting infrastructure therefore reducing de-
ployment time and costs. Unfortunately, they also introduce new
control challenges due to the nondeterministic network behavior.
Predictive and model-based approaches can be used to compen-
sate both delays and packet dropouts. However, a common time-
frame among the involved components –sensors, actuators, plants
and controllers– is required. This brings normally the necessity
of keeping inner-clocks synchronized, which at the current state
of art can be hard to realize. In this paper, a possible solution
for the synchronization problem is presented. The idea is to
keep using predictive techniques but utilizing a unique inner-
clock on the system side. Assuming that actuator and sensor are
directly connected to the system, the packets are time stamped,
the delays are bounded, the maximum round-trip-time is known,
and a limited amount of information is lost, it is possible to use
model predictive control to stabilize the closed loop system by
compensating delays and packet dropouts.

Index Terms—nonlinear continuous systems, networked con-
trol systems, stability, nondeterministic networks, packet
dropouts, nonlinear model predictive control

I. INTRODUCTION

Recent developments in communication technologies and

the massive spread of wired and wireless networks have casted

a new light on the way of interpreting closed loop control sys-

tems. The idea of dedicated communication channels between

systems and controllers are leaving room to shared communi-

cation media like Internet. Networked Control Systems (NCSs)

offer the major advantage of re-using a preexisting infrastruc-

ture and consequently reduce considerably startup time and

costs. At the same time, they provide a robust framework

to counteract component failures more efficiently thanks to

components redundancy. Nevertheless, NCSs introduce a lot

of new challenges, such as (nondeterministic) delays and/or

(unpredictable) information losses. This can obviously reduce

the system performance and also lead to instability.

At the state of art, most of the attention has been paid

on linear NCSs, while only a few works have focused on

nonlinear ones –see [1]–[6] for an overview on NCSs–. Model

Predictive Control (MPC) has demonstrated to be a good tool

to counteract delays, as shown inter alia in [7], [8]. In [8],

a MPC approach able to guarantee asymptotic convergence

under the presence of nondeterministic delays and packet

dropouts was presented. However, as commonly assumed in

the NCSs literature, the proposed solution requires a set

of synchronized clocks among the components –controllers,

P. Varutti and R. Findeisen are with the Institute of Automation
Engineering, Otto-von-Guericke University, 39016 Magdeburg, Germany
{paolo.varutti, rolf.findeisen}@ovgu.de

actuators, sensors, and systems– in order to provide a common

time-frame for solving the delays. Although this might work

for slow dynamical systems, it becomes an issue for fast

ones, since it might be hard to keep sufficiently highly precise

synchronization.

In this paper, a possible way to avoid synchronization is

presented. Considering a nonlinear system where actuator and

sensor are directly incorporated into the system, an MPC

scheme which does not require clocks synchronization is

introduced. In this way, it can be easily applied both to slow

and fast dynamical systems. The presented method can deal

not only with nondeterministic delays in both the sensor-

and the actuator-channel, but also with limited amounts of

information losses.

In Section II, the overall problem is introduced. The pro-

posed method is presented in Section III. Finally, simulation

results on a continuous stirred tank reactor (CSTR) and an

inverted pendulum on a cart are provided in Section IV.

II. PROBLEM STATEMENT

Consider the nonlinear continuous time system

ẋ(t) = f (x(t),u(t)), x(0) = x0, (1)

x(t) ∈ X ⊆ R
n, and u(t) ∈ U ⊂ R

m, (2)

where (2) denote state and input constraints. It is assumed that

U is compact, X is connected, and (0,0) ∈ X×U.

f : R
n ×R

m → R
n is locally Lipschitz continuous, and such

that f (0,0) = 0. It is assumed that the whole state is available

only a discrete instants ti ∈ π , where π is a time partition

defined as follows:

Definition (Partition): Every series π = (ti), i∈ N of positive

real numbers such that t0 = 0, ti < ti+1 and ti → ∞ is called

partition.

The objective is to stabilize the system around the origin under

the state and input constraints (2), i.e. ‖x(t)‖→ 0 for t → ∞.

A. Sampled-data MPC

Consider the nonlinear continuous time system (1)-(2).

Sampled-data MPC is based on the repeated solution of an

open loop control problem, based on the state measurement at

the time ti, under the constraints (2). The controller predicts

the system behavior over a prediction horizon Tp, such that

a specific objective functional is minimized. The procedure is

repeated at every recalculation instant ti ∈ π . This is mathe-

matically formulated as1

1Assuming for simplicity that a minimum is obtained.
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Fig. 1. Sketch of an NCS. The black arrows indicate that packet dropouts
can occur in both links.

min
u(·)

∫ ti+Tp

ti

F(x(τ),u(τ))dτ + E(x(ti + Tp)), (3a)

s.t. ẋ(t) = f (x(t),u(t)), x(ti) = x(ti), (3b)

u(t) ∈ U, t ∈ [ti,ti+1), (3c)

x(t) ∈ X, (3d)

x(ti + Tp) ∈ E , (3e)

where · denotes the controller internal variables. It is assumed

that the cost function F : X × U → R is locally Lipschitz

continuous with F(0,0) = 0 and F(x,u) > 0, ∀(x,u) ∈ X ×
U \ (0,0). The obtained input is applied open loop in between

recalculation instants, i.e.

u(τ) = u∗(τ;x(ti)),τ ∈ [ti,ti + δc), (4)

where δc is defined as:

Definition (Recalculation time): Given two consecutive re-

calculation instants ti, ti+1, the time interval between them

δc = (ti+1 − ti) is called recalculation time.

By properly choosing the cost functional F(·), the terminal

cost E(·), the terminal region E ⊂ X, and the prediction

horizon Tp, stability of the closed loop can be achieved (refer

to [9], [10] for more details).

B. Control over Communication Networks

When the control loop is closed through a shared commu-

nication network the exchanged information can be subject to

delays and packet dropouts. In Fig. 1 a sketch of an NCS

is reported, where τsc(t) represents the measurement delays,

while τca(t) the actuation delays. The loss probabilities in

the actuation and the measurement are respectively referred

as pca(t) and psc(t). The following assumptions are made:

Assumption 1: All exchanged information is time-stamped.

Assumption 2: All delays are bounded, i.e.

τsc(t) ∈ [0, τmax
sc ], and τca(t) ∈ [0, τmax

ca ], (5)

and τmax
sc/ca

are known.

Assumption 3: Sensors and actuators are directly connected

to the system and they share a local clock.

Remark 1: Assumption 1 and 2 are common assumptions

for NCSs. Moreover, having sensors and actuators directly

connected to the system does not represent such a strict

assumption. In fact, it is quite a common setup when dealing,

for instance, with teleoperation and autonomous unmanned

vehicles (AUV), e.g. space rovers, where the controller cannot

be directly attached to the system.

III. PROPOSED METHOD

In this paper, MPC is used to cope with the network nonde-

terminism. As already seen in [7], [8], by using time-stamped

information and a local model of the system at the controller

side, (nondeterministic) bounded measurement delays can be

compensated. Furthermore, as investigated in [8], [11], [12],

dispatching long pieces of input trajectories, together with

the use of playback buffers, can compensate actuation and

computational delays, as well as information losses. In this

work the notion of prediction consistent feedback2 introduced

in [8] is used to deal with packet dropouts.

A. Compensation of measurement and actuation delays

Assume for the moment that no information is lost. The

presence of τsc(t) in the down-link means that the state of

the system measured at ti, x(ti), is available to the controller

only at (ti + τsc(ti)), i.e. the information received by the

controller does not correspond to the current state of the

systems. Additionally, the absence of a common synchronized

clock between system and controller does not allow to easily

compensate neither τsc(ti) nor τca(ti +τsc(ti)), as shown in [8].

The main challenge is to ensure that, although the delays are

nondeterministic, the input trajectory is well defined. From (5)

both τsc(·) and τca(·) are bounded, i.e. the maximum Round

Trip Time (RTT) is known.

The idea behind the algorithm is to use exclusively the clock

at the system side, available –from Assumption 3– both to the

sensor and the actuator, and let the controller solve the optimal

control problem for the maximum RTT (worst case compensa-

tion). The obtained input trajectory is then entirely sent to the

actuator, but applied only starting from (ti +RTT max). In this

way, no synchronization between the controller and system is

anymore required. The overall algorithm is reported in Table

I.

If MPC with this compensation mechanism is used, then

one can prove that the following theorem holds.

Theorem 3.1 (Worst Case Compensation):

Consider the closed loop system given by (1)-(3). Suppose

there is an invariant set E and terminal penalty E such that

i) E ∈ C1, E(0) = 0, and E ⊂ X is closed, connected and

containing the origin.

ii) ∃Tp such that

Tp > δ max
c + τmax

sc + τmax
ca ≡ δ max

c + RTT max, (9)

2The definition of prediction consistent feedback will be recalled later.
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TABLE I

Algorithm 1 (Worst Case Compensation):

∀ti ∈ π; t = current time (system’s side);
Sensor:

1) Measure x(ti).
2) Send [x(ti)|tsi], with tsi = ti , to the controller.
3) Go to 1.

Controller:

control_input = {[u∗(·)|ts0]};

1) [x(ti)|tsi] arrives.
2) Calculate

x(ti + τmax
sc + τmax

ca ) = x(ti)+
∫ ti+τmax

sc +τmax
ca

ti

f (x(τ),u(τ))dτ , (6)

where

u(τ) ≡ u∗(τ ;x(ti)) ∈ control_input, (7)

for τ ∈ [ti,ti + τmax
sc + τmax

ca ].

3) Solve the optimal control problem for (6) −→

u∗(τ ;x(ti + τmax
sc + τmax

ca )),τ ∈ [ti + τmax
sc + τmax

ca ,ti +Tp). (8)

4) Send [u∗(τ ;x(ti + τmax
sc + τmax

ca ))|tsi],
with tsi = (ti + τmax

sc + τmax
ca ).

5) Insert [u∗(τ ;x(ti + τmax
sc + τmax

ca ))|tsi] in control_input.
6) Go to 1.

Actuator:

buffer = {[u∗(·)|ts0], . . . , [u
∗(·)|tsn]}, for ts0 < t < ts1 . . . < tsn;

applied_input = [u∗(·)|ts0];

1) If [u∗(·)|tsi] arrives

a) Insert [u∗(·)|tsi] in buffer.
b) “Sort” buffer by increasing tsi.
c) temp = first element of buffer.

2) If tstemp = t

a) applied_input = temp.
b) Remove first element from buffer.

3) Go to 1.

where δ max
c = maximum recalculation time, while

RTT max = τmax
sc + τmax

ca = maximum RTT.

iii) ∀x0 ∈ E , ∃u(τ) ∈ U, τ ∈ [0,Tp] such that

x(τ) ∈ E , (10a)

for ẋ(τ) = f (x(τ),u(τ)),x(0) = x0, (10b)

and
∂E

∂x
f (x(τ),u(τ))+ F(x(τ),u(τ)) ≤ 0. (10c)

iv) The optimal control problem is feasible for a time t0.

v) The compensation algorithm in Table I is used.

Then lim
t→∞

‖x(t)‖ = 0, i.e. asymptotic converge to the origin is

achieved.

Proof: See Appendix.

Remark 2: Condition (9) follows from the fact that the input

must be defined for every recalculation interval δc. It is easy

to show that since (8) is dispatched to the actuator, and that

the definition interval must be

[ti + τmax
sc + τmax

ca , ti+1 + τmax
sc + τmax

ca ),

whose right extreme can be upper-bounded by (ti +δ max
c τmax

sc +
τmax

ca ), (9) is a necessary condition.

Remark 3: Only knowledge on the maximum RTT is re-

quired in order to choose a properly long Tp and thus cope

effectively with the delays. Algorithms and communication

protocols are already available to estimate in real-time the RTT

–see [13] for an overview–.

B. Packet dropouts compensation

The presence of packet dropouts introduces a further degree

of uncertainty on the system. In fact, while when a packet

is dropped on the down-link the system still works as an

open loop, if some information is dropped on the actuation

side the controller cannot be sure anymore on which input is

applied to the system, and therefore not only stability might

be compromised, but it is also impossible to obtain a correct

prediction (6), since (7) might differ from the input applied

by the actuator.

A solution similar to Algorithm 1 can be used. If a suffi-

ciently long prediction horizon Tp is utilized, and the mismatch

between (7) and the applied input is negligible, it shall be

possible to counteract packet dropouts, as soon as the number

of consecutive losses are shorter than Tp. Thus, to ensure

asymptotic convergence u(τ) must meet further requirements.

As presented in [8], we require the control trajectories to be

prediction consistent.

Definition (Prediction consistent feedback): Given the re-

calculation partition π , and the terminal set T ⊆ X ⊆ R
n,

the feedback u(·) is called prediction consistent if for every

recalculation time ti ∈ π , u(·;x(ti)) ∈ U, and, given two input

trajectories uk(·;x(tk)), uh(·;x(th)) obtained at the recalcula-

tion times tk < th, the predicted states of the system (1),

x(t j;uk(·;x(tk))), x(t j;uh(·;x(th))) at the recalculation time

t j > th, obtained by applying the former inputs, belong to the

same controllable set Si(X,T) of the corresponding sampled-

data system, ∀t j ∈ π .

This means that the concatenation of successive input tra-

jectories must satisfy some smoothness properties in the state

prediction in order to avoid the system destabilization. An

exemplification of the former definition can be found in in

Fig. 2.

Fig. 2. Example of prediction consistent feedbacks.

Remark 4: The use of an acknowledgment mechanism

would guarantee (7) to be equal to the input applied by the
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actuator. This can be seen as a special case of prediction

consistency, which can be referred as input consistency, i.e.

since the trajectories on both side are the same, predictions

will be consistent.

It can be proved that by using prediction consistent feed-

backs and the compensation approach in Table I, the following

theorem holds.

Theorem 3.2 (Packet Dropouts Compensation):

Consider the closed loop system (1)-(3). Suppose there is an

invariant set E , a terminal penalty E, and a prediction horizon

Tp such that

i) Theorem 3.1 is verified.

ii) Tp is chosen such that

Tp > τmax
sc + τmax

ca + n ·δ max
c ,

where n = number of consecutive losses in both the up-

and down-link.

iii) u(τ) ∈ U is prediction consistent for the terminal region

E .

Then lim
t→∞

‖x(t)‖ = 0, i.e. asymptotic converge to the origin is

achieved.

Proof: The proof follows from Theorem 3.1. The use

of prediction consistent feedbacks guarantees a negligible

mismatch between (7) and the applied input, allowing to prove

feasibility and convergence similarly to 3.1.

Remark 5: Theoretically, if it were possible to choose Tp =
∞, packet dropouts would not have any effect on the system.

However, the prediction consistent feedback requirement will

decrease the robustness performance.

Remark 6: Notice that Theorem 3.1 and 3.2 can guarantee

only asymptotic convergence but not asymptotic stability in the

sense of Lyapunov. This means that the system can temporary

drift away from the origin, but in the long run it will eventually

reach the equilibrium point –see, for example, Fig. 4, Section

IV–.

IV. SIMULATION RESULTS

To test the effectiveness of the method presented in Section

III two benchmark systems are considered:

• A continuous stirred-tank reactor (CSTR).

• And, an inverted pendulum on a cart.

A. Example 1: CSTR

The CSTR taken into account, presented in [14], consists

of an irreversible exothermic reaction, A → B, in a constant

volume reactor, cooled by a single coolant stream. The system

is modeled by the following equations:

ĊA(t) =
q

V
(CA0 −CA(t))− k0CA(t)e

− E
RT (t)

Ṫ (t) =
q

V
(T0 −T (t))−

(

k0∆H

ρCp

)

CA(t)e
− E

RT (t)

+

(

ρcCpc

ρCpV

)

qc(t)

[

1− e
−hA

qc(t)ρcCpc

]

(T0 −T(t)).

The values of the parameters are reported in Table II. The

TABLE II
NOMINAL CSTR PARAMETER VALUES.

Process flow rate Q 100 l/min
Feed concentration CA0 1 mol/l
Feed temperature T0 350 K
Inlet coolant temperature Tc0 350 K
CSTR volume V 100 l

Heat transfer term hA 7 ·105 cal/min K

Reaction rate constant k0 7.2 ·1010 l/min

Activation energy term E/R 1 ·104 K

Heat of reaction ∆H −2 ·105 cal/mol

Liquid densities ρ , ρc 1 ·103 g/l
Specific heats Cp, Cpc 1 cal/g K

objective is to control the concentration CA(t), by manipulating

the coolant flow rate qc(t). It is assumed that the system is

connected to a remote controller through a shared communica-

tion network, where the measurement channel is affected by

a delay τsc(t) modeled as a uniform probability distribution

U (18,36), i.e. τsc ∈ [18,36] seconds. Similarly, the actuation

link is supposed to be subject to a delay τca(t) modeled as

well as a uniform probability distribution U (9,18) seconds.

No information loss affects the communication. The results for

the CSTR are shown in Fig. 3, where the non-compensated and

the compensated closed loop system behaviors are depicted.

Remark 7: For the given configuration one can also consider

that the delays/losses are a result of operators collecting

measurements and implementing the control on the plant.

As one can see from simulation example, the proposed MPC

approach is able to compensate effectively both actuation and

measurement delays. On the contrary, if no compensation is

utilized, the controller either is no able to stabilize the system

or unpleasant oscillations in CA(t) occur.

B. Example 2: Inverted pendulum on a cart

To demonstrate the effectiveness of the method also against

packet losses, an inverted pendulum on a cart is taken into

consideration. The system is described by the equations

ẋ1(t) = x2(t)

ẋ2(t) =
mLcos(x1(t))sin(x1(t))x2

2(t)−g(M+m)sin(x1(t))+cos(x1(t))u(t)

mLcos2(x1(t))− 4
3 (m+M)L

,

where attention was paid solely on the pendulum dynamics,

described by x1, pendulum position, and x2, angular speed.

The parameters of the pendulum are respectively m = 0.3 Kg,

M = 1 Kg, and L = 1.2 m.

A first simulation with only packet losses is considered.

This can happen for instance when a UDP-like protocol is

used for communication purposes. It is assumed that, due to

the network dynamics, 30% of the packets in the actuation

link are lost, i.e. pca = 0.3. The loss probability is modelled

as uniformly distributed variable. Fig. 4 shows the comparison

between the non-compensated case and the formerly described

approach. As one can see, while the nominal controller without

compensation is not able to stabilize the origin, the presented
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Fig. 3. CSTR: Evolution of CA(t) with and without delay compensation.

method can bring the system to the unstable equilibrium

point even though such a considerable amount of the control

information is lost during the communication.

In a second simulation, delays and losses are taken into

account. This time it is assumed that an actuation delay of

0.05 seconds affects the up-link, while there is a measurement

delay of 0.1 seconds in the down-link. Furthermore, a loss

probability pca = 0.2 is considered. Fig. 5 shows the closed

loop behavior of the system for the non-compensated case

(dashed line) and the results obtained with the proposed

method (solid line).

As one can see from the graph, the controller both stabilizes

the system and exhibits good performance.

V. CONCLUSIONS

In this paper, the problem of inner-clock synchronization

in NCSs has been studied. The problem is commonly present

in the available control design methods for NCSs, since it

is generally assumed that a common time-frame is available

among the network components –sensors, actuators, systems,

controllers–. However, this represent a major challenge in

the automation industry especially for fast dynamical systems

since it is hard to keep inner-clocks synchronized with each

other. A possible solution for the problem has been presented.

In particular, by imposing the further restriction that sensors

and actuators are directly attached to the system, and that

they are able to access the system’s inner-clock, it is possible,

without requiring any synchronization, to counteract both mea-

surement and actuation delays by means of predictive control

techniques. This requires some special actuators, called smart-

actuators, which have the additional capability of buffering

the received information and applying it at the proper time.

The proposed approach abstracts from the underlying network

protocols, since they can be always represented as additional

delays. Moreover, the proposed solution is valid also for

nonlinear NCSs, for which only a few results are available so

far. Eventually, the method can be easily extended to deal with

packet dropouts. In this case, in order to ensure closed loop

stability the generated control trajectories must be prediction

consistent. The proposed method was tested by simulation on

a CSTR afflicted by measurement and actuation delays, and

an inverted pendulum on a cart, where also packet dropouts

were included. As it can be seen, asymptotic convergence and

good performance can be guaranteed.
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asynchroner prädiktiver Regelungsverfahren für digital vernet-

zte Systeme”.

APPENDIX

Proof of Theorem 3.1

The problem is to ensure that an input u(τ)∈U is well defined

at every time. The proof is articulated in two parts: Feasibility

and convergence.

Feasibility: Consider any time tsi = (ti + τmax
sc + τmax

ca ) for

which the optimal control problem is feasible, e.g. t0 = 0. By

applying the algorithm reported in Table I, the corresponding

optimal input trajectory u∗(τ;x(tsi)) ∈ U, resulting from (6)

based on the measurement x(ti), is implemented for τ ∈
[tsi,tsi+1). Thus, by using the former input the system is led to

x(tsi+1), which, assuming there is no model mismatch, must be

equal to the real state x(tsi+1). Moreover, the remaining piece

of optimal trajectory u∗(τ;x(tsi+1)), for τ ∈ [tsi+1,tsi + Tp] is

admissible and such that the state x(tsi + Tp) ∈ E is reached.

From Theorem 3.1.iii), ∃u(·) for which E is an invariant set.

One can consider for example the following candidate input:

ũ(τ) =

{

u∗(τ;x(tsi)) ,τ ∈ [tsi+1,tsi + Tp]
u(τ) ,τ ∈ (tsi + Tp,tsi+1 + Tp]

, (11)

where u∗(τ;x(tsi)) is the remaining part of the old optimal

input. (11) is admissible and leads to x(tsi+1 + Tp) ∈ E .

It follows that by induction feasibility at time tsi implies

feasibility at tsi+1.

Convergence: Denote the optimal cost function at tsi as

the value function V (x(tsi)) = J∗(u∗(·),x(tsi)), where x(tsi)
is obtained as in (6). This can be written as

V (x(tsi)) =

∫ tsi+Tp

tsi

F(x(τ;x(tsi)),u
∗(τ;x(tsi))dτ + E(x(tsi + Tp)).
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The cost resulting from the application of ũ(·) at time tsi+1,

starting from the compensated prediction x(tsi+1) is provided

by

J(ũ(·),x(tsi+1)) =

∫ tsi+1+Tp

tsi+1

F(x(τ;x(tsi+1)), ũ(τ))dτ

+E(x(tsi+1 + Tp)).

This can be reformulated in terms of V (x(tsi)) as

J(ũ(·),x(tsi+1)) = V (x(tsi))

+

∫ tsi+1+Tp

tsi+Tp

F(x(τ;x(tsi+1)), ũ(τ;x(tsi+1))dτ

−

∫ tsi+1

tsi

F(x(τ;x(tsi)),u
∗(τ;x(tsi)))dτ

−E(x(tsi + Tp))+ E(x(tsi+1 + Tp))

By integrating (10c) over τ ∈ [tsi +Tp,tsi+1 +Tp), the last three

terms can be upper bounded by zero. Thus,

V (x(tsi))− J(ũ(·),x(tsi+1)) ≤

−
∫ tsi+1

tsi

F(x(τ;x(tsi)),u
∗(τ;x(tsi)))dτ.

But since ũ(·) is not necessarily optimal, i.e. J(ũ(·),x(tsi+1))≤
V (x(tsi+1)), the former expression can be rewritten as

V (x(tsi)) − V (x(tsi+1)) ≤

−

∫ tsi+1

tsi

F(x(τ;x(tsi)),u
∗(τ;x(tsi)))dτ,

which is strictly decreasing for (x,u) 6= (0,0). Since no model

mismatch is assumed, similarly to [9], by applying a variant

of the Barbalat’s lemma convergence to the origin for t → ∞
is established. �

0 0.5 1 1.5 2 2.5 3 3.5 4
−40

−20

0

20

C
o

n
tr

o
l

A
c
ti
o

n
 [

N
]

0 0.5 1 1.5 2 2.5 3 3.5 4
desp.

lost

Time [sec]

P
a

c
k
e

t
D

ro
p

o
u

ts

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

P
o

s
it
io

n
[r

a
d

]

 

 

With Compensation

No Compensation

Reference

Fig. 4. Simulation 1: Inverted pendulum with packet dropouts.
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Fig. 5. Simulation 2: Inverted pendulum with delays and packet losses.
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