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Abstract— We propose a framework to solve a closed-loop,
optimal tracking control problem for a parabolic partial dif-
ferential equation (PDE) via diffusivity, interior, and boundary
actuation. The approach is based on model reduction via
proper orthogonal decomposition (POD) and Galerkin pro-
jection methods. A conventional integration-by-parts approach
during the Galerkin projection fails to effectively incorporate
the considered Dirichlet boundary control into the reduced-
order model (ROM). To overcome this limitation we use
a spatial discretization of the interior product during the
Galerkin projection. The obtained low dimensional dynamical
model is bilinear as the result of the presence of the diffusivity
control term in the nonlinear parabolic PDE system. We design
a closed-loop optimal controller based on a nonlinear model
predictive control (MPC) scheme aimed at bating the effect
of disturbances with the ultimate goal of tracking a nominal
trajectory. A quasi-linear approximation approach is used to
solve on-line the quadratic optimal control problem subject to
the bilinear reduced-order model. Based on the convergence
properties of the quasi-linear approximation algorithm, the
asymptotical stability of the closed-loop nonlinear MPC scheme
is discussed. Finally, the proposed approach is applied to the
current profile control problem in tokamak plasmas and its
effectiveness is demonstrated in simulations.

I. INTRODUCTION

In this work, we focus on a 1-D parabolic PDE with

diffusivity, interior, and boundary control inputs over Ω =
{(x,t) : |0 ≤ x ≤ 1, 0 ≤ t ≤ T}, which is governed by

∂θ(x,t)
∂ t

=u1(t)
[

h0(x)
∂θ 2(x,t)

∂x2 +h1(x)
∂θ(x,t)

∂x
+h2(x)θ (x,t)

]

+ h3(x)u2(t),
(1)

with nonhomogeneous Dirichlet boundary conditions

θ (0,t) = 0, θ (1,t) = k3u3(t), (2)

where θ (x,t) represents the system state; u1(t), u2(t) and

u3(t) denote the diffusivity, interior and boundary controls

respectively and ∀ t, u1(t) > 0, u2(t) > 0 and u3(t) > 0;

h0(x), h1(x), h2(x) and h3(x) are functions of the space

coordinate and ∀ x ∈ [0,1], h0(x) > 0; and k3 is a constant

coefficient. The control objective is to make θ (x,t) track

a prescribed spatiotemporal profile for any arbitrary initial

condition θ0(x), minimizing at the same time the control

effort.
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The control of parabolic diffusion-reaction partial differen-

tial equations (PDE) such as (1) has been extensively studied

using interior control (defines a feedback control law for

u2(t) in (1)), usually making use of model reduction tech-

niques (see [1] and references therein) or boundary control

(defines a feedback control law for u3(t) in (1)) (see [2]

and references therein). Control through u1(t) in (1), named

diffusivity control here, has been rarely considered before.

However, the diffusivity coefficient is not necessarily fixed

or uncontrollable in some applications. For example, the

diffusivity control problem arises in the control of the current

density profile in magnetically confined fusion plasmas [3],

where physical actuators such as plasma total current, line-

averaged density and non-inductive total power are used

to steer the plasma current density to a desired profile in

a designated time period. By modulating these physical

actuators it is possible not only to vary the amount of non-

inductive current driven into the system (interior control) and

the total plasma current (boundary control) but also to modify

the resistivity of the plasma (diffusivity control). Another

example can be found in the area of flow control [4]. In [4],

a saturated flow through a one-dimensional idealized tube

packed with soil is considered. The soil contains contaminant

samples and a fluid is pumped through the tube (from left to

right) to remove the contaminants. The velocity of the fluid

pumped into the tube is considered as the control variable

which appears as the convective coefficient in the convective-

diffusive PDE system governing the contaminant concentra-

tion. In terms of controllability, it has been demonstrated that

bilinear controls can improve the controllability obtained by

just using either interior or boundary controls (see, e.g., [5]

and references therein). We propose in this paper a nonlinear

model predictive control (MPC) scheme that makes use of

the three types of actuation to solve the optimal tracking

control problem described above.

Model predictive control, also referred to as moving

horizon control or receding horizon control, has become an

attractive feedback strategy. In the last two decades, several

formulations have been developed for linear and nonlinear

systems [6], [7] finding many successful applications, partic-

ularly in the process industry [8]. The use of MPC schemes

for the control of PDE systems is part of the literature in this

field [9], [10]. In prior work, accurate high order dimension

models are usually accounted for. The drawback of the use

of infinite-dimensional PDE models is that the computational

burden associated with the on-line optimization procedure

may make the implementation of this control strategy simply

unfeasible for not sufficiently slow dynamical systems.
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Several methods have been proposed to deal with the

infinite-dimensionality and the complex computational re-

quirements associated with feedback control of PDE systems.

Dufour and coworkers [11] adapted MPC with internal model

control (IMC) structure where the nonlinear PDE system

(solved off-line) and a linearized PDE system (solved during

the on-line optimization task) are both used in order to

decrease the computational burden. A MPC scheme for

output control of hyperbolic PDE systems based on the

method of characteristics has been proposed by Shang [12].

Model reduction by inertial manifold theory and partition of

the eigenspectrum of the PDE operator has been proposed

by Christofides and coworkers [13], and a MPC scheme for

linear parabolic PDE systems is presented in [14].

In this paper we use proper orthogonal decomposition

(POD) [15] and Galerkin methods to obtain a low di-

mensional dynamical model for the nonlinear PDE system

(1) with the ultimate goal of reducing the computational

burden associated with the optimization procedure. Dirichlet

boundary control cannot be effectively incorporated into the

reduced-order model by following a conventional integration-

by-parts approach during the Galerkin projection. Specific

difficulties in Dirichlet boundary control problems result

from the fact that they are not of variational type [16].

Inspired by [17], we overcome this problem by using a spatial

discretization of the interior product during the Galerkin

projection and employing the end-point-separation method.

The obtained low dimensional dynamical model is bilinear

as the result of the presence of the diffusivity control term

in the nonlinear parabolic PDE system (1). To quickly com-

pute the solution of the optimal control problem associated

with the MPC scheme and subject to this bilinear system,

we follow a successive approach based on a quasi-linear

approximation algorithm [18], [19]. As shown in [20], a

general MPC scheme does not guarantee closed-loop sta-

bility because a finite-horizon criterion is not designed to

guarantee an asymptotical property such as stability. Closed-

loop stability can only be obtained by suitable tuning of the

design parameters such as prediction horizon, control horizon

and weighting matrices. Therefore, stability of the proposed

nonlinear MPC scheme is discussed.

This paper is organized as follows. In Section II, we

discuss the model reduction based on POD/Galerkin pro-

jection and the end-point-separation method to integrate the

Dirichlet boundary control into the reduced order model.

After obtaining a low dimensional bilinear system, we state

in Section III the optimal tracking control problem. We

propose in Section IV an infinite-horizon nonlinear MPC

scheme, where a quasi-linear approximation method is used

to solve the associated open-loop optimal control problem

on-line. In Section V, we discuss feasibility and stability of

the proposed nonlinear MPC scheme. Section VI illustrates

the effectiveness of the proposed feedback controller in

addressing the current profile control problem in tokamaks.

Finally, conclusions and future work are presented in Sec-

tion VII.

II. MODEL REDUCTION WITH

END-POINT-SEPARATION

A. POD Modes

We simulate the parabolic PDE system on the grid Qi j =
(xi,t j), where i, j are integers with 1 ≤ i ≤ m;1 ≤ j ≤ n. The

set V = span{θ1, · · · ,θn} ⊂ R
m refers to a data ensemble

consisting of the snapshots {θ j}n
j=1 obtained from the sim-

ulation. We let {ϕk}d
k=1 be the orthonormal basis of the data

ensemble V , where d = dimV ≤ m. The goal of the POD

method is to find a subset of the orthonormal basis {ϕk}d
k=1

such that for some predefined 1 ≤ l ≤ d the reconstruction

error for the snapshots is minimized, i.e.,

min
{ϕk}l

k=1

1

n

n
∑

j=1

∥

∥

∥

∥

∥

θ j −
l

∑

k=1

(θ j,ϕk)ϕk

∥

∥

∥

∥

∥

2

, (3)

subject to (ϕi,ϕ j) = δi j,1 ≤ i ≤ l,1 ≤ j ≤ i, where ‖θ‖=√
θ T θ and (·, ·) denotes the inner product. The solution of

(3) can be found in the literature, e.g., [15].

B. Galerkin Projection

Let VPOD = {ϕ1,ϕ2,ϕ3,ϕ4, ...,ϕl} be the set of obtained

POD modes. Using the l POD modes, we approximate the

system state as

θ (x,t) ≈ θ l(x,t) =

l
∑

i=1

αi(t)φi(x), (4)

where continuous POD basis functions φi(x) ∈ C2([0,1])∩
L2([0,1]) are obtained by interpolating the POD modes ϕi

(vectors). We substitute this expression in (1) to obtain
l

∑

i=1

α̇i(t)φi(x)

=h0(x)u1(t)

l
∑

i=1

αi(t)
∂ 2φi

∂x2
+ h1(x)u1(t)

l
∑

i=1

αi(t)
∂φi

∂x

+h2(x)u1(t)

l
∑

i=1

αi(t)φi(x)+

l
∑

i=1

h3(x)u2(t).

(5)

We write the weak form of equation (5) by multiplying

both sides by φk(x), for k = 1,2, ..., l, and integrating over

the spatial domain [0,1], i.e.,

l
∑

i=1

α̇i(t) < φi(x),φk(x) >= u2(t) < h3(x),φk(x) >

+u1(t)

l
∑

i=1

αi(t) < h0(x),φ
′′
i (x),φk(x) >

+u1(t)

l
∑

i=1

αi(t) < h1(x),φ
′
i (x),φk(x) >

+u1(t)

l
∑

i=1

αi(t) < h2(x),φi(x),φk(x) >,

(6)

where

< g1g2...gn >,

∫ 1

0

g1g2...gn dx ≈≪ g1g2...gn ≫N , (7)
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≪ g1g2...gn ≫N,

N
∑

n=1

g1(n∆x)g2(n∆x)...gn(n∆x). (8)

Here ∆x is the spatial interval size and N +1 is the number

of grid points (N∆x = 1) considered for the numerical

approximation of the interior product. The grid is partitioned

as

~x = [[0 ∆x 2∆x ... (N −1)∆x]T 1]T , [~xT
o 1]T . (9)

Since the POD modes φi(x) are orthonormal to each other,

i.e., < φi(x),φ j(x) >= δi, j, where δi, j is the Kronecker delta

function, from (6) α̇ can be approximated by

α̇k(t) = u2(t) ≪ h3,φk ≫N

+u1(t)

l
∑

i=1

αi(t)[≪ h0,φ
′′
i ,φk ≫N−1 +h0(1)φ ′′

i (1)φk(1)]

+u1(t)

l
∑

i=1

αi(t)[≪ h1,φ
′
i ,φk ≫N−1 +h1(1)φ ′

i (1)φk(1)]

+u1(t)

l
∑

i=1

αi(t)[≪ h2,φi,φk ≫N−1 +h2(1)φi(1)φk(1)].

(10)

C. Inclusion of Boundary Control in Reduced-Order Model

We include the Dirichlet boundary control into the equa-

tion (10) without applying “integration-by-parts”. Using (4),

we rewrite the boundary condition as

θ |x=1 =

l
∑

i=1

αi(t)φi(1) = k3u3(t). (11)

From (11) we can write αk(t)φk(1) = k3u3(t) −
∑l

i=1(1 − δi,k)αi(t)φi(1). By substituting αk(t)φk(1)

into u1(t)h0(1)
∑l

i=1 αi(t)φk(1)φ ′′
i (1) in (10), we obtain

u1(t)h0(1)

l
∑

i=1

αi(t)φk(1)φ ′′
i (1)

=u1(t)h0(1)αk(t)φk(1)φ ′′
k (1)

+u1(t)h0(1)
l

∑

i=1

(1− δi,k)αi(t)φk(1)φ ′′
i (1)

=u1(t)h0(1)k3u3(t)φ
′′
k (1)

+u1(t)h0(1)

l
∑

i=1

αi(t)[φk(1)φ ′′
i (1)−φi(1)φ ′′

k (1)].

We follow similar procedure for the

terms u1(t)h1(1)
∑l

i=1 αi(t)φk(1)φ ′
i (1) and

u1(t)h2(1)
∑l

i=1 αi(t)φk(1)φi(1) in (10) to write

α̇k(t) = u1(t)

{

l
∑

i=1

αi(t)[≪ h0φ ′′
i φk ≫N −h0(1)φi(1)φ ′′

k (1)]

+h0(1)k3u3(t)φ
′′
k (1)+

l
∑

i=1

αi(t)[≪ h1,φ
′
i ,φk ≫N

−h1(1)φi(1)φ ′
k(1)]+ h1(1)k3u3(t)φ

′
k(1)+ h2(1)k3u3(t)φk(1)

+
l

∑

i=1

αi(t)≪h2,φi,φk≫N−1

}

+u2(t)≪h3,φk≫N .

Using the notation

Γki = ≪ h0,φ
′′
i ,φk ≫N −h0(1)φi(1)φ ′′

k (1)
+ ≪h1,φ

′
i ,φk≫N −h1(1)φi(1)φ ′

k(1)+ ≪ h2,φi,φk ≫N−1,
Φk = ≪ h3,φk ≫N ,
Πk = h0(1)k3φ ′′

k (1)+ h1(1)k3φ ′
k(1)+ h2(1)k3φk(1),

and redefining the control vector as

u = (v1,v2,v3)
T = (u1,u2,u1u3)

T , (12)

we obtain a matrix representation for the reduced order

model,

dᾱ

dt
= Γᾱv1(t)+ Φv2(t)+ Πv3(t), (13)

where ᾱ(t) = (α1, ...,αl)
T ∈ R

l , Γ ∈ R
l×l , Φ,Π ∈ R

3×1

and vi ∈ R
1, for i = 1,2,3. The vector ᾱ(t) is the finite

dimensional approximation of θ (x,t), w.r.t. the associated

POD modes.

III. TRACKING CONTROL DESIGN

In this section, a feedback control law is proposed for

the optimal tracking problem around a predefined open-

loop control trajectory. The optimal controller mainly focuses

on improving the system response when the whole control

process is perturbed.

We let vo(t) = [vo
1 vo

2 vo
3]

T be a set of open-loop control

trajectories, which are computed off-line, and αo(t) be the

open-loop state trajectory associated with the open-loop

control vo(t), with a nominal initial state αo
0 . The open-loop

state trajectory satisfies

dαo

dt
= Γαovo

1(t)+ Φvo
2(t)+ Πvo

3(t), (14)

with initial condition αo(t0) = αo
0 .

Let us define

e(t) = α(t)−αo(t), vc(t) = v(t)− vo(t), (15)

where v(t) = [v1 v2 v3]
T is the overall control input and

vc(t) = [vc
1 vc

2 vc
3]

T is the to-be-designed closed-loop control,

which is appended to the open-loop control vo(t). Then, we

can write

dαo

dt
+

de

dt
=Γ(αo + e)(vo

1 + vc
1)+Φ(vo

2 + vc
2)+Π(vo

3 + vc
3). (16)

By substituting (14) into (16), we obtain

de

dt
= A(t)e + B(e)u = f (e,u), (17)

where, A(t) = Γvo
1(t) ∈ R

l×l , B(e) = [Γ(e + αo) Φ Π] ∈
R

l×3, u(t) = vc(t) = [vc
1 vc

2 vc
3]

T ∈ R
3×1 subject to input

constraints of the form: u(t) ∈ U, ∀t ≥ 0 where U := {u ∈
R

3| |ui| ≤ umax
i }, i = 1,2,3.
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IV. NONLINEAR MODEL PREDICTIVE CONTROL

In general, the model predictive control (MPC) problem is

formulated as solving on-line at time t a finite horizon open-

loop optimal control problem subject to system dynamics and

constraints involving states and controls. In order to incorpo-

rate some feedback mechanism, the open-loop input function

obtained from the optimization process is implemented only

until the next measurement becomes available at time t +δ ,

which is used to update the optimization process. One of

the key questions in nonlinear MPC is certainly whether a

finite horizon nonlinear MPC strategy does lead to stability of

the closed-loop, which is an asymptotical property [20]. We

propose in this work a MPC scheme with infinite prediction

horizon tp. The feasibility of implementing an infinite-

horizon scheme is indeed a consequence of employing a

quasi-linear approximation approach to the bilinear optimal

control problem defined in each step of the MPC scheme.

The open-loop optimal control problem at time t with

measured initial state ē(t) is formulated as

min
u(·)

J =
1

2
eT (t f )P̄e(t f )+

1

2

∫ t f

t

eT (τ)Qe(τ)+uT (τ)Ru(τ)dτ, (18)

subject to the system dynamics (17), and where t f = t + tp.

By introducing the lagrange multiplier λ (t) ∈ R
l×1, we

can define the Hamiltonian

H(e,u,λ ) =
1

2
eT (t)Ω(t)e(t)+

1

2
uT (t)R(t)u(t)

+ λ T (t)[A(t)e(t)+ B(e)u(t)].
(19)

And by invoking the principle of optimality, the open-loop

optimal problem reduces to solving a nonlinear two-point-

boundary-value (TPBV) problem,

de

dτ
=

∂H

∂λ
= A(τ)e + B(e)u

dλ

dτ
= −∂H

∂e
= −Qe−A(τ)T λ −uT ∂BT (e)

∂e
λ ,

(20)

with boundary conditions e(t) = ē(t), λ (t f ) = P̄e(t f ).
The solution of this nonlinear TPBV problem is usually

computationally demanding. To quickly compute the solution

of the optimal problem (18), we follow a successive approach

based on a quasi-linear approximation algorithm [18], [19].

We replace the bilinear system (17) with a sequence of linear

systems. By expanding our problem (17) up to first-order

around the previous iteration trajectories ek(τ) and uk(τ),
the system takes the form

ėk+1 = A(τ)ek+1 + Bk(τ)uk+1, (21)

where k is the iteration number and Bk(τ) = B(e)|ek(τ), with

initial condition ek+1(t) = ē(t). The cost function is

Jk+1 =
1

2
(ek+1)T (t f )P̄ek+1(t f )

+
1

2

∫ t+tp

t

(ek+1)T (τ)Qek+1(τ)+(uk+1)T (τ)Ruk+1(τ)dτ.
(22)

For each iteration k, we have a standard linear quadratic

optimal control defined by (21)-(22).

We assume that the linear system (21) is always control-

lable, i.e., the pair (A(t),Bk(e(t))) is controllable ∀t. Then,

the optimal control at iteration k is given by

uk+1 = −R−1(Bk(e))T Pk+1ek+1. (23)

The matrix Pk+1 ∈ R
l×l is governed by the Riccati matrix

differential equation

Ṗ = −AT Pk+1 −Pk+1A−Q+ Pk+1BkR−1(Bk)T Pk+1, (24)

with P(t f ) = P̄, which is derived from a (20)-like

TPBV problem for ek+1 and λ k+1, assuming λ k+1(τ) =
Pk+1(τ)ek+1(τ), and taking into account that Bk = Bk(τ) and
∂ ((Bk)T (ek(τ))

∂ek+1 = 0.

Due to the stability issues discussed above, we extend

the prediction horizon to infinite, i.e., tp → ∞. Assuming

convergence, the Riccati differential equation (24) reduces

to the Riccati algebraic equation

0 = −AT Pk+1 −Pk+1A−Q+ Pk+1BkR−1(Bk)T Pk+1. (25)

The iterative procedure is stopped when convergence (as

shown in [19]) is achieved under given error tolerance. The

solution of the open-loop optimal control problem (18) with

t f → ∞, and subject to the bilinear system dynamics (17), is

given by

u∗(τ) = −R−1BT (e∗)P∗e∗, (26)

where ∗ denotes the converged values of the iteration. The

optimal trajectory e∗(t) driven by u∗(t) is

de∗

dτ
= (A−B∗R−1(B∗)T P∗)e∗. (27)

V. ASYMPTOTIC STABILITY PROPERTY

According to MPC fundamentals, the open-loop optimal

control problem given by equations (17) and (18) will be

solved repeatedly, updated with new measurements ē(t). The

closed-loop control ū(·) is defined by

ū(τ) = u∗(τ; ē(t),t,t f = ∞), τ ∈ [t,t + δ ]. (28)

where u∗(·) in (26) is the solution of the open-loop optimal

problem (18) when t f → ∞. In this section, we study the

stability properties of the closed-loop system

ė(t) = f (e(t), ū(t)). (29)

Lemma 1: For the nominal system (17) with no distur-

bance, the feasibility of the open-loop control problem (18)

subject to equations (17) at time t = t0 (t0 ≥ 0) implies

its feasibility for all t > t0. Here, feasibility of the optimal

problem means that there exists at least one (not necessarily

optimal) control input trajectory u(·) : [t,t f = ∞] →U , such

that the value of the cost functional (18) is bounded.

Proof: It is assumed that at time t = t0, with measured

initial condition ē(t0), an optimal solution u∗(·) : [t0,t f =
∞] → U to the optimal control problem given by equations

(17) and (18) exists and is found. Since by assumption

there are no disturbances and we only consider the nominal

system driven by the optimal control input u∗(τ; ē(t0)),
τ ∈ [t0,t0 + δ ], the state measurement at time t0 + δ is

ē(t0 +δ ) = e∗(t0 +δ ; ē(t0)). Therefore, to solve the open-loop
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optimal control problem at t0 + δ with the initial condition

e(t0 + δ ) = ē(t0 + δ ), a feasible candidate control input u(·)
on [t0 + δ ,t f = ∞] may be chosen as

u(τ) = u∗(τ; ē(t0),t0,t f = ∞] for τ ∈ [t0 + δ ,t f = ∞], (30)

where u∗(·) is the optimal control input at time t0. Thus,

the nominal state e(t) follows the optimal trajectory e∗(t) in

(27). Then, the argument can be repeated as t → ∞.

Theorem 2: Suppose that the open-loop control problem

(18) subject to (17) is feasible at t = 0. Then in the absence

of disturbances, the closed-loop system with the model

predictive control (26) is nominally asymptotically stable.

Let X ⊆ R
l denote the set of all the initial states satisfying

the assumption, then X is the attraction region of the closed-

loop system.

Proof: According to Lemma 1, feasibility of the open-

loop control problem at each time t > 0 is guaranteed by

the assumption in the theorem. For ē(t) = 0, the optimal

solution to the optimization problem (18) is u∗(·; ē(t),t,t f =
∞) : [t,t f = ∞] → 0, i.e., ū∗(τ) = 0, ∀ τ ∈ [t,t + δ ]. Due to

f (0,0) = 0 in (17), then ē(t) = 0 is an equilibrium of the

closed-loop system (29).

The key point of this proof is that in the absence of

disturbance, driven by control ū(t), the closed-loop states

e(t) will always follow an open-loop optimal trajectory e∗(t)
in (27) controlled by the corresponding u∗(t) in (26).

We define a function V (e(t)) = eT (t)P∗(t)e(t), where for

any given ē(0) ∈ X, P∗(t) is the solution of the algebraic

Riccati equation (25) after the quasi-linear approximation al-

gorithm converges. Then, V (e) has the following properties:

(1) V (0) = 0 and V (e) > 0 for e 6= 0,

(2) along the trajectory of the closed-loop system starting

from ē(0) ∈ X,

V̇ (e) =ėT P∗e + eT P∗ė

=eT [A−BR−1BT P∗]T P∗e + eT P∗[A−BR−1BT P∗]e

=− eT (Q+ P∗BR−1BT P∗)e.

Since Q and R are positive definite, V̇ (e) is negative definite.

Therefore, the closed-loop system (29) is asymptotically

stable. Note that stability does not depend on the optimality

of the solution but on the convergence of the quasi-linear

approximation scheme.

VI. SIMULATION STUDY

In this section, the proposed approach is applied to the

current profile control problem in tokamak plasmas and its

effectiveness is demonstrated in simulations.

A. Current Profile Evolution Model

A key goal in the control of a magnetic fusion reactor

is to maintain current profiles that are compatible with a

high fraction of the self-generated non-inductive current

as well as with magnetohydrodynamic (MHD) stability at

high plasma pressure. This enables high fusion gain and

noninductive sustainment of the plasma current for steady-

state operation. It is possible to use the poloidal component

Bpol of the helicoidal magnetic lines confining the plasma in

a tokamak to define nested toroidal surfaces corresponding

to constant values of the poloidal magnetic flux. The poloidal

flux ψ at a point P is the total flux through the surface S

bounded by the toroidal ring passing through P, i.e., ψ =
∫

BpoldS. The dynamics of the poloidal flux ψ is governed in

normalized cylindrical coordinates by a nonlinear parabolic

partial differential equation (PDE) usually referred to as the

magnetic diffusion equation, where the spatial coordinate

corresponds to the minor radius of the torus [3],

∂ψ

∂ t
= f1(ρ̂)u1(t)

1

ρ̂

∂

∂ ρ̂

(

ρ̂ f4(ρ̂)
∂ψ

∂ρ̂

)

+ f2(ρ̂)u2(t), (31)

with boundary conditions

∂ψ

∂ρ̂

∣

∣

∣

∣

ρ̂=0

= 0,
∂ψ

∂ρ̂

∣

∣

∣

∣

ρ̂=1

= k3u3(t). (32)

and where

f1(ρ̂) =
ke f f Ze f f

k
3/2
Te µoρ2

b

1

F̂2(ρ̂)(T
pro f ile

e (ρ̂))3/2
(33)

f2(ρ̂) = −RoĤµoρ2
b F̂2(ρ̂)kNIpar j

pro f ile
NIpar (ρ̂) f1(ρ̂)(34)

=
ke f f Ze f f RokNIpar

k
3/2
Te

Ĥ(ρ̂) j
pro f ile
NIpar (ρ̂)

(T
pro f ile

e (ρ̂))3/2
(35)

k3 =
µo

2π

Ro

Ĝ
∣

∣

ρ̂=1
Ĥ

∣

∣

ρ̂=1

(36)

f4(ρ̂) = F̂ĜĤ, (37)

and

u1(t) =

(

n̄(t)

I(t)
√

Ptot

)3/2

, u2(t) =

√

Ptot(t)

I(t)
, u3(t) = I(t).

The non-inductive current drive power Ptot(t), the spatially

averaged density n̄(t), and the total plasma current I(t) are

considered as the physical actuators of the system. The

spatial functions j̄
pro f ile
NI and T

pro f ile
e denote the non-inductive

current drive and electron temperature reference profiles.

F̂ ,Ĝ,Ĥ are geometric factors, ρ̂ = ρ/ρb is the normalized

radius, ρb is the radius of last closed flux surface, Ro is

the plasma geometric center, µo is the vacuum permeabil-

ity, ke f f = 4.2702 · 10−8 (Ωm(kev)3/2), Ze f f = 1.5, kTe =
1.7295 · 1010 (m−3A−1W−1/2), and kNIpar = 1.2139 · 1018

(m−9/2A−1/2W−5/4).

Since the current density in tokamak is proportional to the

spatial derivative of the magnetic flux ψ , we define the to-

be-controlled variable as θ (ρ̂ ,t) = ∂ψ
∂ ρ̂ . The control objective

is to drive θ (ρ̂ ,t) from any arbitrary initial profile to a

prescribed target or desirable profile θ des(ρ̂) at some time T

by tracking a predefined trajectory. To simplify notation, we

replace ρ̂ with x hereafter. We rewrite (31) as

∂ψ

∂ t
= g1(x)u1(t)(g2(x)θ (x,t))′ + g3(x)u2(t) (38)

with g1(x) = f1(x)
1
x
, g2(x) = x f4(x), g3(x) = f2(x).
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Fig. 1. Comparison of initial θ profiles.

By differentiating both sides of equation (38) w.r.t x, we

obtain

∂θ (x,t)

∂ t
=g1(x)g2(x)u1(t)θ

′′(x,t)+ (g′1(x)g2(x)

+2g1(x)g
′
2(x))u1(t)θ

′(x,t)+ (g′1(x)g
′
2(x)

+g1(x)g
′′
2(x))u1(t)θ (x,t)+ g′3(x)u2(t),

(39)

with boundary conditions (32) rewritten as θ (0,t) =
0, θ (1,t) = k3u3(t). By defining h0(x) = g1(x)g2(x),
h1(x) = g′1(x)g2(x) + 2g1(x)g

′
2(x), h2(x) = g′1(x)g

′
2(x) +

g1(x)g
′′
2(x), h3(x) = g′3(x), we recover (1)-(2).

B. Simulations

In this section, we present simulation results showing the

effectiveness of the proposed optimal control algorithm in

a disturbance rejection problem. The nominal initial profile

θinit shown in Fig. 1 (solid blue line) has been considered for

the synthesis of an off-line optimal controller via Extremum

Seeking [21]. The time evolution of the control inputs vo(t)
obtained from the off-line optimization procedure are shown

in Fig. 2 (blue dashed lines). Fig. 3-(a) illustrates the nominal

space-time profile of θ (t, ρ̂), which is driven by the control

inputs vo(t) without any disturbance.

We first simulate the original PDE system (1) by using

a finite difference scheme on the grid Qi j = (xi,t j), where

i, j are integers with 1 ≤ i ≤ m;1 ≤ j ≤ n (m = 101, n =
121), and then a data ensemble is created with snapshots of

θ (t, ρ̂). We next extract POD modes from the created data

ensemble. With the eight most dominant POD modes, we

construct a low dimensional dynamical system governed by

the ordinary differential equation (ODE) system (13). Before

computing the nonlinear MPC scheme based on the reduced-

order model, we assess the effectiveness of the reduced-order

model in approximating the original PDE system. Fig. 3-(b)

shows the approximation error as function of time and space.

The order of the error demonstrates that the reduced-order

model based on only eight POD modes can successfully

approximate the PDE system.

In each open-loop optimal control problem of the nonlin-

ear MPC scheme, we choose Q(t) ≡ Q = 100I
l×l (I is an

identity matrix, l = 8), and

R(t) ≡ R = diag

{

200

max(vol
1 )

,
2

max(vol
2 )

,
200

max(vol
3 )

}

,

for the cost functional (18), where max(vol
i ) stands for the

maximum value of the open-loop control vol
i (t). We use

the proposed quasi-linear approximation scheme to compute

the optimal control. After several iterations, the solution of

the Riccati matrix equation converges, and the controller

is implemented according to (26). In order to test the

infinite-horizon nonlinear MPC scheme, we use δ = 0.1s as

the measurement sampling time. Each of these intervals is

discretized in steps of 0.01s to solve the algebraic Riccati

equation (25).

We consider now a disturbed initial profile θinit , as shown

in Fig. 1 (dashed green line), and compare the performances

of both open-loop and closed-loop controllers in the presence

of this disturbance. In addition, a process disturbance d(x,t)
is added to test the performance of the nonlinear MPC

scheme. The disturbed PDE model is given as,

∂θ (x,t)

∂ t
=h0(x)θ

′′(x,t)u1(t)+ h1(x)θ
′(x,t)u1(t)

+h2(x)θ (x,t)u1(t)+ h3(x)u2(t)+ d(x,t)

where d(x,t) = 0.1sin(πx)cos(t).
For our particular problem, the convergence rate of the

quasi-linear approximation scheme is quite fast. Simulations

indicate that given an initial error e(0) ∈ X, the scheme will

converge after 2-3 iterations. Fig. 3-(c) shows the differences

between the final-time profiles θ (x,T ), for T = 1.2s, obtained

with both the open-loop and the closed-loop controllers and

the desired target profile θ d(x). Both final-time profiles are

obtained considering disturbances in both the initial profile

and the state. In the case of the open-loop controller, the

control input trajectories shown in Fig. 2, and computed for

the nominal initial profile, are used. In the case of the closed-

loop controller, the control input trajectories are shown in

Fig. 2. It is possible to note from Fig. 3-(c) that the closed-

loop controller can reduce the matching error caused by the

disturbances. It is also possible to note that the matching by

the closed-loop controller is not perfect. However, this does

not imply a limitation of the closed-loop controller but a

consequence of the imposed constraints for the actuators (the

matrix R is selected to keep the actuator trajectories within

physical ranges) and the final time T . If the constraints of

actuators can be reduced or the actuators are allowed to act

longer, (e.g. T > 1.2s), the control effect is more observable.

Fig 3-(c) shows that better performance could be achieved

by setting T equal to 4.8s (longer plasma discharge).

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we consider a nonlinear parabolic PDE

system with nonhomogeneous Dirichlet boundary conditions.

Using this PDE model, and the POD/Garlekin technique

combined with the end-point-separation approach, we derive

a low dimensional dynamical system which integrates the

Dirichlet boundary control. To overcome the disturbances in

the system, we propose a nonlinear MPC scheme using the

convergent successive approach to solve on-line an open-loop

infinite-horizon optimal tracking control problem based on

the reduced order system. A simulation study is carried out
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for the current profile control problem in tokamak plasmas,

showing that the proposed controller can overcome to some

extent perturbations both in the initial conditions and in

the process. The asymptotic stability of the MPC approach

is proved for the reduced-order model. The experimental

validation of this controller at the DIII-D tokamak is part

of our research plans.
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