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Abstract— This work develops a model-based approach for
the detection and compensation of actuator faults in distrib-
uted processes described by parabolic PDEs with a limited
number of measurements that are sampled at discrete time
instances. Using an approximate finite-dimensional system that
captures the dominant dynamics of the PDE, an observer-
based output feedback controller that stabilizes the closed-
loop system in the absence of faults is initially designed.
The observer estimates are also used for fault detection by
comparing the output of the observer with that of the process,
and using the discrepancy as a residual. To compensate for
measurement unavailability, a model of the approximate finite-
dimensional system is embedded within the controller to pro-
vide the observer with estimates of the output measurements
between sampling instances. The state of the model is then
updated using the actual measurements whenever they become
available from the sensors. By formulating the closed-loop
system as a combined discrete-continuous system, an explicit
characterization of the minimum allowable sampling rate that
guarantees both closed-loop stability and residual convergence
in the absence of faults is obtained in terms of the model
accuracy, the controller design parameters and the spatial
placement of the control actuators. This characterization is
used as the basis for deriving (1) a time-varying threshold on
the residual which can be used to detect faults for a given
sampling period, and (2) an actuator reconfiguration law that
determines the set of feasible fall-back actuators that preserve
closed-loop stability under a given measurement sampling rate.
Finally, the implementation of the fault detection and fault-
tolerant control architecture on the infinite-dimensional system
is analyzed using singular perturbations, and the results are
demonstrated using a diffusion-reaction process example.

I. INTRODUCTION

Distributed parameter systems such as transport-reaction

processes and fluid flow systems are modeled by systems of

Partial Differential Equations (PDEs). While these systems

have been the subject of active research within process

control over the past few decades (e.g., see [1], [2], [3],

[4], [5], [6] and the references therein), the development of

systematic methods for the diagnosis and handling of faults

in distributed control systems has received only limited at-

tention. This is an important problem given the vulnerability

of automated control systems to malfunctions in the control

actuators, measurement sensors and process equipment, as

well as the increasingly stringent requirements placed on

safety and reliability in industrial process operation. Most

of the available results on this problem have focused on

spatially homogeneous processes modeled by systems of
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ordinary differential equations (e.g., see [7], [8], [9], [10],

[11], [12], [13] and the references therein). Examples of

existing results for distributed parameter systems include

methods for fault detection and accommodation based on

approximate linear or nonlinear models (e.g., [14], [15]), as

well as reconfiguration-based fault-tolerant control (FTC)

of nonlinear distributed processes [16]. Recently, we devel-

oped in [17], [18] a unified framework for the integration

of model-based fault detection (FD), isolation and control

system reconfiguration for distributed processes modeled

by nonlinear parabolic PDEs with control constraints and

actuator faults. Practical implementation issues such as the

presence of plant-model mismatch and the availability of

measurements at a finite number of locations along the

spatial domain were subsequently addressed in [19].

Beyond the problems of uncertainty and constraints, one

of the key issues that needs to be accounted for in the design

of monitoring and fault-tolerant control systems is the issue

of measurement sampling. In practice, measurements of the

process outputs are typically available from the sensors at

discrete time instances and not continuously. The frequency

at which the measurements are available is dictated by the

sampling rate which is typically constrained by the inherent

limitations on the data collection and processing capabilities

of the measurement sensors. The limitations on the fre-

quency of measurement availability imposes restrictions on

the implementation of the feedback controller and can also

erode the diagnostic and fault-tolerance capabilities of the

fault-tolerant control architecture if not explicitly accounted

for at the design stage. Within the feedback control layer, for

example, infrequent measurement sampling could result in

substantial errors in the implemented control action leading

to possible loss of stability or performance degradation. The

lack of frequent measurements also limits our ability to

accurately monitor the trajectory of the process variables

rendering it difficult to evaluate the residuals or diagnose

faults. At the control reconfiguration level, knowledge of

how a given control configuration (i.e., the spatial placement

of actuators and sensors) depends on the sampling rate is

critical for identifying the appropriate backup configuration

that should be activated following fault detection to main-

tain closed-loop stability.

Motivated by these considerations, we develop in this

work a fault detection and fault-tolerant control structure

for distributed processes modeled by parabolic PDEs with

a limited number of measurements that are sampled at
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discrete time instances. The structure consists of a family of

output feedback controllers, observer-based fault detection

filters that account for the discrete sampling of measure-

ments and a switching law that orchestrates the transition

from the faulty actuator configuration to a healthy fall-

back following fault detection. A key idea is to embed

within the fault-tolerant control system an approximate

model of the dominant process dynamic modes to provide

the observers with estimates of the output measurements

between sampling instances, and to update the state of

the model using the actual measurements whenever they

become available from the sensors at the discrete sampling

times. The rest of the paper is organized as follows. Follow-

ing some preliminaries in Section II, an approximate finite-

dimensional system is obtained using modal decomposition

techniques and then used in Section III to construct the

model-based FD-FTC structure. The sampled-data closed-

loop system is then formulated as a discrete jump system,

and an explicit characterization of the minimum allowable

sampling rate that guarantees both closed-loop stability and

residual convergence in the absence of faults is obtained.

This characterization is then used as the basis for deriving

appropriate fault detection and actuator reconfiguration laws

for a given sampling rate. A singular perturbation formu-

lation is used in Section IV to derive precise conditions

for the implementation of the finite-dimensional FD-FTC

architecture on the infinite-dimensional system. Finally, in

Section V the proposed methodology is applied to achieve

fault-tolerant stabilization of an unstable steady-state of a

representative diffusion-reaction process.

II. PRELIMINARIES

A. Class of systems

We consider spatially-distributed processes modeled by

linear parabolic PDEs of the form:

∂x̄

∂t
= α

∂2x̄

∂z2
+ βx̄ + ω

m∑

i=1

bk
i (z)[uk

i (t) + fk
ai

(t)] (1)

k ∈ K := {1, 2, · · · , N}, N < ∞ (2)

yl(t) =

∫ π

0

ql(z)x̄(z, t)dz, l = 1, · · · , n (3)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (4)

where x̄(z, t) ∈ IR denotes the process state variable, z ∈
[0, π] ⊂ IR is the spatial coordinate, t ∈ [0,∞) is the time,

uk
i denotes the i-th manipulated input (control actuator)

associated with the k-th control actuator configuration,

bk
i (·) is a function that describes how the control action

is distributed in [0, π], fk
ai

describes a fault in the i-th
actuator of the k-th configuration, yl(t) ∈ IR is a measured

output, ql(·) is a function that describes how the measured

output is distributed in [0, π], the parameters α > 0, β, ω
are constants, and x̄0(z) is a smooth function of z.

Throughout the paper, the notations ‖ · ‖ and ‖ · ‖2

will be used to denote the L2 norms associated with a

finite-dimensional and infinite-dimensional Hilbert spaces,

respectively. Furthermore, a bounded linear operator N is

said to be power-stable if there exists positive real numbers

β and γ such that ‖N j‖ ≤ βe−γj , for any non-negative

integer j. The spectral radius of a bounded linear operator

N is defined as r(N ) = limj→∞ ‖N j‖1/j ≤ ‖N‖. From

these definitions, it can be verified that N is power-stable

if and only if r(N ) < 1. Finally, the notation x(t−j ) will

be used to denote the limit limt→t−
j

x(t).

For a precise characterization of the class of PDEs

considered in this work, we formulate the PDE of Eqs.1-4

as an infinite-dimensional system in the state space H =

L2(0, π), with inner product 〈ω1, ω2〉 =

∫ π

0

ω1(z)ω2(z)dz,

and norm ‖ω1‖2 = 〈ω1, ω1〉
1

2 , where ω1, ω2 are two elements

of L2(0, π). Defining the input and output operators as

Bkuk = ω

m∑

i=1

bk
i (·)uk

i , Qx = [〈q1, x〉 〈q2, x〉 · · · 〈qn, x〉]′,

the system of Eqs.1-4 can be written in the following form:

ẋ(t) = Ax(t) + Bk[uk(t) + fk
a (t)], x(0) = x0 (5)

y(t) = Qx(t) (6)

where x(t) is the state function defined on an appropri-

ate Hilbert space, A is the differential operator, uk =
[uk

1 uk
2 · · · uk

m]′, fk
a = [fk

a1
fk

a2
· · · fk

am
]′, y =

[y1 y2 · · · , yn]′ and x0 = x̄0(z). For A, the solution of the

eigenvalue problem (Aφj = λjφj , j = 1, . . . ,∞), where

λj denotes an eigenvalue and φj denotes an eigenfunction,

yields real and ordered eigenvalues. Also, for a given α
and β, only a finite number of unstable eigenvalues exist,

and the distance between two consecutive eigenvalues (i.e.,

λj and λj+1) increases as j increases. Furthermore, for

parabolic PDEs, the spectrum of A can be partitioned,

where σ1(A) = {λ1, · · · , λm} contains the first m (with m
finite) “slow” eigenvalues and σ2(A) = {λm+1, λm+2, · · ·}
contains the remaining “fast” stable eigenvalues where

|λm|/|λm+1| = O(ǫ) and ǫ < 1 is a small positive number

characteristic of the large separation between the slow and

fast eigenvalues of A. This implies that the dominant dy-

namics of the PDE can be described by a finite-dimensional

system, and motivates the use of modal decomposition in

the next subsection to derive a finite-dimensional system

that captures the dominant (slow) dynamics of the PDE.

B. Modal decomposition

Let Hs, Hf be modal subspaces of A, defined as Hs =
span{φ1, . . . , φm} and Hf = span{φm+1, φm+2, . . .}.

Defining the orthogonal projection operators, Ps and Pf ,

such that xs = Psx, xf = Pfx, the state of the system

of Eq.5 can be decomposed as x = xs + xf . Applying Ps

and Pf and using the decomposition of x, the system of

Eqs.5-6 can be decomposed as:

ẋs = Asxs + Bk
s [uk + fk

a ], xs(0) = Psx0 (7)

ẋf = Afxf + Bk
f [uk + fk

a ], xf (0) = Pfx0 (8)

y = Qxs + Qxf (9)
where As = PsA is an m × m diagonal matrix of the

form As = diag{λj}, Bk
s = PsBk, Af = PfA is an un-

bounded differential operator which is exponentially stable

(following from the fact that λm+1 < 0 and the selection
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of Hs and Hf ), Bk
f = PfB

k. Neglecting the fast and

stable xf -subsystem of Eq.8, the following approximate,

m-dimensional slow system is obtained:
˙̄xs = Asx̄s + Bk

s [uk + fk
a ], ȳ = Qx̄s (10)

where the bar symbols denote that these variables are

associated with a finite-dimensional system. To facilitate the

controller synthesis and simplify closed-loop analysis, we

will consider in the remainder of the paper that the inverse

(or pseudo-inverse in the case of a non-square system) of

the operator Q exists. This requirement, which can be met

by appropriate choice of the locations of the measurement

sensors, allows obtaining estimates of the state of the finite-

dimensional system of Eq.10 from the measurements.

III. DESIGN OF FINITE-DIMENSIONAL SAMPLED-DATA

FAULT-TOLERANT CONTROL SYSTEM

A. Controller synthesis and analysis in the absence of faults

The objective of this part is to design for each actuator

configuration an output feedback controller that enforces (in

the absence of faults) closed-loop stability using sampled

measurements, and to characterize the minimum allowable

sampling rate necessary to guarantee closed-loop stability.

1) Output feedback controller synthesis: We consider an

observer-based output feedback controller of the form:

uk = Fkη, η̇ = Âsη + B̂k
suk + L(ȳ −Qη) (11)

where F is the feedback gain, η is the state of an observer

that generates estimates of x̄s using ȳ, Âs and B̂k
s are

bounded operators that represent models of As and Bk
s , re-

spectively, and L is the observer gain. Notice that in general

Âs 6= As and B̂k
s 6= Bk

s to allow for possible plant-model

mismatch. When the output measurements are available

continuously, and in the special case that Âs = As, B̂k
s =

Bk
s , a necessary and sufficient condition for stability of the

closed-loop system of Eqs.10-11 (with fk
a ≡ 0) is to have

the eigenvalues of both As +Bk
sF

k and As−LQ in the left

half of the complex plane. When the output measurements

are available only at discrete time instances, however, the

observer in Eq.11 cannot be implemented directly. One way

to deal with this problem is to embed within the controller

a dynamic model of the finite-dimensional slow system of

Eq.10 to provide the observer with an estimate of the output

to be used when measurements are not available from the

sensors and to update the state of the model using the actual

output measurements whenever they are provided by the

sensors at discrete time instances. The model-based output

feedback controller is implemented as follows:
uk(t) = Fkη(t), t ∈ (tj , tj+1)

η̇(t) = Âsη(t) + B̂k
suk(t) + L(ŷ(t) −Qη(t))

ẇ(t) = Âsw(t) + B̂k
suk(t), ŷ(t) = Qw(t)

ŷ(tj) = ȳ(tj), j = 0, 1, 2, · · · (12)

where ŷ is an estimate of ȳ, w is an estimate of x̄s, Âs and

B̂k
s are bounded operators that model the dynamics of the

slow subsystem of Eq.10, and ∆ := tj+1−tj is the sampling

period. Note that since Q is invertible, re-setting the output

of the model to match the actual output is equivalent to

re-setting the state of the model since w(tj) = Q−1ȳ(tj).

2) Characterizing the minimum allowable sampling rate:

To simplify the analysis, we focus on the case when the

sampling period is constant and the same for all the sensors,

i.e., we require that all sensors communicate their measure-

ments concurrently every ∆ seconds. To characterize the

maximum allowable sampling period between the sensors

and the controller, we define the model estimation error

as ēs(t) = w(t) − x̄s(t), where ēs ∈ Hs represents the

difference between the state of the approximate system of

Eq.10 and the state of its model given in Eq.12. Defining the

augmented state χ = [x̄s η ēs]
′

which is an element of the

extended state space He
s = Hs ×Hs ×Hs, it can be shown

that the augmented slow subsystem can be formulated as

a combined discrete-continuous system and written in the

following operator-matrix form for clarity:
χ̇(t) = Λkχ(t), t ∈ (tj , tj+1)

ēs(tj) = 0, j = 0, 1, 2, · · · ,
(13)

where

Λk =




As Bk
sF

k O
LQ C LQ

Ãs B̃k
sF

k Âs


 (14)

is a bounded linear operator, C = Âs + B̂k
sF

k − LQ, and

Ãs = Âs − As, B̃k
s = B̂k

s − Bk
s represent the modeling

errors. Note that while the state of the slow system, x̄s, and

the state of the observer, η, evolve continuously in time, the

error ēs is reset to zero at each transmission instance since

the state of the model is updated every ∆ seconds using the

true output measurement.

In order to derive conditions for closed-loop stability in

terms of the sampling period, we need to express the closed-

loop response as a function of the sampling period. To this

end, it can be shown that the system described by Eq.13

with initial condition χ(t0) = [x̄s(t0) η(t0) 0]′ = χ0 has

the following solution for t ∈ [tj , tj+1):

χ(t) = TΛk
(t − tj) (IoTΛk

(∆)Io)
j χ0 (15)

with tj+1 − tj = ∆, where TΛk
(t) : He

s → He
s

is a C0-semigroup generated by Λk on He
s, Io =

diag([I I O]), I is the identity operator. Specifically, for

t ∈ [tj , tj+1), the augmented system admits the so-

lution χ(t) = TΛk
(t − tj)χ(tj). Note that at times tj ,

j = 1, 2, · · ·, χ(tj) = [x̄s(tj) η(tj) 0]
′

since the error

ēs(t) is reset to zero. This can be represented by writing

χ(tj) = Ioχ(t−j ). Since χ(t−j ) = TΛk
(∆)χ(tj−1), we have

χ(tj) = IoTΛk
(∆)χ(tj−1). Therefore, given that at t = t0,

χ(t0) = χ0 is the initial condition, we have χ(t) = TΛk
(t−

tj)(IoTΛk
(∆))jχ0 = TΛk

(t − tj)(IoTΛk
(∆)Io)

jχ0. The

following proposition provides a necessary and sufficient

condition for stability of the finite-dimensional closed-loop

system subject to sampling and in the absence of faults.

Proposition 1: Consider the closed-loop system of Eq.10

and Eq.12, for a fixed k ∈ K, with fk
a ≡ 0, and consider the

augmented system of Eqs.13-14 whose solution is given by

Eq.15. Let Nk(∆) = IoTΛk
(∆)Io. Then the zero solution,

χ = [x̄s η ēs]
′

= [0 0 0]
′

, is exponentially stable if and only

if r(Nk(∆)) < 1.

Proof: Sufficiency can be shown by evaluating the norm

of the solution described in Eq.15, which yields ‖χ(t) ‖ ≤
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‖ TΛk
(t−tj) ‖‖N

j
k ‖‖χ0 ‖. From the properties of the linear

bounded operator Λk, it follows that ‖ TΛk
(t − tj) ‖ ≤

ϕ1e
µ(t−tj) := µ1, where ϕ1 > 0 and µ = sup{Re σ(Λk)}.

In general this term can always be bounded since t− tj ≤
∆. Even if Λk has eigenvalues with positive real parts,

‖ TΛk
(t − tj) ‖ can only grow a certain amount, and this

growth is independent of j. The term ‖N j
k ‖ is bounded if

and only if Nk is power-stable, i.e., ‖N j
k ‖ ≤ ϕ2e

−γj , with

some ϕ2, γ > 0. Since j = tj/∆ and t ∈ [tj , tj+1), this

bound can be expressed in terms of t as ‖N j
k ‖ ≤ ϕ3e

−γst,

where ϕ3 = ϕ2e
γ > 0 and γs = γ/∆ > 0. Combining

all the estimates obtained, we finally arrive at the following

bound ‖χ(t) ‖ ≤ ϕ4‖χ0 ‖e−γst, where ϕ4 := ϕ3µ1 > 0,

which implies that the origin of the system of Eqs.13-14

is exponentially stable. Necessity can be established by

analyzing a periodic sample of the response at times t−j+1,

i.e., just before the update, (which should be stable if the

system is stable) and then showing that if r(Nk(∆)) > 1,

x̄s(t
−

j+1) will in general grow with j which contradicts the

stability assumption. This argument is conceptually similar

to the one presented in [20] except that it involves operators

defined over functional spaces. This completes the proof.

Remark 1: It can be seen from the structure of Λk in Eq.14

that the minimum stabilizing sampling rate is dependent

on the degree of mismatch between the dynamics of the

approximate system and the model used to describe it. This

is consistent with the intuition that if the model is exact, the

maximum allowable sampling period can be chosen arbitrar-

ily large since the output of the model will match the actual

output exactly in this case. Given bounds on the size of

the uncertainty, the stability criteria of Proposition 1 can be

used to determine the range of stabilizing sampling periods.

Alternatively, for a fixed ∆, the maximum tolerable process-

model mismatch and the range of stabilizing controller and

observer gains can be determined. Note that since Nk is

defined over a finite-dimensional Hilbert space, its spectral

radius can be determined from the eigenvalues of Nk.

Remark 2: The idea of using a model to approximate

the plant dynamics when measurements are not available

has also been used in the context of networked control

systems where sensor-controller communication is purpose-

fully suspended to reduce network utilization (e.g., [20],

[21], [22]). In these works, however, the sensor-controller

communication is limited due to the presence of the net-

work, while in the present work it is limited by the sensor

sampling constraints. Moreover, the control architecture

presented here differs in that: (1) the controller, observer

and model are all collocated, (2) the controller uses the

observer state and (3) the model is used by the observer and

its state is reset by the plant output (when it is transmitted

by the sensor at the sampling times). By contrast, in the

architectures presented in [20], [22]: (1) only the controller

and model are collocated, while the observer is collocated

with the sensor which is on the other side of the network and

continuously supplies output measurements to the observer,

(2) the controller uses the model state and (3) the model

state is reset using the observer state when transmission

over the network is allowed.

B. Observer-based fault detection

In this section, we use the fault-free closed-loop behavior

characterized in the previous section as the basis for deriv-

ing appropriate rules for fault detection and reconfiguration

in the system of Eq.10. The idea is to use the state observer

in Eq.12 as a fault detection filter and to compare its output

with the actual output of the system to determine the health

status of the control actuators. The following proposition

provides an explicit characterization of the expected fault-

free evolution of the residual, which can be used for fault

detection.

Proposition 2: Consider the closed-loop system of Eq.10

and Eq.12, for a fixed k ∈ K, with fk
a ≡ 0, and consider the

augmented system of Eqs.13-14 where the sampling period

∆ is chosen such that r(Nk(∆)) < 1. Then there exist

positive real numbers, αk > 1 and βk, such that the residual

defined by rd = ‖ȳ − Qη‖ satisfies a time-varying bound

of the form rd(t) ≤ αk‖χ0 ‖e−βk(t−t0), for all t ≥ t0.

Proof: Given that ȳ = Qx̄s, and the measurement operator

Q is bounded, it follows that rd(t) ≤ ‖Q‖‖x̄s(t)−η(t)‖ ≤
k1‖x̄s(t) − η(t)‖, for some k1 > 0. From the result of

Proposition 1, we have that if ∆ is chosen such that

r(Nk(∆)) < 1, then the origin of the augmented system of

Eqs.13-14 is exponentially stable, i.e., there exist positive

real numbers, αk
1 > 0 and βk

1 , such that ‖χ(t) ‖ ≤
αk

1‖χ0 ‖e−βk
1
(t−t0)‖χ0 ‖. Since ‖x̄s(t)‖ ≤ ‖χ(t)‖ and

‖η(t)‖ ≤ ‖χ(t)‖, the following bound can be established

on the residual rd(t) ≤ 2k1α
k
1‖χ0 ‖e−βk

1
(t−t0). Setting

αk = 2k1α
k
1 and βk = βk

1 completes the proof.

Remark 3: Based on the result of Proposition 2, and for a

given stabilizing sampling rate, a fault can be declared at

time Td if the residual breaches the following time-varying

threshold:

rd(Td) > αk‖χ0 ‖e
−βk(Td−t0) =⇒ fk

a (Td) 6= 0 (16)

Note, however, that even though η is available continuously,

the fact that ȳ is available only at the sampling instants

implies that the residual can be evaluated only at those

times and not continuously, regardless of when the fault

actually occurs. While detection delays can be minimized

by proper choice of the constants αk and βk to ensure that

the threshold is sufficiently tight, the smallest possible delay

is ultimately constrained by the feasible sampling rate of the

measurement sensors.

C. Actuator reconfiguration logic

Once a fault is detected in the operating actuator config-

uration, the supervisor needs to determine which fall-back

configuration to activate in order to preserve closed-loop

stability and ensure fault-tolerance. Due to the dependence

of the operator Λk on the input operator Bk
s (which is

parameterized by the locations of the control actuators),

the maximum allowable sampling period is dependent on

the choice of the control actuator location. Using the result
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of Proposition 1, for a given sampling period, feedback

and observer gains, the stabilizing actuator locations can

be determined. This determination constitutes the basis for

the actuator reconfiguration logic given in Theorem 1 below.

The proof follows directly from the result of Proposition 1

and is omitted for brevity.

Theorem 1: Consider the closed-loop system of Eq.10 and

Eq.12, with k(0) = i for some i ∈ K and a sampling period

∆ such that r(Ni(∆)) < 1. Let Tf be the earliest time that

f i
a(Tf ) 6= 0. Then the following switching rule:

k(t) =

{
i, 0 ≤ t < Tf

ν 6= i, t ≥ Tf , r(Nν(∆)) < 1

}
(17)

exponentially stabilizes the origin of the closed-loop system.

Remark 4: The switching logic in Theorem 1 ensures that

the control system switches to a stabilizing actuator configu-

ration for the given sampling period in the absence of faults.

While Theorem 1 considers the case of a single fault, the

same logic applies in the case of multiple consecutive faults.

Note also that the structure of the operator Λk changes after

each actuator switching; therefore, a new residual threshold

should be used following each actuator switching to allow

for the detection of future faults.

IV. IMPLEMENTATION OF FD-FTC ARCHITECTURE ON

THE INFINITE-DIMENSIONAL SYSTEM

In this section, we describe how the controller, fault

detection filter and actuator switching logic designed in Sec-

tion III are implemented using the measured output of the

infinite-dimensional system and the necessary modifications

needed to maintain the desired fault-tolerance properties.

A. Feedback controller implementation
When considering measurements of the output of the

infinite-dimensional system of Eq.9, the output feedback

controller can be implemented as follows:

u(t) = Fkη(t), t ∈ [tj , tj+1)

ẇ(t) = Âsw(t) + B̂k
su(t)

η̇(t) = (Âs − LQ)xs(t) + B̂k
su(t) + Ly(t)

w(tj) = Q−1y(tj), j = 0, 1, 2, · · ·

(18)

which is similar to the controller of Eq.12 except that the

output y (instead of ȳ) is used to implement the observer and

update the state of the model of the finite-dimensional slow

subsystem (notice that xs is unknown and thus the entire

output must be used in updating the state of the model).

Defining the error variable es = w − xs, where es ∈ Hs

is the difference between the model-generated estimate of

the slow state and the actual slow state, and introducing the

augmented state χ = [xs η es]
′

, it can be shown that the

augmented slow subsystem can be formulated as:

χ̇(t) = Λkχ(t) + Gxf , t ∈ (tj , tj+1)
es(tj) = xf , j = 0, 1, 2, · · · ,

(19)

where Λk is given by Eq.14 and G = [0 LQ 0]′. Note that

as a result of using the output of the infinite-dimensional

system (which contains both the slow and the fast states),

the evolution of the augmented system is now influenced by

xf . Furthermore, the model estimation error cannot be re-

set to zero exactly at the sampling instants. The following

proposition provides a stability condition for the infinite-

dimensional sampled-data closed-loop system that ties the

sampling period with the separation between the slow and

fast eigenvalues of A, ǫ = |λm|/|λm+1|. The proof of

the proposition can be obtained using singular perturbation

arguments [3] and is omitted for brevity.

Proposition 3: Consider the infinite-dimensional system of

Eqs.7-9, with fk
a ≡ 0, subject to the controller and update

law of Eq.18. Then, if r(Nk(∆)) < 1, where Nk(∆) was

defined in Proposition 1, there exists a positive real number

ǫ∗ such that if ǫ ∈ (0, ǫ∗], the zero solution of the infinite-

dimensional closed-loop system is exponentially stable.

Remark 5: According to the result of Proposition 3,

a sampling period that stabilizes the approximate finite-

dimensional fault-free system of Eq.19 with xf = 0 con-

tinues to stabilize the infinite-dimensional system provided

that the separation between the slow and fast eigenvalues

is sufficiently large (an estimate of ǫ∗ can be obtained

using singular perturbation analysis). This restriction, which

requires that a sufficient number of slow states and mea-

surements be included in the controller design, is needed to

ensure that the error introduced by updating the model state

using Q−1y (rather than xs) is sufficiently small. Notice

also that, unlike the finite-dimensional case, the evolution

of the augmented slow subsystem of Eq. 19 is dependent

on xf . In the limit as ǫ → 0, this coupling disappears.

B. Actuator fault detection and reconfiguration

When the slow state observer in Eq.18 is used to detect

faults in the infinite-dimensional system, its output has to

be compared against the actual output y (since it is y,

not ȳ, that is available for measurement in the infinite-

dimensional setting). This motivates re-defining the residual

as rd = ‖y − Qη‖. Unlike the residual in the finite-

dimensional case, this residual depends on both xs and

xf , and is therefore sensitive not only to faults but also to

approximation errors (made by neglecting xf when deriving

the approximate finite-dimensional system). To prevent false

alarms due to these errors, it is important to establish a

bound on the residual which captures its expected behavior

in the absence of faults. This bound is established in the

following proposition and can be used by the supervisor as

an alarm threshold to decide when a fault can be declared

and consequently when to switch actuator configurations.

Proposition 4: Consider the infinite-dimensional system of

Eqs.7-9, with fk
a ≡ 0, subject to the controller and update

law of Eq.18 where the sampling period ∆ is chosen such

that r(Nk(∆)) < 1. Then given any pair of positive real

numbers (d, Tb > t0), there exists a positive real number ǫ̂
such that the residual rd = ‖y −Qη‖ satisfies:

rd(t) ≤ αk‖χ0 ‖e
−βk(t−t0) + d, ∀ t ≥ Tb

Proof: From Proposition 3, we have that the origin of the

closed-loop system of Eqs.7-9 and Eq.18 (with fk
a ≡ 0)

is exponentially stable for ǫ ∈ (0, ǫ∗]. This implies the

existence of ǫs > 0 such that, for ǫ ∈ (0, ǫs], the solution

of the xs-subsystem of Eq.7 satisfies ‖xs(t)− x̄s(t)‖ ≤ k1ǫ
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for all t ≥ 0, for some k1 > 0. Furthermore, given

any Tb > t0, there exists ǫf > 0, such that for ǫ ∈
(0, ǫf ], the solution of the xf -subsystem of Eq.8 satisfies

‖xf (t)‖2 ≤ k2ǫ for all t ≥ Tb, for some k2 > 0.

Re-writing r(t) = ‖y − Qη‖ ≤ ‖y − ȳ‖ + ‖ȳ − Qη‖,

and using the fact that ‖ȳ − Qη‖ ≤ αk‖χ0‖e−βk(t−t0)

when fk
a = 0 (from Proposition 2), we have r(t) ≤

‖Q‖‖xs − x̄s‖ + ‖Q‖‖xf(t)‖2 + αk‖χ0‖e−βk(t−t0) ≤
k3ǫ + αk‖χ0‖e−βk(t−t0) for all [Tb,∞), where k3 =
(k1 + k2)‖Q‖ > 0. Finally, given any d > 0, there exists

ǫ̂ := min{d/k3, ǫs, ǫf} such that for ǫ ≤ ǫ̂, rd(t) ≤
‖χ0 ‖αke−βk(t−t0) + d, for all t ≥ Tb.

Remark 6: Proposition 4 prescribes two modifications to

the fault detection rules described in the finite-dimensional

case. These include (1) enlarging the detection threshold

by a certain amount, d = O(ǫ), that reflects the size of the

approximation error, and (2) evaluating the residual only

after a small period of time [0, Tb] has elapsed to ensure that

xf (i.e., the approximation error) has converged sufficiently

close to zero. Notice that both d and Tb can be chosen

arbitrarily small provided that ǫ is sufficiently small.

Remark 7: Similar to the way that the feedback controller

and fault detection filter are implemented, one can show us-

ing singular perturbation arguments that the actuator recon-

figuration logic of Eq.17 which is based on the approximate

finite-dimensional system continues to enforce closed-loop

stability in the infinite-dimensional system provided that ǫ
is sufficiently small.

V. SIMULATION STUDY: FAULT-TOLERANT

STABILIZATION OF A DIFFUSION-REACTION PROCESS

To illustrate the application of the fault detection and

fault-tolerant control methodology described earlier, we

consider a linearized diffusion-reaction process of the form:
∂x̄

∂t
=

∂2x̄

∂z2
+

(
βT γe−γ − βU

)
x̄ + βUb(z)[u(t) + fa(t)]

subject to the boundary and initial conditions of Eq.4,

where x̄ denotes a dimensionless temperature, βT denotes a

dimensionless heat of reaction, γ denotes a dimensionless

activation energy, βU denotes a dimensionless heat trans-

fer coefficient, u denotes the temperature of the cooling

medium, fa is an actuator fault, and b(z) denotes the

actuator distribution function. For typical values of the

process parameters, βT = 50.0, βU = 2.0, γ = 4.0, the

operating steady state x̄(z, t) = 0 is open-loop unstable.

The control objective is to stabilize the temperature profile

at this unstable steady state by manipulating the temperature

of the cooling medium, u(t), in the presence of actuator

faults. We consider the first eigenvalue as the dominant one

and use standard Galerkins method to derive an ODE that

describes the temporal evolution of the amplitude of the

first eigenmode: ȧ1 = λ1a1 + g(za)u, where x̄(z, t) =∑
∞

i=1 ai(t)φi(z), g(za) = βu〈φ1(z), b(z)〉, and a single

point actuator (with finite support) is used for stabilization,

i.e., b(z) = 1/(2µ) for z ∈ [za − µ, za + µ], where µ is

a sufficiently small number, and b(z) = 0 elsewhere. This

ODE is used to design the output feedback controller and

fault detection filters which are then implemented on a 30-

th order Galerkin discretization of the PDE (higher order

discretizations led to identical results).

Following the methodology outlined in Section III,

we consider an output feedback controller of the form:

u = Fη, where F is the feedback gain, η is an esti-

mate of a1 generated by an observer of the form η̇ =
(λ̂1 − LQs(zs))η + ĝ(za)u + Ly from the measured out-

put, y(t) = 〈q(z − zs), x̄(z, t)〉, provided by a point sensor

located at z = zs, where Qs(zs) = 〈q(z − zs), φ1(z)〉,
q(z−zs) is the sensor distribution function, and the observer

gain L is chosen so that λ̂1 −LQs(zs) < 0. Following the

analysis presented in Section IV, it can be verified that the

closed-loop system is exponentially stable if an only if the

eigenvalues of the matrix Nk(∆) = Ioe
Λk∆Io are inside

the unit circle, where:

Λk =




λ1 g(zk
a)F k −g(zk

a)F k

LQs(zs) λ̂1 + ĝ(zk
a)F k − LQs(zs) LQs(zs)

λ̂1 − λ1 [ĝ(zk
a) − g(zk

a)]F k λ̂1




and Io = diag [1 1 0]. Since closed-loop stability requires

all the eigenvalues of Nk to lie within the unit circle,

it is sufficient to consider only the maximum eigenvalue

magnitude. We consider first the case when no faults are

present in the operating actuator configuration, and analyze

the dependence of closed-loop stability on the selection of

the actuator location and sampling period. Fig.1 (left) is

a contour plot showing the dependence of the maximum

eigenvalue magnitude on both the position of the actuator,

za, and the sampling period, ∆, when an uncertain model

(with λ̂1 = 0.3 and ĝ(za) = 0.5) is used to estimate the

evolution of a1 between sampling instances, and the output

feedback controller is designed with constant controller and

observer gains, F = −15 and L = 100, respectively.

The area enclosed by the unit contour line represents the

stability region for the closed-loop system. It can be seen

that (1) the set of stabilizing actuator locations increases

as the sampling period decreases and (2) the maximum

stabilizing sampling period shrinks as the actuator is moved

closer to the middle. This result can be explained by

the fact that when all actuator locations share the same

feedback gain, the closed-loop response in the absence of

sampling ȧ1 = (λ1 + g(za)F )a1 is fastest at the middle

location (where the first eigenfunction has a maximum) and

therefore more frequent sampling is needed at this location

when the measurements are not available continuously. For

comparison, the area enclosed by the unit contour lines in

Fig.1 (right) represents the stability region when a sample-

and-hold scheme (i.e., a model of the form ẇ(t) = 0, t ∈
(tj , tj+1)) is used. The stable region is slightly smaller in

this case. In general, however, if the plant-model mismatch

is too large, the sample-and-hold scheme may outperform

the model-based scheme.

To illustrate the fault detection and handling capabilities

of the sampled data control system, the process is initialized

using a healthy actuator placed at za = 0.25 and the
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Fig. 1. Dependence of the maximum eigenvalue magnitude of N on the
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Fig. 2. Evolution of the closed-loop state profiles (top) and manipulated
input profiles (middle) when a fault is detected in the primary actuator and
subsequent reconfiguration to an actuator placed at za = 0.6 (a,c) and to
an actuator at za = 1.3 (b,d) takes place.

sampling period is set at ∆ = 0.2. Based on the evolution of

the residual in the absence of faults, we choose a detection

threshold of δ = 0.04 for Tf ≥ Tb = 0.5. This allows

sufficient time for the fast modes to converge. At Tf = 0.65,

a fault is introduced in the operating actuator (see the red

line in Fig.2(c)). The residual profile in Fig.3(a) shows that

the fault is detected at Td = 1.0 when it causes the residual

to breach the threshold. At this time, the supervisor needs to

switch to a backup actuator to maintain closed-loop stability.

For the given sampling period, Fig.1(left) indicates that the

actuator placed at za = 0.6 lies inside the unit contour

zone and is therefore expected to be stabilizing, while the

actuator placed at za = 1.3 lies outside and therefore cannot

stabilize the close-loop system. This prediction is confirmed

by the closed-loop state profiles in Fig.2(a-b). The blue lines

in Figs.2(c-d) depict the manipulated input profiles for the

backup actuators.
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