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Abstract— This paper revisits the multivariable MRAC prob-
lem, by studying adaptive state feedback control for output
tracking of multi-input and multi-output (MIMO) systems.
With such a control scheme, the plant-model matching con-
dition is much less restrictive than those for state tracking,
while the controller enjoys a simpler structure than that of an
output feedback design with the guarantee of the asymptotic
tracking of multiple outputs. Such a control scheme is useful for
applications when the plant-model matching condition for state
tracking cannot be satisfied. A stable adaptive control scheme
is developed based on LDS decomposition of high frequency
gain matrix, which ensures closed-loop stability and asymptotic
output tracking. A simulation study is conducted for an aircraft
model, with desired simulation results presented.
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I. INTRODUCTION

Model reference adaptive control (MRAC) is one of the

most important adaptive control methods, which provides

feedback controller structures and adaptive laws for control

of systems to ensure closed-loop signals boundedness and

asymptotic tracking of independent reference signals by the

system signals, despite of the uncertainties of the system

parameters. Much effort has been devoted, such as [2], [3],

[6], and [9]. While MRAC theory has evolved into a mature

control theory, refined and new designs of MRAC schemes

are still needed for many applications, especially, for systems

with multiple inputs and multiple outputs, such as aircraft

systems, where some important issues remain open.

MRAC can be designed using either state feedback or

output feedback. In many applications, such as flight control,

system states are available and state feedback control is com-

monly used due to its simpler structure (as compared with

compensator based output feedback designs) and powerful

functions. State feedback control systems can be designed for

either state tracking or output tracking with different design

conditions. To develop an adaptive state feedback controller,

it is necessary to solve the related nonadaptive control

problem assuming the plant parameters are known, thus an

ideal fixed state feedback controller can be obtained. This

ideal (nominal) controller will be used as a priori knowledge

in the design of the adaptive control scheme. The existence

of such a nominal controller is equivalent to a set of matching

equations. A state feedback controller for state tracking has

a restrictive matching condition which can only be satisfied

for system matrices in certain canonical forms, which largely

confines its applications in control problems. State feedback

for output tracking, on the other hand, while keeping the

simple controller structure, needs a less restrictive matching

condition, and does not require system matrices in canonical

forms. Therefore, state feedback for output tracking adaptive

control has high potential for important applications such as

aircraft flight control when the matching conditions for state

tracking are often difficult to satisfy due to system parameter

uncertainties.

Research in adaptive state feedback control for output

tracking has been reported in the literature. In [4], state

feedback output tracking control is studied for certain classes

of nonlinear systems. In [7], a state feedback output tracking

MRAC scheme for single input single output (SISO) systems

is derived. Technical issues including design conditions,

plant-model matching conditions, controller structures, adap-

tive laws and stability analysis are addressed in detail, with

extensions to adaptive disturbance rejection. In [8], adaptive

state feedback output tracking designs for actuator failure

compensation are developed and applied to aircraft flight

control. However, state feedback output tracking MRAC for

MIMO systems still needs to be solved. It is the goal of this

paper to propose and study a multivariable state feedback

output tracking MRAC scheme, for systems with multiple

inputs and outputs. Such an adaptive control scheme is

designed based on the LDS decomposition of the system’s

high frequency gain matrix to reduce its knowledge needed

for implementing the adaptive laws. A comparison study

will be given to show the advantages of the state feedback

output tracking approach over state feedback state tracking as

well as output feedback output tracking. Controller structure,

plant-model matching conditions, adaptive law design, and

stability analysis are addressed. A simulation study of the

developed adaptive control scheme is done on a transport

aircraft model, with illustration of simulation results.

The paper is organized as follows. The control problem

is formulated in Section II where a comparison between

different model reference adaptive control designs is also

discussed. The adaptive controller structure is given in

Section III, for which the relaxed plant-model matching

equation is introduced and established under some much

weaker system conditions (than those for state tracking). The

adaptive scheme for updating the controller parameters is

developed in Section IV, together with its stability analysis.

The simulation results are presented in Section V.
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II. PROBLEM STATEMENT

Consider an M -input and M -output linear time-invariant

system described by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (1)

with A ∈ Rn×n, B ∈ Rn×M and C ∈ RM×n being

unknown and constant parameter matrices, and x(t) ∈ Rn,

u(t) ∈ RM and y(t) ∈ RM being the system state, input

and output vector signals.

The control object is to design a state feedback control

signal u(t) to make all signals in the closed-loop system

bounded and the output vector signal y(t) asymptotically

track a given reference vector signal ym(t), which is gener-

ated from the reference model system

ym(t) = Wm(s)[r](t), Wm(s) = ξ−1
m (s) (2)

where r(t) ∈ RM is a bounded reference input signal, and

ξm(s) is a modified left interactor matrix of the system

transfer matrix G(s) = C(sI −A)−1B , which has a stable

inverse, such that Wm(s) is stable [7].

The reason why we study the multivariable MRAC with

state feedback for output tracking is that, for many important

applications, there are some shortcomings in the existing two

types of multivariable MRAC schemes: the one using state

feedback for state tracking and the one using output feedback

for output tracking, as analyzed next.

State feedback for state tracking. For a state feedback

for state tracking design, the controller structure is

u(t) = KT
1 (t)x(t) +K2(t)r(t) (3)

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are parameter

matrices updated from some adaptive laws, so that the plant

state vector signal x(t) can asymptotically track a reference

state vector signal xm(t) generated from a chosen reference

system

ẋm(t) = Amxm(t) +Bmr(t) (4)

where Am ∈ Rn×n is stable and Bm ∈ Rn×M . For such an

adaptive control design, the matching conditions

A+BK∗T
1 = Am, BK

∗

2 = Bm (5)

need to be satisfied, for some constant matrices K∗

1 ∈ Rn×M

and K∗

2 ∈ RM×M [7].

To satisfy the matching conditions (5), the system matrices

A and B need to be in certain restrictive canonical forms. In

many applications, the controlled plants are not in canonical

forms and the matching conditions cannot be satisfied.

Consider the linearized lateral motion dynamic model of

a large transport airplane [8] described by

ẋ = Ax+Bu, x = [vb, pb, rb, φ, ψ]T , u = [dr, da]T , (6)

where vb is the lateral velocity, pb is the roll rate, rb is

the yaw rate, φ is the roll angle, ψ is the yaw angle, dr

is the rudder position, and da is the aileron position. From

the reference [8], the parameter matrices A and B are

A =













−0.13858 14.326 −219.04 32.167 0
−0.02073 −2.1692 0.91315 0.000256 0

0.00289 −0.16444 −0.15768 −0.00489 0
0 1 0.00618 0 0
0 0 1 0 0













B =













0.15935 0.00211
0.01264 0.021326

−0.012879 0.00171
0 0
0 0













. (7)

Since many parameters in the matrices A and B are in fact

uncertain as they depend on different operation conditions

[1], we should consider the general forms of A and B:

A=













a11 a12 a13 a14 0
a21 a22 a23 a24 0
a31 a32 a33 a34 0

0 1 a43 0 0
0 0 1 0 0













, B=













b11 b12
b21 b22
b31 b32

0 0
0 0













(8)

where aij , i = 1, 2, 3, j = 1, 2, 3, 4, a43 and bij , j =
1, 2, 3, j = 1, 2, are unknown parameters. For the parameter

matrices K∗

1 and K∗

2 of the form

K∗

1 =













k∗111 k∗112
k∗121 k∗122
k∗131 k∗132
k∗141 k∗142
k∗151 k∗152













,K∗

2 =

[

k∗211 k∗212
k∗221 k∗222

]

, (9)

substituting (8) and (9) in the state tracking plant-model

matching equations (5), we have

A+BK∗T
1 =













am11 am12 am13 am14 am15

am21 am22 am23 am24 am25

am31 am32 am33 am34 am35

0 1 a43 0 0
0 0 1 0 0













(10)

where amij = aij + bi1k
∗

1j1 + bi2k
∗

1j2, i = 1, 2, 3, j =
1, 2, 3, 4, ami5 = bi1k

∗

151 + bi2k
∗

152, i = 1, 2, 3, and

BK∗

2 =













b11k
∗

211 + b12k
∗

221 b11k
∗

212 + b12k
∗

222

b21k
∗

211 + b22k
∗

221 b21k
∗

212 + b22k
∗

222

b31k
∗

211 + b32k
∗

221 b31k
∗

212 + b32k
∗

222

0 0
0 0













. (11)

We see that the matrices A +BK∗T
1 and BK∗

2 in (10) and

(11) may not be made as a stable matrix Am and a matrix

Bm independent of the plant parameters in A and B which

are not in canonical forms. Thus, the reference model of the

form (4) may not be specified for designing a state feedback

controller for the plant (6).

Output feedback for output tracking. If the control

objective is to achieve closed-loop signal boundedness and

output tracking of a reference signal, we can use a multivari-

able MRAC scheme with output feedback for output tracking

593



to avoid the strict matching conditions. It is well-known that

such a controller structure is

u(t) = ΘT
1 ω1(t) + ΘT

2 ω2(t) + Θ20y(t) + Θ3r(t), (12)

where Θ1 ∈ R(ν−1)M×M , Θ2 ∈ R(ν−1)M×M , with ν being

the observability index of the plant (1), Θ20 ∈ RM×M and

Θ3 ∈ RM×M , and

ω1(t) = F (s)[u](t), ω2(t) = F (s)[y](t), (13)

F (s) =
A0(s)

Λ(s)
, A0(s) = [IM , sIM , . . . , sν−2IM ]T , (14)

for a monic and stable polynomial Λ(s) of degree ν−1. It is

clear that such a controller structure with filter F (s) is much

more complex than the state feedback controller structure (3).

Thus, from the above illustrations, we see that there are

some shortcomings for the above two popular multivariable

MRAC schemes. In many applications, the system state

variables are readily available and the control objective is to

achieve output tracking, such as aircraft flight control. For

such applications, an effective and simple controller structure

is desirable. It is the goal of this paper to develop a new

multivariable MRAC scheme, which uses a state feedback to

achieve asymptotically output tracking of reference signals.

This multivariable MRAC with state feedback for output

tracking can avoid both the strict matching conditions and

the complicated output feedback controller structure.

Assumptions. To design a multivariable state feedback

MRAC scheme, we make the standard assumptions:

(A1) all zeros of G(s) have negative real parts;

(A2) G(s) is strictly proper, has full rank and its modified

left interactor matrix ξm(s) is known; and

(A3) all leading principal minors ∆i, i = 1, 2, . . . ,M , of

the high frequency gain matrix Kp are nonzero and their

signs are known.

III. CONTROLLER STRUCTURE

As we explained above, for achieving the stated output

tracking control objective when the state vector x(t) is avail-

able, we use the simple state feedback controller structure

u(t) = KT
1 (t)x(t) +K2(t)r(t) (15)

where K1(t) ∈ Rn×M and K2(t) ∈ RM×M are the adaptive

estimates of the unknown constant parameters K∗

1 ∈ Rn×M

and K∗

2 ∈ RM×M which are defined to satisfy

C(sI − A−BK∗T
1 )−1BK∗

2 = Wm(s),K∗−1
2 = Kp, (16)

where Kp = lims→∞ ξm(s)G(s) is the high frequency gain

matrix of G(s).
The existence of K∗

1 and K∗

2 is guaranteed by Lemma 1,

under the nominal system condition:

(A4) (A, B) is stabilizable and (A, C) is observable.

Lemma 1: There exist parameter matrices K∗

1 ∈ Rn×M and

K∗

2 ∈ RM×M to meet the plant-model matching equations

(16), for which the pole-zero cancellations are stable, that

is, A+BK∗T
1 is a stable matrix.

This result is stated in [5] and can be proved using

the method of [10]. In [5], the equation (16) is further

parameterized to be used to derive an output feedback

adaptive controller structure for multivariable systems. In this

paper, we use it to directly derive a state feedback adaptive

controller which has a simpler controller structure.

Tracking error equation. Substituting the control law

(15) in the plant (1), we have

ẋ(t) = (A+BK∗T
1 )x(t) +BK∗

2r(t)

+B((KT
1 (t) −K∗T

1 )x(t) + (K2(t) −K∗

2 )r(t)),

y(t) = Cx(t). (17)

In view of the reference model (2), matching equations (16)

and (17), the output tracking error e(t) = y(t) − ym(t) is

e(t) = Wm(s)Kp[Θ̃
Tω](t) + Ce(A+BK∗T

1
)tx(0), (18)

where Ce(A+BK∗T

1
)tx(0) converges to zero exponentially

fast due to the stability of A+BK∗T
1 , and

Θ̃(t) = Θ(t) − Θ∗, (19)

Θ(t) =
[

KT
1 (t),K2(t)

]T
, (20)

Θ∗ =
[

K∗T
1 ,K∗

2

]T
, (21)

ω(t) =
[

xT (t), rT (t)
]T
. (22)

IV. ADAPTIVE SCHEME

In this section, we present the design and analysis of an

adaptive scheme based on the LDS decomposition of the

high frequency gain matrix Kp.

A. Design Based on the LDS Decomposition

To design an adaptive parameter update law, it is crucial to

develop an error model in terms of some related parameter

errors and the tracking error e(t) = y(t) − ym(t).

Error model development. Ignoring the term

Ce(A+BK∗T

1
)tx(0), and from (18) and (2), we obtain

ξm(s)[e](t) = KpΘ̃
T (t)ω(t). (23)

To deal with the uncertainty of the high frequency gain

matrix Kp, we use its LDS decomposition

Kp = LsDsS (24)

where S ∈ RM×M with S = ST > 0, Ls is an M ×M unit

lower triangular matrix, and

Ds = diag{s∗1, s
∗

2, . . . , s
∗

M}

= diag{sign[∆1]γ1, . . . , sign[
∆M

∆M−1
]γM} (25)

such that γi > 0, i = 1, . . . ,M , may be arbitrary [7].

Substituting (24) in (23), we obtain

L−1
s ξm(s)[e](t) = DsSΘ̃T (t)ω(t). (26)
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To parameterize the unknown matrix Ls, we introduce

Θ∗

0 = L−1
s − I

=

















0 0 · · · 0
θ∗21 0 · · · 0
θ∗31 θ∗32 · · · 0

· · · · · ·
θ∗M−1 1 · · · 0 0
θ∗M 1 · · · θ∗M M−1 0

















. (27)

Then we have

ξm(s)[e](t) + Θ∗

0ξm(s)[e](t) = DsSΘ̃T (t)ω(t). (28)

We introduce a filter h(s) = 1/f(s), where f(s) is a

stable and monic polynomial of degree equals to the degree

of ξm(s), Operating both sides of (28) by h(s)IM leads to

ē(t) + [0, θ∗T
2 η2(t), θ

∗T
3 η3(t), . . . , θ

∗T
M ηM (t)]T

= Ds S h(s)[Θ̃
Tω](t), (29)

where

ē(t) = ξm(s)h(s)[e](t) = [ē1(t), . . . , ēM (t)]T , (30)

ηi(t) = [ē1(t), . . . , ēi−1(t)]
T ∈ Ri−1, i = 2, . . . ,M,(31)

θ∗i = [θ∗i1, . . . , θ
∗

ii−1]
T , i = 2, . . . ,M. (32)

Based on this parameterized error equation, we introduce

the estimation error signal

ǫ(t) = [0, θT
2 (t)η2(t), θ

T
3 (t)η3(t), . . . , θ

T
M (t)ηM (t)]T

+Ψ(t)ξ(t) + ē(t), (33)

where θi(t), i = 2, 3, . . . ,M are the estimates of θ∗i , and

Ψ(t) is the estimate of Ψ∗ = Ds S, and

ξ(t) = ΘT (t)ζ(t) − h(s)[ΘTω](t), (34)

ζ(t) = h(s)[ω](t). (35)

From (29)–(35), we can derive that

ǫ(t) = [0, θ̃T
2 (t)η2(t), θ̃

T
3 (t)η3(t), . . . , θ̃

T
M (t)ηM (t)]T

+Ds SΘ̃T (t)ζ(t) + Ψ̃(t)ξ(t), (36)

where θ̃i(t) = θi(t) − θ∗i , i = 2, 3, . . . ,M , and Ψ̃(t) =
Ψ(t) − Ψ∗ are the related parameter errors.

Adaptive laws. With the estimation error model (36), we

choose the adaptive laws

θ̇i(t) = −
Γθiǫi(t)ηi(t)

m2(t)
, i = 2, 3, . . . ,M (37)

Θ̇T (t) = −
Dsǫ(t)ζ

T (t)

m2(t)
(38)

Ψ̇(t) = −
Γǫ(t)ξT (t)

m2(t)
(39)

where the signal ǫ(t) = [ǫ1(t), ǫ2(t), . . . , ǫM (t)]T is com-

puted from (33), Γθi = ΓT
θi > 0, i = 2, 3, . . . ,M , and

Γ = ΓT > 0 are adaptation gain matrices, and

m(t) = (1+ζT (t)ζ(t)+ξT (t)ξ(t)+

M
∑

i=2

ηT
i (t)ηi(t))

1/2 (40)

is a standard normalization signal.

Complexity analysis. From the Lemma 1, we have a much

less restrictive plant-model matching condition than that

needed for a state feedback for state tracking scheme. Next,

we will show the state feedback for output tracking scheme is

simpler than the output feedback for output tracking scheme.

Firstly, the state feedback controller structure (15) is less

complex than the output feedback controller structure (12) .

Since there exists a matrix filter F (s) in the output feedback

controller (12), it needs to solve extra differential equations

to calculate the signals ω1(t) and ω2(t) in (12), which

increases the computing time of the output feedback control

signal (12), while the state feedback control signal (15) can

be directly calculated from the state signal x(t) and the

reference input signal r(t).
Another comparison is about the number of updated

parameters and the number of filtered signals:

Proposition 1: The state feedback for output tracking scheme

is simpler than the output feedback for output tracking

scheme, in terms of the number of updated parameters and

the number of filtered signals in the adaptive laws.

Proof: The number of parameters updated in the state feed-

back for output tracking adaptive laws (37)–(39) is

Ns =
M2 −M

2
+ (n+M)M +M2, (41)

and the number of parameters in the output feedback for

output tracking adaptive laws is

No =
M2 −M

2
+ (2ν + 1)M2. (42)

Based on the definition of observability index ν [7], we have

νM ≥ n. (43)

Then, we can derive that

No −Ns = 2νM2 − nM −M2 ≥ (n−M)M ≥ 0. (44)

That is the state feedback for output tracking has less

parameters needed to be updated than that of the output

feedback for output tracking in most cases (only when ν = 1
and n = M , the numbers are equal).

The number of filtered signals ē(t), ξ(t), and ζ(t) used in

state feedback for output tracking is

Nfs = 3M + n, (45)

while the number of filtered signals in output feedback for

output tracking is

Nfo = 2νM + 2M. (46)

From νM ≥ n, we have

Nfo −Nfs = 2νM − n−M ≥ n−M ≥ 0. (47)

So the state feedback for output tracking has less filtered

signals than that of the output feedback for output tracking

in most cases (only when ν = 1 and n = M , the numbers

are equal).

Then, we can conclude that the state feedback for output

tracking scheme is simpler. ∇
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B. Stability Analysis

For the adaptive laws (37)–(39), we have the following

desired stability properties.

Lemma 2: The adaptive laws (37)–(39) ensure that

(i) θi(t) ∈ L∞, i = 2, 3, . . . ,M , Θ(t) ∈ L∞, Ψ(t) ∈ L∞,

and
ǫ(t)
m(t) ∈ L2 ∩ L∞; and

(ii) θ̇i(t) ∈ L2 ∩ L∞, i = 2, 3, . . . ,M , Θ̇(t) ∈ L2 ∩ L∞,

and Ψ̇(t) ∈ L2 ∩ L∞.

Proof: Consider the positive definite function

V =
1

2
(

M
∑

i=2

θ̃T
i Γ−1

θi θ̃i + tr[Ψ̃T Γ−1Ψ̃] + tr[Θ̃SΘ̃T ]). (48)

From (37)–(39), we derive the time-derivative of V

V̇ = −

M
∑

i=2

θ̃T
i ǫi(t)ηi(t)

m2(t)
−
ξT (t)Ψ̃T ǫ(t)

m2(t)
−
ζT (t)Θ̃SDsǫ(t)

m2(t)

= −
ǫT (t)ǫ(t)

m2(t)
≤ 0. (49)

From (49), we can derive that θi(t) ∈ L∞, i =

2, 3, . . . ,M , Θ(t) ∈ L∞, Ψ(t) ∈ L∞,
ǫ(t)
m(t) ∈ L2 ∩ L∞,

θ̇i(t) ∈ L2 ∩ L∞, i = 2, 3, . . . ,M , Θ̇(t) ∈ L2 ∩ L∞, and

Ψ̇(t) ∈ L2 ∩ L∞. ∇

Based on these properties, we have the desired closed-loop

system properties as summarized as:

Theorem 1: The multivariable MRAC scheme with the state

feedback control law (15) updated by the adaptive laws (37)–

(39), when applied to the plant (1), guarantees the closed-

loop signal boundedness and asymptotic output tracking:

limt→∞(y(t) − ym(t)) = 0, for any initial conditions.

Although this is a state feedback control design, a direct

Lyapunov stability analysis is not applicable because the

error model (36) involves the filtered tracking error ē(t) not

a state error which is not available in this output tracking

case. The proof of Theorem 1 needs to be carried out, using

a small gain theory applied to adaptive control, as described

in [7] for multivariable MRAC using output feedback (see

(12)). A key step of such an analysis procedure is to express

a filtered version of the plant output y(t) in a feedback

framework which has a small gain due to the L2 properties of

Θ̇(t), θ̇i(t) and
ǫ(t)
m(t) . Since the state feedback control signal

u(t) depends on the plant state variables x(t), we need to

express it in terms of the output y(t) (and the input u(t) itself

through a dynamic block). This can be done using a state

observer representation of the plant ẋ(t) = Ax(t) + Bu(t),
y(t) = Cx(t): ẋ(t) = (A − LC)x(t) + Bu(t) + Ly(t)
for a gain matrix L ∈ Rn×M such that A − LC is stable

(which is possible because (A, C) is observable). Then, the

analysis procedure in [7] can be used to conclude the closed-

loop signal boundedness and asymptotic output tracking:

limt→∞(y(t) − ym(t)) = 0 for the state feedback case.

V. AN AIRCRAFT CONTROL EXAMPLE

In this section, we present the simulation results of an

application of the above multivariable MRAC scheme to an

aircraft flight control system example.

A. Aircraft System Description

We choose the lateral dynamics model of a transport

aircraft model [8] as the controlled plant which, as partially

described in (6), is

ẋ = Ax+Bu, x = [vb, pb, rb, φ, ψ]T , u = [dr, da]T ,

y = Cx. (50)

The five state variables are the lateral velocity vb, the roll

rate pb, the yaw rate rb, the roll angle φ, and the yaw angle

ψ. The control inputs are the rudder position dr and the

aileron position da. The basic units used in this model are

foot, radian, and second. We choose the lateral velocity vb

and the yaw angle ψ as plant outputs, so that C is

C =

[

1 0 0 0 0
0 0 0 0 1

]

. (51)

We use this linearized model to test our proposed adaptive

control scheme.

B. Adaptive Controller Design

In this subsection, we will verify the assumptions (A1)–

(A3) in Section II for the considered plant model, and choose

the design parameters for the adaptive laws.

Verification of design conditions. From the nominal

aircraft model (C,A,B) in (51) and (7), we can calculate

the zeros of G(s) = C(sI −A)−1B as

z1 = −11.79, z2 = −2.69 (52)

which both have negative real parts, and G(s) is strictly

proper and has full rank. The interactor matrix ξm(s) can

be chosen as

ξm(s) =

[

s+ 1 0
0 (s+ 1)2

]

, (53)

so that the high frequency gain matrix is

Kp = lim
s→∞

ξm(s)G(s) =

[

0.1593 0.0021
−0.0129 0.0017

]

(54)

which is finite and non-singular. Therefore, the reference

system transfer matrix Wm(s) can be chosen as

Wm(s) = ξ−1
m (s) =

[ 1
s+1 0

0 1
(s+1)2

]

(55)

which is stable and strictly proper. In this case, the leading

principal minors of Kp are

∆1 = 0.1593,∆2 = 0.000298 (56)

which are nonzero, and the signs of the leading principal

minors are positive and are to be used in the adaptive laws.

Now we have verified that all the assumptions in Section

II can be satisfied for the aircraft plant described in (50).

Design parameters. For the adaptive laws (37)–(39), We

choose Γθ2 = 1, Ds = Γ = diag{1, 1}, and h(s) = 1
(s+1)2 .
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C. Simulation Results

For numerical study, the reference input r(t) is selected as

(i) constant reference inputs r(t) = [1, 0.1]T , and (ii) vary-

ing reference inputs r(t) = [sin(0.014t), 0.1 sin(0.014t)]T .

From the results we can see that these two choices can make

the aircraft follow realistic flying courses. Simulation results

are presented as below.

Case I: Constant reference inputs r(t) = [1, 0.1]T . In

Figure 1, the dotted lines represent the reference outputs and

the solid lines represent the aircraft outputs. From Figure

1, we can have that the aircraft outputs track the reference

outputs to 1 ft/sec and 5.7 deg respectively. The responses

of control input signal u(t) = [dr, da]T are also bounded

in some reasonable regions, which are not shown since the

space limitation.

Case II: Varying reference inputs r(t) =
[sin(0.014t), 0.1 sin(0.014t)]T . In Figure 2, the dotted

lines represent the reference outputs and the solid lines

represent the aircraft outputs. Figure 2 shows that the output

tracking errors converge to zero. The responses of control

input signal u(t) = [dr, da]T are also bounded in some

reasonable regions, which are not shown since the space

limitation.
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Fig. 1. Aircraft outputs (solid) vs. reference outputs (dotted) in Case I.

VI. CONCLUSIONS

In this paper, we have shown the development of a

state feedback output tracking multivariable MRAC scheme.

Such a scheme needs less restrictive plant-model matching

conditions than a state tracking scheme, while with a simpler

controller structure than an output feedback scheme. It is an

addition to the collection of multivariable MRAC designs,

and has high potential for output tracking applications in

which system states are available but the state tracking

matching conditions cannot be satisfied, such as aircraft

flight control. Like other multivariable MRAC schemes,

the state feedback output tracking MRAC scheme can be
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Fig. 2. Aircraft outputs (solid) vs. reference outputs (dotted) in Case II.

designed based on different decompositions of the plant high

frequency gain matrix, and in this paper it is designed based

on an LDS decomposition. Relaxed plant-model matching

conditions and desired stability and asymptotic tracking

properties have been established in theory and verified by

simulation results from a study of application to a linearized

transport aircraft dynamic model.
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