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Abstract— Variational integrators are powerful tools for sim-
ulating constrained mechanical systems as well as computing
optimal control strategies. While there are well-established
methods to incorporate holonomic constraints in variational
integrators, there have also been alternative suggestions that
have appealing benefits in terms of computational efficiency.
We compare the standard holonomic constraints method with
what are called two-point constraint methods. In this paper
both methods are tested on two different, relatively simple
systems. The results reveal multiple problems with the two-
point constraints. They are found to be numerically unstable
and to under some circumstances provide unreliable constraint
force values. The conclusion is that two-point constraints are
invalid and should not be used.

I. INTRODUCTION

There has recently been a great deal of research in the use

of discrete mechanics for numerically simulating mechanical

systems [5] and optimal control [4]. A result of this research

is a class of integrators called variational integrators that

propagate states directly from a variational principle rather

than numerically integrating a continuous ordinary differ-

ential equation. Variational integrators conserve (or nearly

conserve, depending on the integrator) important quantities

like the symplectic form, momentum, and energy [6]. They

are also well suited for problems involving impacts and non-

smooth phenomenon [1].

Mechanical simulations often require constraints on the

configuration manifold to properly represent a system. These

holonomic constraints can represent closed kinematic chains,

pin joints, sliding joints, etc. Holonomic constraints are

different from a non-holonomic constraints that act on a sys-

tem’s tangent bundle. Non-holonomic constraints (also called

velocity constraints) simulate non-slip phenomenon like a

tire that can roll but not slide. Non-holonomic constraints

can work in the variational integrator framework but are not

discussed in this paper.

Holonomic constraints are added to variational integrators

using a straightforward derivation that is analogous to contin-

uous Lagrangian mechanics with constraints. This technique,

which we refer to as one-point constraints, is well established

and has been thoroughly analyzed and tested[8]. [7] suggests

a modification to one-point constraints that is appealing

from a philosophical and implementational perspective. This

technique, which we call a two-point constraint, has not been

rigorously derived, analyzed, or tested.
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Fig. 1: The discrete action sum approximates the continuous

action integral.

This paper presents findings from a thorough comparison

of the two methods. Both seem equally reasonable and two-

point constraints can be faster for some implementations, but

experience has shown that two-point constraints have unad-

dressed problems. We do not resolve these issues, however,

and leave them as open questions.

Section I-A briefly introduces variational integrators. Sec-

tion II discusses the two techniques to include holonomic

constraints. Section III uses simulation of a point constrained

to a circle in the plane to demonstrate what can go wrong

using the two-point constraint method if one is using a

quadrature rule that is not convex in the local coordinate

choice. Section IV shows that this is not specific to the prior

example by using the example of a point constrained to a

line in the plane. We end with conclusions in Section V.

A. Variational Integrators

In discrete mechanics, we find a sequence

{(t0, q0), (t1, q1), . . . , (tn, qn)} that approximates the

actual trajectory of a mechanical system (qk ≈ q(tk)). In

this paper, use a constant time-step (tk+1 − tk = Δt ∀ k),

but in general the time-step can be varied to use adaptive

time-stepping algorithms.

A variational integrator is derived by defining a discrete

Lagrangian, Ld, that approximates the action integral of a
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(a) Simulation of a fifty-degree-of-freedom string marionette (b) Its associated graph representation

Fig. 2: Simulation using recursive tree forms. See http://robotics.mech.northwestern.edu for this simulation.

continuous mechanical system over a short time interval.

Ld (qk, qk+1) ≈
∫ tk+1

tk

L(q(τ), q̇(τ))dτ (1)

The discrete Lagrangian allows us to replace the system’s

action integral with an approximating action sum.

S(q([t0, tf ]) =
∫ tf

t0

L(q(τ), q̇(τ))dτ ≈
n−1∑
k=0

Ld (qk, qk+1) (2)

where tf = tn. This approximation is illustrated in Fig.

1. The shaded region in Fig. 1a is the continuous action

integral. The shaded boxes in Fig. 1b represent values of

the discrete Lagrangian, which are summed to calculate the

discrete action.

In continuous mechanics, a variational principle is applied

to extremize the action integral and derive the well-known

Euler-Lagrange equation. The same approach is used to

extremize (2) leading to the discrete Euler-Lagrange (DEL)

equation1.

D1Ld (qk, qk+1) + D2Ld (qk−1, qk) = 0 (3)

This is an implicit difference equation that depends on

the previous, current, and future states. Given qk−1 and qk,

(3) is treated as a root-finding problem to find qk+1. After

advancing k, this process is repeated to simulate the system

for as long as desired.

We will use a simple variational integrator derived by

applying the generalized midpoint quadrature rule to define

the discrete Lagrangian:

Ld(qk, qk+1) = L
(
(1− α)qk + αqk+1,

qk+1−qk

Δt

)
Δt (4)

where α ∈ [0, 1] is an algorithm parameter. Choosing α = 0
leads to a first order, explicit integrator while α = 1 is a

1Dnf(. . . ) is the derivative of f(. . . ) with respect to its n-th argument.
This is sometimes called the slot derivative[9]

first order, implicit integrator. α = 1
2 leads to a second order

integrator [9] and will be our choice throughout this paper.

II. HOLONOMIC CONSTRAINTS

We are interested in simulation and control of high di-

mensional nonlinear systems. The example that we have

been using recently is that of a marionette–see Fig. 2a. The

marionette has roughly fifty degrees of freedom and consists

of five coupled, closed kinematic chains which are modeled

as holonomic constriants. Hence, its dynamics are very

complex, and it turns out that normal ordinary differential

equation solvers tend to be unstable. Variational integrators,

however, are stable even with time steps of 0.1 seconds,

making them ideally suited for simulation of this type of

structure. Efficient evaluation of a variational integrator can

take advantage of the graph structure associated with its

mechanical topology, as seen in Fig.2b. Details of how to

do this may be found in [3] and [2].

We now move on to considering constraints for variational

integrators. Holonomic constraints restrict a system to a sub-

manifold of its configuration. They are typically defined

by a constraint function g(q) such that for all admissible

configurations g(q) = 0. Formally, we define the constrained

sub-manifold as C = {q ∈ Q | g(q) = 0} where Q is the

configuration manifold of the mechanical system. Looking

at (3) and (4), there are two natural choices of where to

enforce a holonomic constraint; at the discrete configurations

q0, q1, . . . , qN or at the quadrature point where L is being

evaluated. The first is the one-point constraint method while

the second is the two-point constraint method.

A. One-Point Constraints

The variational integrator framework is extended to in-

clude holonomic constraints by requiring that each qk of the

discrete trajectory satisfy the constraint (i.e. g(qk) = 0 ∀ k).

The constraints are introduced to the discrete action with

Lagrange multipliers, λk, at each time-step.
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Fig. 3: The two methods for including constraints in a

variational integrator. One-point constraints force each qk to

satisfy the constraint. Two-point constraints force some inter-

mediate point between qk and qk+1 to satisfy the constraint.

S =
N−1∑
k=0

Ld(qk, qk+1)− 〈λk+1, g(qk+1)〉 (5)

The discrete λk (and λk+1) is analogous to the Lagrangian

multipliers λ in the continuous case and are related to

the magnitude of the constraint forces at each time step.

Applying the variational principle to (5) with qk and λk as

the dynamic variables leads to the constrained discrete Euler-

Lagrange equations:

D2Ld(qk−1, qk)+D1Ld(qk, qk+1)
− 〈λk, Dg(qk)〉 = 0

(6a)

g(qk+1) = 0 (6b)

We integrate the system using the same procedure de-

scribed in section I-A with a slight modification. The root-

finder now solves for both qk+1 and λk at each time step by

evaluating (6a) and (6b).

For an in-depth discussion of one-point constraints, in-

cluding proofs, see [8] and [9].

B. Two-Point Holonomic Constraints

[7] suggests that the holonomic constraints could be

enforced at intermediate points (i.e. f(qk, qk+1)) between

discrete configurations instead of at the configurations them-

selves. We refer to this idea as two-point constraints. Fig-

ure 3 illustrates the difference between one- and two-point

constraints.

This method is desirable, for example, with the discrete

Lagrangian in (4) where the dynamics are evaluated at

q = (1 − α)qk + αqk+1. With the two point constraint,

the constraint can be evaluated at this same point. This

guarantees that the dynamics will be evaluated at points in

the constraint set.

There can also be performance benefits to two-point

constraints. In [3], an algorithm is presented to implement

numeric variational integrators for arbitrary mechanical sys-

tems, without using symbolic algebra software. The key per-

formance optimization for this method is extensively reusing

earlier calculated values to avoid duplicated efforts (i.e.

caching). The dynamics require that values are evaluated us-

ing the midpoint state, so the results from those calculations

are already available. A two-point constraint implementation

will use them without additional computational effort. A one-

point constraint, on the other hand, has to re-evaluate the

same equations using a normal state (i.e. non-midpoint).

To include two-point constraints, we define a new con-

straint equation:

ḡ(qk, qk+1) = g(f(qk, qk+1)) (7)

where f(qk, qk+1) is an interpolating function that takes

two configurations and returns a new configuration. For the

generalized midpoint rule f(qk, qk+1) = (1−α)qk +αqk+1.

The action sum is updated with the new constraint func-

tion:

S =
N−1∑
k=0

Ld(qk, qk+1)− 〈λk+1, ḡ(qk, qk+1)〉 (8)

The action is again extremized with the variational prin-

ciple to obtain a different set of constrained discrete Euler-

Lagrange equations:

D1Ld(qk, qk+1)− 〈λk+1, D1ḡ(qk, qk+1)〉+
D2Ld(qk−1, qk)− 〈λk, D2ḡ(qk−1, qk)〉 = 0

(9)

g(qk+1) = 0 (10)

This integrator is advanced using the same algorithm as

the one-point constraint integrator. However, it requires an

additional initial condition for λ1.

Unfortunately, the derivation doesn’t provide an obvious

choice. [7] suggests a procedure that is essentially equivalent

to λ1 = 0. For now we use that.

There is still another ambiguity for the initial conditions.

The initial conditions can satisfy g(q0) = g(q1) = 0 or

ḡ(q0, q1) = 0, but not always both. This depends on the

coordinate choice and shape of the constraint manifold. If

the constraint is convex2 in the chosen coordinates, both can

be satisfied. Otherwise, a decision must be made. Neither [7]

nor the derivation suggest one over the other. Initially we

will choose initial conditions so that the two configurations

satisfy constraints.

2In this context, convex means for q0, q1 ∈ C implies f(q0, q1) ∈ C.
Convexity, therefore, depends on the constraint, the coordinate representa-
tion of Q, and the interpolation method f(·, ·).
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(a) One-Point Constraint

qk

qk+1
f(qk, qk+1)

(b) Two-Point Constraint

Fig. 4: Simulation results for one-point and two-point con-

straints in XY coordinates. The particle is constrained to the

unit circle.

III. EXAMPLE: POINT ON A CIRCLE

We first compare the two methods by considering a

particle in the plane that is constrained to the unit circle3.

A. Euler Coordinates

Let the configuration q = (x, y) where x and y are the

coordinates of the point in the plane. Ignoring gravity and

setting m = 1, the Lagrangian for this system is

L(q, q̇) = 1
2 (ẋ2 + ẏ2) (11)

The discrete Lagrangian for the variational integrator is

defined by the generalized midpoint rule (4) with α = 1
2 :

Ld(qk, qk+1) = L

(
qk + qk+1

2
,
qk+1 − qk

Δt

)
Δt (12)

The particle is constrained to the unit circle.

g(q) = x2 + y2 − 1 (13)

The two-point constraint is defined using the same general-

ized midpoint rule used in the discrete Lagrangian.

ḡ(qk, qk+1) = g

(
qk + qk+1

2

)
(14)

The system was simulated in Mathematica using one-

point and two-point constraints. Both used the same initial

conditions (with g(q0) = g(q1) = 0) and were simulated

with a constant time-step of 0.01 seconds over a time of

0.65 seconds.

The resulting trajectories are shown in Fig. 4. The one-

point integrator behaves as expected. The particle travels at

a constant velocity and remains on the circle.

The two-point integrator is unstable. The particle bounces

in and out of the circle while still satisfying the the con-

straints between steps. The points are also further apart after

each time step, suggesting that the particle is gaining energy.

The instability could be caused by the wrong initial

condition λ1. This is unlikely. Suppose we had the correct

λ1. We could augment the integrator to include forcing and

3Note that for both examples we could eliminate the constraint by
choosing a more appropriate configuration.

Fig. 5: Improved simulation results for the two-point circle

constraint in XY coordinates.

apply a force that cancels out the correct constraint force so

that the combined terms equal the current initial constraint

force. An applied force should alter the trajectory, but not

cause instability.

Another possible cause is the choice of initial configu-

rations q0 and q1. For this coordinate representation and

interpolation, the circular constraint is not convex; the ini-

tial configurations and their midpoint cannot simultaneously

satisfy the constraint. For Fig. 4b, we chose q0 and q1

to satisfy the constraint as it is straightforward and more

natural to specify configurations that independently satisfy

the constraint.

Fig. 5 shows a two-point simulation in XY coordinates

that has been improved by considering these two issues. The

initial configurations are now chosen so that f(q0, q1) ∈ C
while q0, q1 /∈ C. Initial condition λ1 was varied experimen-

tally and finally set at λ1 = − 1
2 . This is the same value of

every λk in the one-point constraint simulation. The trajec-

tory is improved but is still unstable. This strongly suggests

that even with the correct λ1 (assuming it exists), the two-

point constraint method would be numerically unstable.

B. Polar Coordinates

The comparison continues by choosing a different co-

ordinate representation. Polar coordinates are an appealing

choice because they naturally express the circular constraint.

The new configuration is q = (θ, r) where θ is the angle

between the horizontal axis and a line from the origin to the

particle, and r is the distance from the origin to the particle.

Ignoring gravity and choosing m = 1 leads to the continuous

Lagrangian

L(q, q̇) = 1
2

(
ṙ2 + (rθ̇)2

)
(15)

The constraint equation is

g(q) = r2 − 1 (16)

The discrete Lagrangian and the two-point constraint are

the same definitions from the previous derivation (Equ. (12)

and (14)).

The system was simulated using the same implementation

in Mathematica with a time-step of 0.01 seconds for a

duration of 0.65 seconds. The resulting trajectories are shown

in Fig. 6. In this case, both trajectories are stable.
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(a) One-Point Constraint (b) Two-Point Constraint

Fig. 6: Simulation results using one and two point constraints

in polar coordinates. The particle is constrained to the unit

circle.
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(b) Two-Point Constraint

Fig. 7: λk for the simulations using one and two point

constraints in polar coordinates.

The results do differ for the constraint forces. Figure 7

shows the λk sequences for both simulations. The one-point

constraint is a constant value as expected for a particle

moving in a circle at a constant velocity.

The two-point constraint, on the other hand, oscillates

between 0 and -1. This is related to the initial condition

λ1. If λ1 is small, λ2 takes on a large value to compensate.

In turn, λ3 takes on a small value to compensate for λ2.

This establishes the oscillating pattern seen in the results. By

choosing λ1 to be the average of these two values, we can

run the simulation again and get a constant value for λk as

expected. This strongly suggests that the starting procedure

from [7] is incorrect.

Surprisingly, we find the value of λ1 affects the λk

sequence but does not affect the state trajectory in the polar

coordinate simulation.

A potential reason for the difference in stability is that

in polar coordinates, we do simultaneously satisfy g(q0) =
g(q1) = 0 and ḡ(q0, q1) = 0.

IV. EXAMPLE: POINT ON A LINE

Motivated by the previous results, we consider a particle

confined to the line y = x+1. In this case, the constraint set

is convex in XY coordinates, but not in polar coordinates.

We now include gravity to make the linear trajectories non-

trivial (ie, so the constraint forces must be non-zero).

(a) One-Point Constraint (b) Two-Point Constraint

Fig. 8: Simulation results using one and two point constraints

in XY coordinates. The particle is constrained to the line

y = x + 1. Gravity is included to make the linear trajectory

nontrivial.

Using q = (x, y) and m = 1, the continuous Lagrangian

is:

L = 1
2 (ẋ2 + ẏ2)− gy (17)

The constraint to stay on the line y = x + 1 is:

g(q) = (x + 1)− y (18)

The discrete Lagrangian and two-point constraint are de-

fined as in (12) and (14).

The two integrators were simulated in Mathematica with

a time-step of 0.01 seconds for a duration of 2 seconds.

The results are shown in Fig. 8. Both the one- and two-

point constraints have stable solutions and we see the same

oscillating behavior in λk for the two-point constraint.

A. Polar Coordinates

The continuous Lagrangian in polar coordinates with grav-

ity is:

L(q, q̇) = 1
2 (ṙ2 + (rθ̇)2)− gr sin θ (19)

The constraint for the line y = x + 1 in polar coordinates

is:

g(q) = (r cos θ + 1)− r sin θ (20)

The discrete Lagrangian and two-point constraints are

defined as in (12) and (14).

The two integrators were simulated in Mathematica with

a time-step of 0.01 seconds and a duration of 2 seconds.

The resulting trajectories are plotted in Fig. 9. The one-point

constraint is stable while the two-point is unstable. Note that

the line constraint is non-convex in polar coordinates.

V. CONCLUSIONS AND FUTURE WORKS

The results of this comparison demonstrate that the two-

point constraint method is, in its current form, a poor choice.

Stability strongly depends on the relationship between the

coordinate choice and shape of the constraint manifold. Our

results suggest stability related to the quadrature choice

being convex in local coordinates. We have demonstrated

that solutions may be be stable in one coordinate choice
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(a) 1 Point, Polar Coordinates (b) 2 Point, Polar Coordinates

Fig. 9: Simulation results using one and two point constraints

in polar coordinates. The particle is constrained to the line

y = x + 1. Gravity is included to make the linear trajectory

nontrivial.

but not another. Coordinate invariance is a major theme in

Lagrangian mechanics, so this is particularly undesirable.

Additionally, there is currently no clear, justifiable starting

procedure for either the initial configurations or λ1. It is

natural to specify initial configurations that satisfy the con-

straints, but this can be inconsistent with how the constraints

are enforced by the simulation. On the other hand, specifying

initial configurations to satisfy the two-point constraint could

be a difficult problem for sufficiently complex mechanical

systems. Our results suggest that a better starting procedure

will improve results, but may still be subject to numerical

instability.

The conclusions drawn from this work are based en-

tirely on experimental results. Nonetheless, they constitute

a counter-example that demonstrates that two-point con-

straints, as currently described, are incorrect. Open questions

on this topic are an analysis on the convexity-stability

relationship and an improved initialization procedure for λ1.
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