
  

  

Abstract—The nonlinear filtering problem consists of 
estimating states of nonlinear systems from noisy 
measurements and the corresponding techniques can be 
applied to a wide variety of civil or military applications. 
Optimal estimates of a general continuous-discrete nonlinear 
filtering problem can be obtained by solving the Fokker-Planck 
equation, coupled with a Bayesian update.  This procedure does 
not rely on linearizations of the dynamical and/or measurement 
models.  However, the lack of fast and efficient algorithms for 
solving the Fokker-Planck equation presents challenges in real 
time applications.  In this paper, a direct quadrature method of 
moments is introduced which involves approximating the state 
conditional probability density function as a finite collection of 
Dirac delta functions.  The weights and locations, i.e., abscissas, 
in this representation are determined by moment constraints 
and modified using the Baye’s rule according to measurement 
updates.  As compared with finite difference methods, the 
computational cost is lower without a compromising in 
accuracy. As demonstrated in two classical numerical 
examples, this approach appears to be promising in the field of 
nonlinear filtering. 

I. INTRODUCTION 

HE Fokker-Planck equation (FPE), which is also known 
as the Kolmogorov forward equation, is first used by 

Fokker [1] and Planck [2] to explain the Brownian motion of 
particles. The equation can explain the behavior of a 
dynamic system that depicts the characteristic of the 
Brownian motion, and can be used for a wide variety of 
applications in many different fields such as ecology, 
genetics, economics, and engineering [3]. In a typical 
nonlinear filtering problem, the system is modeled as an n-
dimensional continuous Itô stochastic differential equation 
(SDE) 
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where ( ) 1( , ) yN

k kt t ×∈ℜh x  is a measurement function (either 

linear or nonlinear).  The measurement noise ( )ktν  is 

assumed to be a Gaussian white noise with a covariance 
matrix of R  and independent of ( )0x , ( )tw , and h . 

The basic procedure of the nonlinear filtering technique is 
illustrated in Fig. 1. If the process described by the SDE is a 
Markovian diffusion process, the probability density 
function characterizing this process between measurements 
( 1k kt t t +< < ) is governed by the FPE [1, 2, 4] as 
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where ( )( ) ( )kp p t t= x Y  is the state conditional PDF and  

the measurement observation history is defined as 

( ) { , }k kt t t≤Y y .  The first term on the right hand side 

(RHS) of the FPE is the drift term whereas the second term 
is the diffusion term. 

Once the PDF function is found from Eq. (3), the 
measurement ( )1kt +y  made at the time instant 1kt +  and the 

Bayes’ formula are used together to update the conditional 

PDF ( )1 1( )k kp t + +x y  as 
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Hence, using the updated conditional PDF, the minimum 
mean-square estimate (MMSE) estimates of any state 
variables or functions of state variables ( )φ x  can be 

obtained. 

 
Fig. 1 FPE based nonlinear/linear filtering. 

Extensive experiences in defense agencies and industries 
appear to indicate that the EKF is adequate in most of the 
applications.  However, this happens only when the system 
is not highly nonlinear and measurements can be updated in 
a high frequency. 

As one of the directions in nonlinear filtering, the 
sequential Monte Carlo type methods have been investigated 

A Direct Quadrature Approach for Nonlinear Filtering 

Yunjun Xu and Jangho Yoon 

T

PDF Initial
PDF Propagation via 

Fokker-Planck Equation 

PDF update using 
Bayes’ Formula 

Estimation by 
Expectation Integral 

Measurement

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThB17.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3212



  

[5], in which the particle filter is one of them [6].  This type 
of nonlinear filtering techniques is more adaptive to 
complex systems because of the flexibility nature of the 
Monte Carlo simulation. However, the problem of 
computational complexity still remains unsolved [7, 8] and 
in most of the time, parallel computing has to be relied on. 

The central issue associated with the FPE and Bayes’ 
based nonlinear filtering technique is the high computational 
cost [10-13].  Since it is difficult to obtain the exact solution 
of the FPE, numerical approximations, such as the finite 
difference method [14, 15], path integral method [16], and 
cell-mapping method [17], are typically used to evaluate the 
FPE between measurements. These methods are developed 
for systems with low dimensions and may not be appropriate 
for real time applications. In Daum’s paper [8], the 
characteristics of nonlinear filtering with numerical 
approximation of FPE are discussed. Also it is noticed that 
the high computational cost may be avoided with adaptive 
grids such as the ones been used by Challa[13], Musick [18], 
and Yoon and Xu [19].  However, as shown in these papers, 
even with adaptive grids, the computational cost is still high 
even for low dimension problems and the accuracy is very 
sensitive to the domain selection. 

In this paper, the direct quadrature method of moments 
(DQMOM), along with Bayesian update of the conditional 
state PDF, is formulated for solving the FPE based nonlinear 
filtering problems.  This approach involves representation of 
the state conditional PDF in terms of a finite collection of 
Dirac delta functions, whose weights and locations 
(abscissas) are determined based on constraints due to 
evolution of moments and modified using Baye’s rule for 
measurement update.  Using a small number of scalars (in 
the Dirac delta function), the method is capable of handing 
problems described by a multi-variables FPE through a set 
of differential algebraic equations (DAEs) with good 
accuracy and less update rate. 

This paper is organized as follows: The next section 
begins with descriptions of the DQMOM in solving the FPE.  
Then the procedure to obtain estimates through the Bayes’ 
formula using weights and abscissas is discussed.  
Following this, two classical numerical examples are shown.  
Conclusions are summarized in the final section. 

II. DIRECT QUADRATURE METHOD OF MOMENTS 

(DQMOM) 

To easy the derivation, the FPE of the state conditional 
PDF (Eq. 1) between measurements is rewritten here 
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The DQMOM method, originally investigated by Marchisio 
and Fox for the population balance problem [20], is 
illustrated in terms of the nonlinear filtering.  First, let us 
define the state conditional PDF as a summation of a multi-
dimensional Dirac delta function 
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where N  is the number of nodes, ( ( ))kw w tα α= Y , 

1,..., N=α  is the corresponding weight for node α , and 

( ( )), 1,..., ; 1,...,j j k sx x t N j N
α α

α= = =Y  is the property vector  

of node α  (called “abscissas”).  The weights and abscissas 
will be computed next. Substituting Eq. (6) into Eq. (5), then 
the left hand side (LHS) of Eq. (5) becomes  
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where [ ]j j jx xα α
δ δ −  and ' /j j jxα α α

δ δ∂ ∂ . 

If the weighted abscissas j jw xα α α
ς   is introduced, 

after some manipulations, Eq. (7) can be rewritten as 
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Notice that wα , jας , and jαδ  are functions of time, thus 
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Let us define  
/ , 1,...,dw dt a Nα α α =       (10) 

and  
/ , 1,..., ; 1,...,j j sd dt b j N Nα ας α= =    (11) 

Eq. (9) (LHS of Eq. (5)) can be further simplified as 
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Now let the right hand side (RHS) of Eq. (5) defined to be  
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The FPE can be written in terms of the multi-variable Dirac 
delta function as 
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There are total (1 )sN N+  parameters (in Eq. 14) need to 

be found to construct the conditional PDF ( ) ( )( )p t tx Y : 

, 1,...a Nα α =  and , 1,..., , 1,...,j sb j N Nα α= = .  In general, 

DQMOM method applies an independent set of moments 
that user wish to control to construct (1 )sN N+  DAEs.   

Given the following three Dirac delta function properties 
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The first term in the LHS of Eq. (18) can be simplified as 
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whereas the second term in the LHS of Eq. (18) is derived to 
be  
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In the same way, the third term of the LHS in Eq. (18) can 
be derived as 
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The 1,...,
sNk k  moment of the RHS of Eq. (18) are derived to 

be 
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whereas when i j= , 
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Notice that ( ) (1 / 2) TD GQGx  . Thus, the (1 )sN N+  DAEs 

can be constructed using a set of independent moments 
constraints 1,...,

sNk k  as 
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For example, if the number of states is 2sN =  and the 

number of nodes used in the in the multi-dimensional Dirac 
delta function is 2N = , there will be (1 ) 6sN N+ =  

unknown parameters in Eq. (26).  In order to solve these six 
DAEs, the following six moments constraints  

1 2( , ) (0,0), (1,0), (0,1), (2,0), (1,1), (0, 2)k k =    (27) 

can be applied such that there are enough equations for 
solving , 1, 2aα α =  and , 1, 2; 1,2jb jα α= =  explicitly.   

Note: Typically, the precision of the estimation and the 
computational cost will be higher when the number of nodes 
increases.  The selected moment constraint 1 2, ,...,

sNk k k  will 
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guarantee the PDF approximated by the Eq. (6) has exact 
value for this moment of the PDF. For typical estimation 
problem, the accuracy of the first moment (e.g. minimum 
mean-square estimate (MMSE) estimates of any state 
variables or functions of state variables ( )φ x  can be 

obtained) is automatically guaranteed. 
For simplicity, Eq. (26) can be rewritten in a matrix form 

as 
=Aμ s         (28) 

where the unknown parameters are  
1 2 11 12
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and matrix A  can be derived from Eq. (26) as a nonlinear 
function of the abscissas.  The moment constraints are  

( 1) 1
0,...0 1,...0[ , ,...] sN NTS S + ×= ∈ℜs     (30) 

As compared with the widely used finite difference 
methods used in [8, 13, 16, and 19], with the help of the 
DQMOM scheme, the partial differential equation is 
reduced to a set of differential algebraic equations and the 
computational cost is reduced. 

III. BAYES’ FORMULA BY DQMOM 

Once the weights and abscissas in the “predictor” PDF is 
found through the DQMOM (Eq. 28) propagation, the 
“updated” conditional PDF can be found using the new 
measurement ( )1kt +y  made at the time instant 1kt +  and the 

Bayes’ formula (Eq. 4).  Substitute Eq. (6) into Eq. (4), the 
DQMOM based Bayes’ equation can be derived as  
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The new weights in the update step (i.e. after accounting for 
measurements at 1kt t += ) for the DQMOM are obtained by 

renormalizing the old weights as  
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while the abscissas are unchanged as  

1( ( )) ( ( )), 1,...,k k sx t x t Nα α α+ = =Y Y     (33) 

Hence, using the computed state conditional PDF value of 
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1
1

ˆ( ( )) [ ( ) ( )]

( ( )) ( ,..., )
s

N

N

t E t t

w t x xα α α
α

φ

φ
=

=

=

x x Y

Y
     (34) 

IV. NUMERICAL EXAMPLES 

In this section, the performance of the proposed nonlinear 
filter is demonstrated through two numerical examples: 
univariate nonstationary growth and 2D bearing-only 
tracking problems.  All the codes are written in Matlab and 
run in a Dell Precision T7400 desktop (Intel Dual Core 
CPUs with 3.16 GHz, 3.25 GB RAM).  The Runge-Kutta 4th 
order method is used for integration. 

Example 1: Univariate Nonstationary Growth Model 

First, the method is applied in a continuous time version 
of a nonstationary problem, modified from the discrete-time 
univariate nonstationary growth model (UNGM) [21-23], 
where both the state dynamics and measurement models are 
nonlinear.  The process equation of the UNGM is  

[ ]1
1 2

1

cos 1.2( 1) , 1,2,...
1

α β γ−
−

−

= + + − + =
+

n
n n n

n

x
x x n w n

x
(35) 

and the measurement model is 
2 / 20= +z x v           (36) 

A continuous time version of the process equation is 
derived as 

* * * 0
2

1.2( )
cos

1
α β γ − = + + + Δ+  

 t tx
x x w

tx
, 0 1≥ =t t   (37) 

where ( )* 1 /α α= − Δt , * /β β= Δt , and * / tγ γ= Δ  based 

upon the first order Euler scheme. 0.5α = , 10β = , and 

8γ =  are used in the simulation.  The time step used in the 

conversion from the discrete time model [21] to the 
continuous time model is 0.1Δ =t s .  w  is a t-distribution 

with a degrees of freedoms of 10 and (0,0.01)v N .  A step 

size of 0.1 seconds is applied in the propagation of the 
corresponding SDE and FPE equations, whereas the 
measurements are updated at different sampling rates to 
show the consistence in estimation precision of the state. 

In this example, two nodes are selected. Therefore, there 
is a total of four unknowns (i.e. two weights and two 
abscissas) to characterize the conditional PDF and 

0,1,...3k = . 

A set of fifty Monte Carlo runs have been used for testing 
the algorithm. The measurement update rates are set at every 
0.1, 0.2, 0.4, 0.8, and 1.6 seconds respectively.  As shown in 
Fig. 2 (a) through Fig. 2 (c), the estimated state tracks the 
actual state history for all the cases under different update 
rates. 
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Fig. 2 (a) Estimated state 
history using the DQMOM 
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Fig. 2 (b) Estimated state 
history using the DQMOM 
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approach (update rate at 0.1 
seconds). 

approach (update rate at 0.4 
seconds). 
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Fig. 2 (c) Estimated state history using the DQMOM 

approach (update rate at 1.6 seconds). 

The mean square error of the estimation procedure based 
on DQMOM has a consistent precision in the rage of 0.218 
to 0.260 for update rates between 0.1s and 1.6 s (shown in 
Table 1). With reference to the signal amplitude, which is 
around 10 according to the simulation results as shown in 
Figs. 2(a) – 2(c), the percentage of the state estimation error 
is only about 2.5%.  As expected, we find that the 
computational cost of estimation based on DQMOM (shown 
in Table 1), also decreases monotonically as the 
measurement updates become less frequent. 

Table 1 DQMOM for the UNGM 
Updat
e delay 

(s) 

MSE Error  
Percentage 

Computational  
Cost  

(in seconds) 
0.1 0.254 2.54% 8.23 
0.2 0.260 2.60% 4.79 
0.4 0.248 2.48% 3.18 
0.8 0.218 2.18% 2.55 
1.6 0.246 2.46% 2.33 

Example 2: Bearing-only Tracking Problem 

A simplified version of the passive bearing only tracking 
problem is adopted from [8] as the second example.  The 
motion of the sensor platform follows 4px t=  and 20py = , 

whereas the motion of the target is governed by 
0 1 0( )

( )
0 0 1

x xd t d
v t

y ydt dt

       
= = +       

       

x
   (38) 

where the initial condition of the target is 0( ) [80,1]Tt =x , 

and the process noise is a Gaussian with a zero mean and a 
covariance of 410Q −= .  The measurement model is 

1

1

( )
( ) tan ( )

( ) ( )
p k

k s k
k p k

y t
y t w t

x t x t
−= +

−
   (39) 

where the sensor noise is assumed to have zero mean with a 
variance of 2(4 )oR = . 

The step size used in the FPE and the ODE propagations 
0.01t sΔ = . The measurements updated rate varies at 

different sampling rates at 0.1 seconds, 0.5 seconds, and 1 
second.  Two nodes are chosen and there is a total of six 
unknowns to characterize the conditional PDF and 

1 2( , ) (0,0), (1,0), (0,1), (2,0), (1,1), (0, 2)k k =    (40) 

The results are compared with two other methods: EKF, 
and Alternating Directional Implicit (ADI) methods [24]. 
ADI method is an implicit method for parabolic and elliptic 
equations. The major advantage of the ADI method 
compared with other implicit methods used in FDMs is that 
it involves only tridiagonal systems, and the matrix 
inversion can be achieved efficiently by the Thomas’ 
algorithm [25]. To achieve a similar estimation precision in 
ADI as those in DQMOM, the spatial difference is chosen to 
be 0.01 for both the position and velocity states. 

A set of fifty Monte Carlo runs have been used for testing 
the algorithm. As shown in Fig. 3 (a), when the 
measurement update rate is set every 0.1 seconds, the 
estimation errors from DQMOM and ADI filters have a 
comparable precision on the order of 0.5 in the stationary 
state (also shown in Table 1), whereas the estimation error 
from the EKF is roughly bounded by 2.5.  As the update 
delay increases as shown in Fig. 3(b) (0.5 seconds) and Fig. 
3 (c) (1.0 second), the EKF becomes unstable, whereas the 
estimation error bound of the ADI increases to 0.7.  
However, the results from the DQMOM are consistent with 
the case of update rate of 0.1 seconds.  Also notice that in 
Fig. 3(a), if in order to achieve roughly the same estimation 
precision, the update rate of the EKF is required to be 0.01 
seconds and the computational cost is high as shown in 
Table 3 (2.09 seconds for a 20-second simulation time). 

To achieve the same precision, the ADI needs 
approximately 14 seconds and the time spent is almost 
constant for the range of update rates considered (Table 3).  
The time taken in the DQMOM approach is much less that 
that of the ADI and as the update frequency decreases, the 
speed of the DQMOM increases without compromising in 
the estimation precision (as shown in Table 3). 

Table 2 Bounds of the estimation error 
Update delay (s) EKF ADI DQMOM 

0.01 0.4 - - 
0.1 2.5 0.5 0.25 
0.5 4 0.5 0.3 
1.0 5 0.5 0.25 

Table 3 Computational cost (in seconds) 
Update 

delays (s) 
EKF ADI DQMOM 

0.01 2.09 - - 
0.1 0.02 14.07 11.44 

0.5 0.0042 14.42 2.6 

1.0 0.0023 14.11 1.47 

Therefore, simulation results for this numerical example 
also lead us to conclusions that are similar to those observed 
from the analysis of numerical example 1. While, the error 
in estimation based on EKF type approaches increases with 
decrease in update rate, owing to increase in errors due to 
linearization of dynamics, the DQMOM approach can give 
better estimation performance than EKF especially at low 
update rates. Besides, the computational cost of estimation 
based on the DQMOM approach was also found to be 

3216



  

significantly lower than ADI for comparable levels of 
accuracy (as in numerical example 1). 

0 5 10 15 20
-3

-2

-1

0

1

Time (s)

E
st

im
at

io
n 

E
rr

or
 (

P
os

)

 

 

EKF 0.1 s
ADI
DQMOM
EKF 0.01 s

EKF 0.01 s

 
Fig. 3 (a) Estimation error 
(update rate at 0.1 seconds). 
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Fig. 3 (b) Estimation error 
(update rate at 0.5 seconds). 
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Fig. 3 (c) Estimation error (update rate at 1 second). 

V. CONCLUSION 

A new approach for solving the nonlinear filtering 
problem is proposed using the direct quadrature method of 
moments coupled with Bayesian update of the conditional 
PDF. Through this new approach, the FPE (a PDE) can be 
transformed into a set of DAEs in terms of Dirac delta 
functions.  As compared with EKF type methods, which are 
used widely in nonlinear filtering problems, the nonlinear 
dynamics is not required to be linearized. Also, if compared 
with finite difference type methods, the computational cost 
is dramatically reduced without a compromising in 
estimation accuracy.  Two numerical examples, univariate 
nonstationary growth and 2D bearing only tracking 
problems, are tested for optimal estimation and compared 
with the methods of EKF and ADI, and the results appear to 
be promising in the field of nonlinear filtering theory. 
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