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Abstract— We propose a robust nonlinear model predictive
control (NMPC) algorithm based on multi-scenario nonlinear
programming (NLP). We show that this multi-scenario formu-
lation is Input-to-State practical stable (ISpS). Moreover, the
proposed algorithm yields less steady-state offset than the min-
max strategy.

I. INTRODUCTION

Robust nonlinear model predictive control (NMPC) has

received considerable attention. Issues related to nominal

stability and feasibility have been extensively addressed [1].

In general, NMPC with asymptotic stability does not guar-

antee robust stability. In this case, robust design strategies

that explicitly account for uncertainties within the controller

formulation are necessary. A robust NMPC strategy is the

min-max NMPC formulation, which computes the best con-

trol policy based on the worst expected realization of the

uncertainties [2]. This formulation may dramatically increase

the computational cost of the on-line NMPC problem, and

may yield large offset for controlled variables.

In this work, we propose a robust NMPC design strategy

based on a multi-scenario NLP formulation, from which the

calculated control sequence is feasible for the entire uncer-

tainty region. The proposed method is interesting for several

reasons. Theoretically, this multi-scenario based strategy is

Input-to-State practical Stable (ISpS) under some mild as-

sumptions, and more importantly, it yields less offset than the

min-max formulation. Moreover, the proposed method can

potentially be implemented on industrial-size applications

because the formulation can be decomposed and computed in

parallel computing architectures [3], and it can be extended

to the recently proposed as-NMPC framework [4] to reduce

on-line computational delay.

II. PROBLEM FORMULATION

In this work, the dynamics of a plant will be described by

the following discrete-time model,

x(k + 1) = f(x(k), u(k), φ(k)), k ≥ 0 (1)

where x(k) ∈ R
nx is the system state, u(k) ∈ R

nu is the

current control variable and φ(k) ∈ R
nφ is an uncertainty

signal which models plant-model mismatches at time step

k ≥ 0. For the sake of clarity, we consider only state-

independent uncertainty signals in this work, i.e. φ(k) is

not a function of x(k) and u(k). In general, only partial

information of φ(k) is available, e.g. its feasible region Ω
and its probability distribution, etc. The control and state

variables of the plant are required to fulfill constraints, e.g.

x(k) ∈ X, u(k) ∈ U. Without losing generality, we assume

that the given plant (1) has an equilibrium point at the origin,

i.e. f(0, 0, 0) = 0.

Given x(k), the current state value at time step k, an

NMPC formulation can be described in the following dis-

cretized form [1]:

min
z(j),v(j)

J(x(k)) := F (z(N)) +

N−1
∑

j=0

ϕ(z(j), v(j), θ(j))

(2a)

s.t. z(j + 1) = f(z(j), v(j), θ(j)), z(0) = x(k) (2b)

z(j) ∈ X, z(N) ∈ Xf , v(j) ∈ U, θ(j) ∈ Ω (2c)

j = 0, . . . N − 1 (2d)

where N is the time horizon, θ ∈ Ω is the uncertainty

parameter. The computed control v(j) ∈ R
nu and predicted

state z(j) ∈ R
nx are enforced to satisfy the constraints

v(j) ∈ U, z(j) ∈ X and terminal constraint z(N) ∈ Xf .

The cost function J(x(k)) comprises the stage cost ϕ(·, ·, ·)
and terminal penalty cost F (·). When the solution sequence

(z∗(l), v∗(l)) is available, the first control u(k) = v∗(0) is

injected into the plant.

A. Multi-scenario Formulation

If the presence of uncertainties does not cause any loss

of feasibility (e.g. no state or control constraints in the sys-

tem), the NMPC formulation (2) enjoys inherent robustness.

Otherwise, the calculated control v may violate constraints

in the plant, losing stability of the closed-loop system. To

avoid this situation, we solve a multi-scenario problem :

min
zl(j),v(j)

V (x(k)) :=

M
∑

l=1

wlJl(x(k))

=

M
∑

l=1

wl







F (zl(N)) +

N−1
∑

j=0

ϕ(zl(j), v(j), θl)







(3a)

s.t. zl(j + 1) = f(zl(j), v(j), θl), zl(0) = x(k)

j = 0, . . . N − 1, l = 1, . . .M (3b)

zl(j) ∈ X, zl(N) ∈ Xf , v(j) ∈ U, θl ∈ Ω (3c)
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with M different scenarios, where l is the index of scenarios

and wl are weights associated to each scenario, satisfying

0 ≤ wl ≤ 1,
∑M

l=1 wl = 1. θl and zl(j) are uncertainty and

state variables in scenario l. Consequently, the calculated

control sequence v(j) is feasible for all the uncertainties

θl,∀l.

B. Robust Stability

For the sake of brevity, we leave the definitions and

assumptions required for the analysis in an extended report

[5]. Consider Bδl as M closed balls, Bδl , {|ϑl − θl| ≤
δl, ϑl ∈ Ω}, ∀l ∈ 1 . . .M centered around θl with radius

δl. The balls Bδl are defined such that an NMPC formulated

with θl as nominal model parameter is robustly stable within

this ball. The robust stability of multi-scenario NMPC can

be established from the following theorem.

Theorem 1: If the plant uncertainty parameter vector lies

in the union of balls centered around the uncertainty pa-

rameters in the controller, i.e. φ(j) ∈
⋃M

l=1 Bδl,∀j, then

under Assumption 1 in [5], with K ≥ Lǫ, the cost function

V (x(k)) =
∑M

l=1 wl

[

Fl(zl(N)) +
∑N−1

j=0 ϕ(zl(j), v(j), θl)
]

is an ISpS-Lyapunov function for plant (1), and the resulting

closed-loop system is ISpS stable.

The proof of Theorem 1 is given in [5].

This Theorem guarantees the closed-loop stability if the

plant uncertainty φ is close to one of uncertainty parameters

θl. The robust stability will improve if the majority of the

uncertainty parameters in the controller are close to that in

the plant. In practice, if the multi-scenario NMPC appears

to be unstable, we can add more scenarios to make sure that

φ is in the neighborhood of θl.

III. ILLUSTRATIVE EXAMPLE

We consider a simulated NMPC scenario with a nonlin-

ear CSTR model, represented by the following differential

equations:

dzc

dt
=

zc − 1

θ
+ k0zc exp

[

−Ea

zt

]

(4a)

dzt

dt
=

zt − z
f
t

θ
− k0zc exp

[

−Ea

zt

]

+ αv(zt − zcw
t ) (4b)

This system involves two states z = [zc, zt] corresponding

to dimensionless concentration and temperature, and one

control v corresponding to the cooling water flow rate. The

states are required to satisfy 0 ≤ zc ≤ 0.4, 0.6 ≤ zt ≤ 0.9,

while the control needs to satisfy 250 ≤ v ≤ 450. The model

parameters are zcw
t = 0.38, z

f
t = 0.395, Ea = 5, α =

1.95 × 104 and k0 ∈ [200, 400] is deemed as an uncertainty

parameter in the plant. The system is moved from a stable

steady state to an unstable steady state at time step 25. The

multi-scenario NMPC is formulated with horizon equals to

10, sampling time as 0.5. Here we choose three scenarios

with k1 = 220, k2 = 300, k3 = 380 and the corresponding

weights are w1 = w3 = 0.3, w2 = 0.4.

We consider two cases. 1) k0 = 300 in the plant, if

an standard NMPC is utilized with k0 = 400 in the con-

troller, the closed-loop system will be unstable. Moreover,

the minmax formulation gives 28% steady state offset for

zc. The dotted lines in Figure 1 show that the closed-loop

system is stable with the multi-scenario formulation and the

offset of the controlled variables is small. 2) k0 = 200 in

the plant, the solid lines in Figure 1 show that the closed-

loop system is stable, though it presents relatively large

offset for zc due to significant plant-model mismatch. In

addition, without plotting the result here, we see that with

k0 = 400 in the plant, the multi-scenario formulation is able

to stabilize the closed-loop system. As a result, the multi-

scenario formulation guarantees the robust stability of this

system within the entire uncertainty region of k0.
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Fig. 1. Application multi-scenario NMPC.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a robust NMPC design based on a multi-

scenario NLP formulation is proposed. The robust stability

of the proposed method can be established. Moreover it

generally yields less offset than the min-max formulation.

The proposed method is illustrated through a CSTR example.

For the future work, the proposed method will be imple-

mented on large-scale applications. In order to reduced the

associated computational burden and online feedback delay,

the parallel decomposition algorithm [3] and advanced step

NMPC [4] will be studied and integrated with the multi-

scenario formulation.
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