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Abstract— We propose a robust nonlinear model predictive
control (NMPC) algorithm based on multi-scenario nonlinear
programming (NLP). We show that this multi-scenario formu-
lation is Input-to-State practical stable (ISpS). Moreover, the
proposed algorithm yields less steady-state offset than the min-
max strategy.

[. INTRODUCTION

Robust nonlinear model predictive control (NMPC) has
received considerable attention. Issues related to nominal
stability and feasibility have been extensively addressed [1].
In general, NMPC with asymptotic stability does not guar-
antee robust stability. In this case, robust design strategies
that explicitly account for uncertainties within the controller
formulation are necessary. A robust NMPC strategy is the
min-max NMPC formulation, which computes the best con-
trol policy based on the worst expected realization of the
uncertainties [2]. This formulation may dramatically increase
the computational cost of the on-line NMPC problem, and
may yield large offset for controlled variables.

In this work, we propose a robust NMPC design strategy
based on a multi-scenario NLP formulation, from which the
calculated control sequence is feasible for the entire uncer-
tainty region. The proposed method is interesting for several
reasons. Theoretically, this multi-scenario based strategy is
Input-to-State practical Stable (ISpS) under some mild as-
sumptions, and more importantly, it yields less offset than the
min-max formulation. Moreover, the proposed method can
potentially be implemented on industrial-size applications
because the formulation can be decomposed and computed in
parallel computing architectures [3], and it can be extended
to the recently proposed as-NMPC framework [4] to reduce
on-line computational delay.

II. PROBLEM FORMULATION

In this work, the dynamics of a plant will be described by
the following discrete-time model,

w(k+1) = f(z(k),uk), ¢(k)), k=0 (D

where x(k) € R" is the system state, u(k) € R™ is the
current control variable and ¢(k) € R™¢ is an uncertainty
signal which models plant-model mismatches at time step
k > 0. For the sake of clarity, we consider only state-
independent uncertainty signals in this work, i.e. ¢(k) is
not a function of x(k) and wu(k). In general, only partial
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information of ¢(k) is available, e.g. its feasible region 2
and its probability distribution, etc. The control and state
variables of the plant are required to fulfill constraints, e.g.
z(k) € X, u(k) € U. Without losing generality, we assume
that the given plant (1) has an equilibrium point at the origin,
ie. £(0,0,0) =0.

Given z(k), the current state value at time step k, an
NMPC formulation can be described in the following dis-
cretized form [1]:

uin J(a(k)) = F((N)) +

(2a)

5.l Z(] + 1) = f(Z(J)av(])79(]))7 Z(O) = J}(k) (2b)
AG) € X, (V) €Xy, v(j) €T, 0(j) € R 20)
j=0,...N -1 (2d)

where NV is the time horizon, § € () is the uncertainty
parameter. The computed control v(j) € R™ and predicted
state z(j) € R" are enforced to satisfy the constraints
v(j) € U, 2(j) € X and terminal constraint z(NN) € Xjy.
The cost function J(x(k)) comprises the stage cost ¢(-, -, -)
and terminal penalty cost F'(-). When the solution sequence
(z*(1),v*(1)) is available, the first control u(k) = v*(0) is
injected into the plant.

A. Multi-scenario Formulation

If the presence of uncertainties does not cause any loss
of feasibility (e.g. no state or control constraints in the sys-
tem), the NMPC formulation (2) enjoys inherent robustness.
Otherwise, the calculated control v may violate constraints
in the plant, losing stability of the closed-loop system. To
avoid this situation, we solve a multi-scenario problem :

M
) V) = D wi(olh)
M N—1
=> wi{ F(a(N)+ Y e(z(i),v(i), ) (3a)
=1 j=0
stozi(j+1) = f(z1(4),v(),6), z(0) =xz(k)
j=0,..N—-1,1=1,...M (3b)
21(§) € X, z(N) € Xy, v(j) €U, 6, € (3¢)
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with M different scenarios, where [ is the index of scenarios
and w; are wei%hts associated to each scenario, satisfying
0<w <1, Zlil w; = 1. 6; and z(j) are uncertainty and
state variables in scenario [. Consequently, the calculated
control sequence v(j) is feasible for all the uncertainties
0;,VI.

B. Robust Stability

For the sake of brevity, we leave the definitions and
assumptions required for the analysis in an extended report
[5]. Consider Bs; as M closed balls, Bs; = {|9; — 6| <
5,9, € Q}, VI € 1... M centered around 6, with radius
;. The balls Bg; are defined such that an NMPC formulated
with 6; as nominal model parameter is robustly stable within
this ball. The robust stability of multi-scenario NMPC can
be established from the following theorem.

Theorem 1: If the plant uncertainty parameter vector lies
in the union of balls centered around the uncertainty pa-
rameters in the controller, i.e. ¢(j) € Ulk:[1 Bs, V4, then
under Assumption 1 in [5], with K > L., the cost function
V(e(k) = S w[Fi(a(V) + S35 e (z0), o), 00)
is an ISpS-Lyapunov function for plant (1), and the resulting
closed-loop system is ISpS stable.

The proof of Theorem 1 is given in [5].

This Theorem guarantees the closed-loop stability if the
plant uncertainty ¢ is close to one of uncertainty parameters
0;. The robust stability will improve if the majority of the
uncertainty parameters in the controller are close to that in
the plant. In practice, if the multi-scenario NMPC appears
to be unstable, we can add more scenarios to make sure that
¢ is in the neighborhood of 6;.

III. ILLUSTRATIVE EXAMPLE

We consider a simulated NMPC scenario with a nonlin-
ear CSTR model, represented by the following differential
equations:

dze z.—1

-E,
i + koz. exp [ -, ] (4a)
d —z] —E, ,
% — % — kgz.exp [ - } + av(z — 2z5") (4b)
This system involves two states z = [z, 2] corresponding

to dimensionless concentration and temperature, and one
control v corresponding to the cooling water flow rate. The
states are required to satisfy 0 < 2. < 0.4, 0.6 < 2z <0.9,
while the control needs to satisfy 250 < v < 450. The model
parameters are 2 = 0.38, z,f =039, E, =5, a =
1.95 x 10* and ko € [200,400] is deemed as an uncertainty
parameter in the plant. The system is moved from a stable
steady state to an unstable steady state at time step 25. The
multi-scenario NMPC is formulated with horizon equals to
10, sampling time as 0.5. Here we choose three scenarios
with ky = 220, ko = 300, k3 = 380 and the corresponding
weights are w; = ws = 0.3, wy = 0.4.

We consider two cases. 1) kg = 300 in the plant, if
an standard NMPC is utilized with £y = 400 in the con-
troller, the closed-loop system will be unstable. Moreover,

the minmax formulation gives 28% steady state offset for
zc. The dotted lines in Figure 1 show that the closed-loop
system is stable with the multi-scenario formulation and the
offset of the controlled variables is small. 2) kg = 200 in
the plant, the solid lines in Figure 1 show that the closed-
loop system is stable, though it presents relatively large
offset for z. due to significant plant-model mismatch. In
addition, without plotting the result here, we see that with
ko = 400 in the plant, the multi-scenario formulation is able
to stabilize the closed-loop system. As a result, the multi-
scenario formulation guarantees the robust stability of this
system within the entire uncertainty region of k.
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Fig. 1.

Application multi-scenario NMPC.

IV. CONCLUSIONS AND FUTURE WORK

In this work, a robust NMPC design based on a multi-
scenario NLP formulation is proposed. The robust stability
of the proposed method can be established. Moreover it
generally yields less offset than the min-max formulation.
The proposed method is illustrated through a CSTR example.

For the future work, the proposed method will be imple-
mented on large-scale applications. In order to reduced the
associated computational burden and online feedback delay,
the parallel decomposition algorithm [3] and advanced step
NMPC [4] will be studied and integrated with the multi-
scenario formulation.
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