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Abstract— This paper is concerned with the distributed
averaging problem subject to a quantization constraint. Given
a group of agents associated with scalar numbers, it is assumed
that each pair of agents can communicate with a prescribed
probability, and that the data being exchanged between them
is quantized. In this part of the paper, it is proved that the
stochastic gossip algorithm proposed in a recent paper leads
to reaching the quantized consensus. Some important steady-
state properties of the system (after reaching the consensus)
are also derived. The results developed here hold true for any
arbitrary quantization, provided that the tuning parameter of
the gossip algorithm is chosen properly. The expected value of
the convergence time is lower and upper bounded in the second
part of the paper.

I. INTRODUCTION

Consider a group of agents, each of which is associated

with some data such as a real number or an image. The

problem of contriving a strategy by means of which all

agents can update themselves so that they ultimately agree

upon some universal shared data is called the consensus

or state agreement problem [1], [2]. Consensus has a long

history in computer science, particularly in distributed com-

putation where a program is divided into parts that run

simultaneously on multiple computers communicating over

a network [3], [4].

There are many important real-world problems whose

treatment is contingent upon the notion of consensus. In the

load-balancing problem, the tasks of disparate processors are

to be equalized in order to refrain from overloading the pro-

cessors [5], [6]. In the synchronization of coupled oscillators

arising in systems biology, the oscillation frequencies of all

agents are desired to become equal [7], [8]. In multi-agent

coordination and flocking, there are a number of applications

in which the state-agreement problem appears [9], [10].

For instance, the heading angles of different mobile agents

may be required to be aligned [11]. In a sensor network

comprising a set of sensors measuring the same quantity in

a noisy environment, the state estimates of different agents

must be averaged [12]. A more complete survey on these

topics is given in the recent paper [2].

Consider the distributed average consensus in which the

values owned by the agents are to be averaged in a distributed

fashion. Since it may turn out in some applications that all

agents cannot update their numbers synchronously, the gossip

algorithm has been widely exploited by researchers to handle

This work has been supported by AFOSR and Air Force MURI.
The authors are with the Department of Control and Dynamical

Systems, California Institute of Technology, Pasadena, USA (emails:
lavaei@cds.caltech.edu; murray@cds.caltech.edu).

the averaging problem asynchronously [13], [14]. This type

of algorithm selects a pair of agents at each time instance,

and updates their values based on some averaging policy.

The consensus problem in the context of gossip algorithm

has been thoroughly investigated in the literature [15], [16],

[17], [18].

In light of communication constraints, the data being

exchanged between each pair of agents is normally quan-

tized. This has given rise to the emergence of quantized

gossip algorithms. The notion of quantized consensus is

defined in [17] for the case when quantized values (inte-

gers) are to be averaged over a connected network with

digital communication channels. That paper shows that the

quantized gossip algorithm leads to reaching the quantized

consensus. This result is extended in [18] to the case when

the quantization is uniform, and the initial numbers owned

by the agents are reals (as opposed to being integers). The

paper [18] shows that the quantized gossip algorithm works

for a particular choice of the updating parameter, although

it conjunctures that this result is valid for a wide range of

updating parameters. A related paper on quantized consensus

gives a synchronous algorithm in order to reach a consensus

with arbitrary precision, at the cost of not preserving the

average of the initial numbers [19].

Part I of the current work starts with proving the above-

mentioned property of quantized consensus. More precisely,

a weighted connected graph is considered together with a

set of scalars sitting on its vertices. The weight of each edge

represents the probability of establishing a communication

between its corresponding vertices through the updating pro-

cedure. It is shown that the quantized consensus is reached

under the stochastic gossip algorithm proposed in [18], for a

broad range of updating parameters. This result holds true for

any arbitrary quantizer, including uniform and logarithmic

ones. Some elegant properties of the system in the steady

state (after reaching the consensus) are subsequently derived.

The second part of the paper deals with the expected value of

the time at which the consensus is reached [20]. This quantity

(in the worst case) is lower and upper bounded in terms of

the Laplacian of the weighted graph. A convex optimization

is then proposed to investigate what set of weighes on the

edges results in a small convergence time.

This paper is organized as follows. Some preliminaries

are presented in Section II, and the problem is formulated

accordingly. The convergence proof is provided in Section III

for uniform quantizers, and is generalized to arbitrary quan-

tizers in Section IV. The results are illustrated in Section V

through simulations. Some concluding remarks are finally
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drawn in Section VI.

II. PROBLEM FORMULATION

Consider a connected weighted graph G = (V, E ,P),
where:

• V := {v1, v2, ..., vν} is the set of vertices of G;

• E is the set of undirected edges of G;

• P := {pij}i,j is the set of weights assigned to the edges

of G.

Assume that:

• The quantity
∑

pij is equal to 1, where the sum is

taken over all numbers i, j ∈ ν := {1, 2, ..., ν} such

that i ≤ j.

• The number pij (i, j ∈ ν) is equal to zero if

(i, j) 6∈ E ; otherwise, it is strictly positive. In particular,

p11, p22, ..., pνν are all equal to zero.

The scalar pij associated with the edge (i, j) represents the

probability of choosing the edge (i, j) when an edge of G
is to be picked at random. Suppose that a real number xi

has been assigned to the vertex vi, for all i ∈ ν. Let q(x) :
R → R be a given quantization operator, which can be, for

instance, a logarithmic or constant quantizer. In what follows,

a quantized gossip algorithm is presented [18].

Stochastic Gossip (SG) Algorithm:

Step 1: Given a positive real ε, set k = 0. Define xi[0] := xi,

for all i ∈ ν.

Step 2: Pick an edge of G at random.

Step 3: Suppose that the ending vertices of the edge selected

in step 2 possess the values xi[k] and xj [k]. Perform the

following updates:

xi[k + 1] = xi[k] + ε ×
(

q(xj [k]) − q(xi[k])
)

,

xj [k + 1] = xj [k] + ε ×
(

q(xi[k]) − q(xj [k])
)

,

xq[k + 1] = xq[k], ∀q ∈ ν\{i, j}

(1)

Step 4: Increase k by 1 and jump to step 2.

Throughout this paper, the symbol G(V, E ,P) refers to

the weighted graph G, whereas the symbol G(V, E) refers

to the graph G with the weights on its edges removed. For

simplicity, the short-hand notation:

x[k] :=
[

x1[k] x2[k] · · · xν [k]
]

, k ∈ N∪{0} (2)

will be used henceforth. The next definition is given in [18]

for the case when q(·) is a uniform quantizer rounding each

number to its nearest integer.

Definition 1: Given a quantization-based protocol C act-

ing on G(V, E) (e.g. the deterministic gossip algorithm),

assume that the vector x[k] denotes the values on the vertices

of G at time k, obtained using this protocol. It is said that

the quantized consensus is reached for the graph G under the

protocol C if for every arbitrary initial state x[0] ∈ R
ν , there

exists a natural number k0 such that:

|xi[k] − xave| < 1, ∀k ≥ k0, ∀i ∈ ν (3)

where xave := x1[0]+x2[0]+···+xν [0]
ν

.

In line with the above definition, if the protocol C is

stochastic (e.g. the SG algorithm), one would say that the

quantized consensus is reached almost surely if there exists a

number k0 ∈ N, with probability 1, for which inequality (3)

holds. In the rest of the paper, the short name consensus will

be used for quantized consensus.

It is shown in [18] that if the quantizer q(x) is uniform, the

consensus is reached almost surely for the graph G(V, E ,P)
under the SG algorithm, provided ε = 0.5. That paper

also conjectures that the same result holds true for every

positive number ε < 0.5, while it may not be true for

ε > 0.5 (as simulation confirms). The primary objective of

the present work is to prove this property, not only for a

uniform quantizer but also for any arbitrary type of quantizer.

III. MAIN RESULTS

In the remainder of the paper, assume that ε ∈ (0, 0.5]
(unless otherwise stated). Let xmax and xmin be defined as:

xmax := max
i∈ν

⌈xi⌉, xmin := min
i∈ν

⌊xi⌋ (4)

where ⌈·⌉ and ⌊·⌋ stand for the ceiling and floor operators,

respectively.

Definition 2: Define S to be the set of all ν-tuple

(α1, α2, ..., αν) such that αi ∈ [xmin, xmax] and, in addition,

αi − xi is an integer multiple of ε, for every i ∈ ν.

Definition 3: Define the following quantities:

η1 := max

{

2k + 1

2

∣

∣

∣

∣

k ∈ Z,
2k + 1

2
≤ xave

}

,

η2 := min

{

2k + 1

2

∣

∣

∣

∣

k ∈ Z,
2k + 1

2
≥ xave

} (5)

where Z denotes the set of integers.

Definition 4: Let So and So(µ), µ ∈ R, be defined as

follows:

So :=
{

(α1, α2, ..., αν) ∈ S
∣

∣ αi ∈ (η1, η2], ∀i ∈ ν
}

and:

So(µ) :=
{

(α1, ..., αν) ∈ S
∣

∣ αi ∈ (µ − ε, µ + ε], ∀i ∈ ν
}

Definition 5: Define the distance function dε(·,So) : S →
Z as:

dε(α,So) := min
β∈So

|α − β|1
ε

, ∀α ∈ S (6)

where | · |1 denotes the L1 norm. In the same way, define

dε(α,So(µ)) for every real µ (note that dε(α,So(µ)) is

equal to zero if α ∈ So(µ)).

Throughout the rest of this section, assume that q(x) is a

uniform quantizer, i.e., it rounds each real number x to its

nearest integer (by convention, assume that q(r + 0.5) = r,

for all integers r). The results will be later extended to a

general quantizer q(x).
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A. Geometric intuition

To better understand the arguments made in the present

work, it is desired to illustrate the above definitions graph-

ically. Notice that although the graph G is coordinate free,

when it comes to assigning real numbers to its vertices, it

is beneficial to incorporate the topology of the graph and its

corresponding initial state into a new graph whose geometry

matters. Hence, perform the following operations on the x-y

plane:

• Draw the horizontal lines y = xmin, y = xmax, y =
xave, y = η1 and y = η2.

• For every i ∈ ν, mark all points (i, p) lying between

the lines y = xmin and y = xmax for which p − xi(0)
is an integer multiple of ε.

• Draw the graph G in this plane in such a way that its

vertex vi is placed in the coordinates (i, xi(0)), for all

i ∈ ν.

Denote the coordinated graph drawn in this manipulated

plane with ~G. As an example, if G contains 4 vertices with

the edges {(1, 2), (2, 3), (3, 4), (4, 1)} and the initial state

x[0] = (3.875, 1.625, 1.625, 3.750), then the corresponding

coordinated graph ~G will turn out to be the one depicted

in Figure 1. When the SG algorithm is run on the graph

Fig. 1. An example of the coordinated graph ~G with four vertices (the
lines y = η1 and y = η2 have not been drawn in this figure in order to
keep it simple).

G, the values sitting on the vertices change. This makes the

graph ~G move in the plane (each vertex moves up or down

vertically). Define ~G(k) to be the corresponding coordinated

graph at time k (k ∈ N). It can be concluded from (1)

that the vertices of ~G(k) are always located on the marked

points of the plane. For simplicity, assume that there exists

no marked point on the horizontal lines drawn above. The

graphical interpretation of Definitions 2 to 5 is as follows:

• Each element of S corresponds to a collection of ν

marked points that lie in ν distinct columns (a column

refers to one of the vertical lines x = i, i = 1, 2, ..., ν).

• Each element of So corresponds to a collection of

ν marked points lying in ν distinct columns which

are confined by the lines y = η1 and y = η2. The

interpretation of the set So(µ) is similar.

• Let α denote the set of values sitting on the vertices

of the graph G at some time instance k ∈ N. For

every vertex of the coordinated graph ~G(k), count the

number of marked points lying (vertically) between that

vertex and the line y = µ, and add up these values

for all vertices. The resulting number is nothing but

the function dε(α,So(µ)). As a result, this function is

intended to measure the distance between the vertices

of the coordinated graph ~G(k) and the line y = µ.

Several results will be provided in this section, whose

corresponding geometrical interpretations are listed below:

• If the graph ~G(k) belongs to the set So for some k ∈ N,

then it can never be moved under the operations of the

SG algorithm (Lemma 1).

• Given integers r ∈ [xmin, xmax] and k ∈ N, if the graph
~G(k) belongs to the set So(r +0.5), then its movement

under the SG algorithm will be confined within this set

(Lemma 1).

• Given an integer r ∈ [xmin, xmax], the function

dε(x[k],So(r+0.5)) is non-increasing with respect to k,

i.e., the coordinated graph ~G(k) always moves towards

the line y = r + 0.5 (in the sense defined earlier) as k

increases (Lemma 2).

• Given an integer r ∈ [xmin, xmax], there exists a finite

time k ∈ N for which the coordinated graph ~G(k) either

lies on one side of the line y = r + 0.5 or belongs to

the invariant set So(r + 0.5) (Lemma 3).

• There exists a finite time k1 such that the coordinated

graph ~G(k1) is placed entirely in one of the invariant

sets So(η1), So(η2) and So (Theorem 2).

The last property given above is indeed the main result

of this section. Notice that for the example illustrated in

Figure 1, the fact that ~G(k) belongs to S0, So(η1) or

So(η2) for large enough k’s implies that the vertices of this

graph eventually lie in the set of encircled points shown in

Figures 2a, 2b or 2c. This result characterizes the steady-state

behavior of the graph system under the SG algorithm.

B. Mathematical proofs

The results stated in the preceding subsection will be rig-

orously proved in the sequel. Observe that the SG algorithm

is stochastic in the sense that an edge must be chosen at

random at each time update. The deterministic version of

this algorithm, referred to as the deterministic gossip (DG)

algorithm, can be obtained by replacing its step 2 with the

following:

Step 2: Pick an edge of G arbitrarily (at the discretion of

the user).

The next theorem relates the convergence of the DG algo-

rithm to that of the SG algorithm.

Theorem 1: Assume that step 2 of the DG algorithm (i.e.

picking an edge arbitrarily) can be taken in such a way that

the consensus is reached for the graph G(V, E) under this

algorithm. Then, the consensus is reached almost surely for

the graph G(V, E ,P) under the SG algorithm .

396



(a)

(b)

(c)

Fig. 2. The encircled points in these figures characterize the elements of
the sets S0, So(η1) and So(η2), respectively.

Proof: Apply the SG algorithm to the graph G with the

initial state x[0]. Using induction, one can easily conclude

from equation (1) that:

i) xi[k] is always in the interval [xmin, xmax], for all k ∈
N ∪ {0} and i ∈ ν.

ii) The vector x[k] belongs to the set S, for all k ∈ N∪{0}.

This signifies that the state of the graph system can take

values only in the finite set S. Now, form a new graph R as

follows:

• Put |S| vertices corresponding to the elements of the

set S.

• Draw two directed edges between every pair of vertices

(the edges must have opposite orientations).

• Assign a number to each directed edge (α,β), where

α,β ∈ S, to represent the probability of transition from

α to β via the SG algorithm in only one iteration.

It is easy to verify that if the SG algorithm is run on the

graph G with the initial state x[0], it will generate a random

walk on the graph R starting from the vertex x[0]. Let R0

denote the subgraph of R that corresponds to the subset of

S determining the quantized consensus. The assumption of

the theorem can be interpreted as there is a walk from every

vertex of R to the subgraph R0. It is follows from a well-

known theorem in the Markov chain theory that every infinite

random walk almost surely ends up in this subset of vertices.

This completes the proof. �

Theorem 1 states that in order to prove the convergence

of the stochastic gossip algorithm, it suffices to show that of

its deterministic version. Hence, this converse statement will

be proved in the sequel.

Lemma 1: Apply the SG algorithm to the graph

G(V, E ,P) with the initial state x[0].

• Suppose that x[k] belongs to the set So for some non-

negative integer k. The equality x[k + 1] = x[k] holds.

In other words, each element of So is an equilibrium

point of the discrete-time system.

• Assume that x[k] belongs to the set So(r + 0.5), for

some integers k and r. The state x[k + 1] is in the set

So(r +0.5) as well. In other words, this set is invariant

under the underlying algorithm.

Proof: The proof is straightforward, and is omitted for

brevity. �

Lemma 2: Apply the SG algorithm to the graph

G(V, E ,P) with the initial state x[0]. Given r ∈ Z, the

following inequality holds for every nonnegative integer k:

dε(x[k + 1],So(r + 0.5)) ≤ dε(x[k],So(r + 0.5)) (7)

Proof: Assume that the edge (i, j) is chosen at the (k+1)th

time update, and that xi[k] ≤ xj [k]. There are a number of

possibilities as follows:

• xi[k] − r − 0.5 > 0 and xj [k] − r − 0.5 > 0: It can be

easily shown that:

xi[k], xj [k], xi[k + 1], xj [k + 1] > r + 0.5 (8)

The above inequalities together with the equality:

xi[k] + xj [k] = xi[k + 1] + xj [k + 1] (9)
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allow us to conclude that:

dε(x[k+1],So(r+0.5)) = dε(x[k],So(r+0.5)) (10)

• xi[k]− r − 0.5 ≤ 0 and xj [k]− r − 0.5 ≤ 0: It is easy

to observe that:

xi[k], xj [k], xi[k + 1], xj [k + 1] ≤ r + 0.5 (11)

This leads to the equality (10) (as before).

• xi[k] − r − 0.5 ≤ and xj [k] − r − 0.5 > 0: Similar to

the previous cases, it can be shown that inequality (7)

holds. �

Lemma 3: Given r ∈ Z, apply the DG algorithm to the

graph G(V, E) with the initial state x[0]. At each time update

k ∈ N, select an edge of the graph (in step 2 of the

algorithm) such that the function dε(x[k],So(r + 0.5)) is

minimized. There exists a natural number k0 for which either

of the following cases occurs:

i) x[k] is in the invariant set So(r + 0.5), for all k ≥ k0.

ii) x1[k]−r−0.5, x2[k]−r−0.5, ..., xν [k]−r−0.5 are either

all negative or all strictly positive, for every k ≥ k0.

Proof: Since dε(x[k],So(r+0.5)) is a nonnegative integer-

valued decreasing function (by Lemma 2), there exists a

number k0 with the property:

dε(x[k],So(r + 0.5)) = dε(x[k0],So(r + 0.5)), ∀k ≥ k0

(12)

If dε(x[k0],So(r + 0.5)) = 0, then case (i) explained in

the statement of the lemma definitely occurs. It is desired

to prove that if dε(x[k0],So(r + 0.5)) 6= 0, then case (ii)

takes place. To this end, notice that if xi[k] − r − 0.5, ∀i ∈
ν, are negative (strictly positive) for some proper k, so are

xi[k + 1] − r − 0.5, ∀i ∈ ν. This implies that it suffices to

prove case (ii) only for k = k0.

To prove by contradiction, assume that there exist two

integers i, j ∈ ν such that:

xi[k0] > r + 0.5, xj [k0] ≤ r + 0.5 (13)

Since the graph G is connected, the above two inequalities

yield that there are two integers µ1, µ2 ∈ ν subject to:

• (µ1, µ2) is an edge of the graph G.

• xµ1
[k0] > r + 0.5 and xµ2

[k0] ≤ r + 0.5.

If xµ1
[k0] > r + 0.5 + ε or xµ2

[k0] ≤ r + 0.5 − ε, then

following the proof of Lemma 2, one can conclude that

choosing the edge (µ1, µ2) at time k0+1 in step 2 of the DG

algorithm results in the reduction of dε(x[k0],So(r + 0.5)),
i.e.:

dε(x[k0 + 1],So(r + 0.5)) < dε(x[k0],So(r + 0.5)) (14)

which is impossible in light of equality (12). Thus:

r + 0.5 < xµ1
[k] ≤ r + 0.5 + ε, (15a)

r + 0.5 ≥ xµ2
[k] > r + 0.5 − ε (15b)

Consider an arbitrary vertex connected to vµ2
, and denote

it with vµ3
(if such a vertex does not exist, find a vertex

connected to vµ1
instead). It is desired to prove that:

r + 0.5 − ε < xµ3
[k0] ≤ r + 0.5 + ε (16)

To this end, consider the following scenarios:

• xµ3
[k0] is greater than r+0.5: It results from (15b) that

if the inequality xµ3
[k0] ≤ r + 0.5 + ε does not hold,

then choosing the edge (µ2, µ3) at time k0 + 1 through

the DG algorithm will reduce the storage function

dε(x[k0],So(r + 0.5)), which is impossible by (12).

• xµ3
[k0] is less than or equal to r + 0.5: If the relation

r + 0.5 − ε < xµ3
[k0] does not hold, run step 2 of the

DG algorithm at times k0 + 1 and k0 + 2 as follows:

– At time k0 + 1, choose the edge (µ1, µ2) which

gives the updates (in light of (15)):

xµ1
[k0 + 1] = xµ1

[k0] − ε,

xµ2
[k0 + 1] = xµ2

[k0] + ε
(17)

Therefore:

dε(x[k0 +1],So(r+0.5)) = dε(x[k0],So(r+0.5))
(18)

– At time k0 + 2, choose the edge (µ2, µ3). Equa-

tion (17) leads to:

r + 0.5 < xµ2
[k0 + 1] ≤ r + 0.5 + ε,

xµ3
[k0 + 1] = xµ3

[k0] ≤ r + 0.5 − ε
(19)

Thus, one can show that:

dε(x[k0 + 2],So(r + 0.5)) ≤

dε(x[k0 + 1],So(r + 0.5)) − 1
(20)

which is impossible by equation (12).

This concludes the validity of inequality (16). Since the

graph is connected, there is a path from vµ2
to any

other vertex in V . One can continue the argument made

above (on the vertex vµ3
) for the vertices of such paths

successively to deduce:

r + 0.5 − ε < xi[k0] ≤ r + 0.5 + ε, ∀i ∈ ν (21)

The above inequality signifies that dε(x[k0],So(r + 0.5)) is

equal to zero, while this quantity was earlier assumed to be

nonzero. This contradiction completes the proof. �

Theorem 2: Apply the DG algorithm to the graph G(V, E)
with the initial state x[0]. Step 2 of this algorithm (i.e.

selecting an edge arbitrarily) can be taken appropriately so

that there exists a positive number k1 for which one of the

following cases takes place:

i) x[k] belongs to the set So, for all k ≥ k1.

ii) x[k] belongs to the set So(η1), for all k ≥ k1.

iii) x[k] belongs to the set So(η2), for all k ≥ k1.

Proof: Define the storage functions:

V1[k] := dε(x[k],So(η1)),

V2[k] := dε(x[k],So(η2))
(22)

In the course of taking step 2 of the DG algorithm, select an

edge at each time update k ∈ N such that the function V1[k]
is minimized (as explained in the statement of Lemma 3).

Halt at a time k0, where V1[k] reaches its minimum and

remains constant. By the preceding lemma, one of the

following cases happens:
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• x[k] is in the invariant set So(η1), for all k ≥ k0: If

this is the case, the proof is complete.

• x1[k] − η1, x2[k] − η1, ..., xν [k] − η1 are all negative,

for every k ≥ k0: Since xave is greater than or equal to

η1, and is also identical to the average of the numbers

x1[k], ..., xν [k], this case is ruled out, unless x1[k] =
x2[k] = · · · = xν [k] = xave = η. Nevertheless, this

implies that x[k] ∈ So(η1).
• x1[k] − η1, x2[k] − η1, ..., xν [k] − η1 are all strictly

positive, for every k ≥ k0: At time k = k0, ignore

the mission of minimizing V1[k], and after this time

take step 2 of the DG algorithm so that the Lyapunov

function V2[k] is minimized at each time update. Notice

that since all entries of x[k0] are greater than η1, they

can never go beyond this limit at a future time. Using

Lemma 3, it can be argued that there exists a natural

number k1 > k0 for which one of the following cases

occurs:

– x[k] is in the invariant set So(η2), for all k ≥ k0:

If this is the case, the proof is complete.

– x1[k]−η2, x2[k]−η2, ..., xν [k]−η2 are all negative,

for every k ≥ k0: It follows from this case that x[k]
belongs to the set So, for all k ≥ k1.

– x1[k]−η2, x2[k]−η2, ..., xν [k]−η2 are all strictly

positive, for every k ≥ k0: This case can be simply

ruled out, by adopting an argument similar to the

one made above. �

Theorems 1 and 2 give rise to the conclusion that the

consensus is reached almost surely for the graph G(V, E ,P)
under the SG algorithm, for all ε ∈ (0, 0.5]. Given a set

M ⊂ R
ν , define the diameter of M to be the supremum of

the Euclidean distance between every two points in M.

Remark 1: Definition 1 states that if the consensus is

reached at time k0, the state x[k] belongs to the box [xave −
1, xave + 1]ν , for every i ∈ ν and k ≥ k0. In contrast, it

can be deduced from Theorems 1 and 2 that there exists a

positive integer k1 ≥ k0 such that x[k], ∀k ≥ k1, belongs

to one of the sets So, So(η1), or So(η2). In this regard, two

points can be made as follows:

• The diameter of the set given by Definition 1 is equal

to 2, whereas that of each of the sets So, So(η1) and

So(η2) is at most 1. This implies that a more precise

definition of consensus can be provided in terms of these

sets.

• If x[k] in the steady state (for large enough k’s) is

not constant (almost surely) and can oscillate, it should

then belong to either So(η1) or So(η2), which are both

of diameter 2ε (see Lemma 1). Note that the diameter

of these sets can become arbitrarily small by rendering

an appropriate ε. This implies that running the gossip

algorithm for a small ε either makes the steady state

constant or permits it to oscillate in a set with a small

diameter (2ε). In the latter case, xi[k] can oscillate

between only two numbers of difference ε (due to the

definition of So(µ), µ ∈ R).

To clarify Remark 1, consider the nominal values xave =

10.6 and ε = 0.2. The definition of consensus borrowed

from [18] states that there exists a positive integer k0 such

that:

9.6 < x1[k], ..., xν [k] < 11.6, ∀k ≥ k0 (23)

In contrast, Theorem 2 asserts that there exists a number k1

so that:

10.3 < x1[k], ..., xν [k] ≤ 10.7, ∀k ≥ k1 (24)

or:

10.5 < x1[k], ..., xν [k] ≤ 11.5, ∀k ≥ k1 (25)

(note that case (iii) in Theorem 2 is ruled out in this example,

as the average of the entries of x[k] cannot be smaller than

all entries of x[k]). Comparing (23) with (24) and (25), one

can simply observe that a more precise description of the

steady state values on the vertices of G is delineated by (24)

and (25). Besides, notice that if 9.6 < x1[k], ..., xν [k] <

11.6 for some integer k, it may not be true that 9.6 <

x1[k + 1], ..., xν [k + 1] < 11.6 (because this region does not

correspond to an invariant set in general, whereas So(10.5)
and So are both invariant).

IV. GENERALIZATION TO ARBITRARY QUANTIZERS

Let q(x) : R → R be a general quantization operator char-

acterized as follows:

q(x) =

{

Li if x ∈ [Li, L̄i]
Li+1 if x ∈ (L̄i, Li+1]

∀i ∈ Z (26)

where {Li}
∞
−∞ is a monotonically increasing sequence of

integers representing the quantization levels, and:

L̄i :=
Li + Li+1

2
, ∀i ∈ Z (27)

The scalar quantities Li and L̄i will be referred to as

level and splitting level, respectively. The convergence proof

developed in Section III can be readily extended, provided

Definitions 1, 3 and 4 are expressed in the general case. This

is carried out in the following.

Revised Definition 1: Given a quantization-based protocol

C acting on G(V, E), denote with x[k], k ∈ N ∪ {0}, the

vector of values sitting on the vertices of G at time k,

obtained using this protocol. It is said that the (quantized)

consensus is reached for the graph G under the protocol C
if for every arbitrary initial state x[0] ∈ R

ν , there exist a

natural number k0 and an integer µ such that either of the

following sets of relations holds:






∑ν

i=1 xi[k] =
∑ν

i=1 xi[0]

xj [k] ∈ [Lµ, Lµ+1]
∀k ≥ k0, ∀j ∈ ν (28)

or:






∑ν

i=1 xi[k] =
∑ν

i=1 xi[0]

xj [k] ∈ (L̄µ, L̄µ+1]
∀k ≥ k0, ∀j ∈ ν (29)

Note that the above definition presents a more compre-

hensive description of consensus, compared to Definition 1

(see the discussion given in Remark 1). Roughly speaking,
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the revised version of Definition 1 states that the consensus

is reached if the numbers on the vertices of the graph ulti-

mately lie between two consecutive levels or two consecutive

splitting levels.

Revised Definition 3: Define η1 and η2 to be:

η1 = max
i∈Z

L̄i s.t. L̄i ≤ xave,

η2 = min
j∈Z

L̄j s.t. L̄j ≥ xave

(30)

Revised Definition 4: Let So(L̄i), i ∈ Z, be defined as the

set of all ν-tuple (α1, α2, ..., αν) ∈ S such that:

αj ∈
(

L̄i − ε(Li+1 − Li), L̄i + ε(Li+1 − Li)
]

, ∀j ∈ ν

(31)

It is noteworthy that other definitions presented in Sec-

tion III carry over to the general case, such as the definitions

of S, So and dε(·, So(µ)). Moreover, the assumption ε ∈
(0, 0.5] remains unchanged.

One can adopt an approach similar to the one proposed

earlier to prove all lemmas and theorems (presented in

Section III) in the general case. This leads to the conclusions

that the consensus is reached almost surely for the graph

G(V, E ,P) under the SG algorithm, and that x[k] belongs

to one of the invariant sets So, So(η1) or So(η2), for large

enough k’s .

V. SIMULATION RESULTS

Consider a complete graph G with ν = 40 and, for

simplicity, assume that all edges possess the same weight

equal to 2
ν(ν−1) . Let the initial values sitting on the vertices

of G be uniformly distributed in the box [0, 100]ν . We wish

to observe how these values evolve under the quantized

stochastic gossip algorithm. For this purpose, assume that the

quantization is uniform, and that ε = 0.2. Two sets of initial

states have been randomly generated, which are spelled out

below:

• As the first trial, the initial values randomly generated

are depicted in Figure 3. Note that the x-axis of this

plot shows the index i changing from 1 to 40, and

the y-axis shows the corresponding value of xi[0].
The time k1 introduced in Theorem 2 turns out to be

equal to 770. The final values at this time are plotted

in Figure 4. Since these numbers are spread in the

interval [52.5, 53.5], the point x[k1] belongs to the set

So (see Theorem 2). This implies that the steady-state

of the vector x[k] is fixed, i.e. x[k] = x[k1], for all

k ≥ k1. The storage function dε(x[k],So) is sketched

in Figure 5 to illustrate how it attenuates to zero in

a (non-strictly) decreasing way. This is in accordance

with Lemma 2.

• As the second trial, the initial values randomly gen-

erated are shown in Figure 6. The corresponding final

values at the time k1 = 555 are depicted in Figure 7.

This figure demonstrates that x[k1] belongs to the set

So(η1), rather than So. This confirms the results of

Theorem 2. Therefore, the steady state of the vector

x[k] is not fixed, and this vector can oscillate. However,
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Fig. 3. The initial values on the vertices of the graph G for the first trial.
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Fig. 4. The final values on the vertices of the graph G (at time k1) for
the first trial.

xi[k], i ∈ ν, can take only two possible values with

the difference ε = 0.2, in light of the definition of

So(µ). The storage function dε(x[k],So(η1)) is plotted

in Figure 8 to illustrate the convergence rate of the SG

algorithm.

VI. CONCLUSIONS

This paper deals with the distributed averaging problem

over a connected weighted graph. The governing policy is

that an edge of the graph is chosen at each time update with

the probability equal to its weight, and then the values on its

ending vertices are updated in terms of the quantized data

of each other. A quantized stochastic gossip algorithm was

proposed in a recent paper, which was shown to work in a

particular case. In this part of the paper, it is proved that

the quantized consensus is reached in the general case using

this algorithm. The quantizer can be, for instance, constant or

logarithmic. Some interesting steady-state properties of the

numbers sitting on the vertices of the graph are derived. In

the second part of the paper, the expected value of the time

at which the consensus is reached will be lower and upper

bounded in term of the topology of the graph, particularly

its Laplacian matrix.
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Fig. 5. The storage function dε(x[k],So) for the first trial.
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Fig. 6. The initial values on the vertices of the graph G for the second
trial.
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