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Abstract—Parameter estimation problem in dynamical systems
can be addressed using the static adaptive observers to generate
parameter estimates on line. However, if such estimates are used
in a Certainty Equivalence Adaptive Control (CEAC) law, the
stability problem arises. In this paper it is shown that the CEAC
law, in which parameter estimates are generated using static
observers and several adaptive laws with normalization, results
in a stable system in which the tracking control objective is
achieved. The adaptive laws include gradient algorithms with
normalization and projection, and least squares with covariance
resetting and exponential forgetting. This is followed by an
analysis of the case when dynamic observers and adaptive laws
with normalization are used to generate parameter estimates. It
is shown that with such adaptive laws overall system stability
can be guaranteed provided that the observer is sufficiently
fast and that its gain is chosen to be larger than a calculable
worst-case bound.

I. Introduction

A standard parameter adjustment law that is used both in the

direct and indirect adaptive control context is the so called

gradient algorithm [2]. It arises in the Lyapunov analysis of

the overall adaptive control system, and results in a stable

system in which the tracking control objective is achieved

asymptotically. However, since its primary objective is not to

accurately identify the parameters but rather to assure system

stability, it may also result in large transients and inaccurate

state estimates. This is the case in both direct and indirect

adaptive control.

On the other hand, there is a whole spectrum of parameter

adjustment algorithms whose primary objective is to arrive at

as accurate parameter estimates as possible for a given level

of excitation in the system. These arise in the context of

system identification (see e.g. [1], [3]) and include gradient

with normalization and projection, and several variants of the

celebrated least-squares (LS) algorithm (pure LS, LS with

covariance resetting, LS with exponential forgetting). One

common feature of all these algorithms is that they represent

a class of adjustment laws with normalization, i.e. they are

commonly divided by a suitably chosen normalization term

to assure the boundedness of the adaptive law.

To the best of authors knowledge, adaptive algorithms with

normalization, in conjunction with dynamic observers, have

not been used extensively to address the adaptive control

problem. One of the existing results [4] is based on dividing

the error equation with a normalization term, and using a

gradient adaptive algorithm with normalization to adjust the

parameters. Then a term roughly corresponding to ”nonlinear

damping” in nonlinear control is used in the error model

to assure signal boundedness. One of the questions that

arise in this context is whether such a term is necessary to

demonstrate the overall stability. In addition, least squares-

based algorithms have not been used in this context. Another

approach to using normalized adaptive laws arising from the

use of a logarithmic Lyapunov function is presented in [5].

However, the approach is applicable only to a very limited

class of linear plants with unknown matrix A and known
matrix B.

In the context of indirect adaptive control using parameter

adjustment laws with normalization, the following problems

can be formulated:

1. If a Certainty Equivalence Adaptive Control (CEAC)

law (i.e. indirect adaptive control) is used to control the

plant, under which conditions can adaptive algorithms with

normalization be used to generate parameter estimates while

assuring the overall system stability?

2. How can the system be parameterized to enable the use of

static observers and adaptive algorithms with normalization?

3. Can adaptive algorithms with normalization be used in the

context of dynamic observers and under which conditions?

In this paper we address these questions and show the

following:

• In the case of static observers, proper filtering of the plant
state equation results in an expression that enables the use

of static observers to estimate the parameters; any parameter

adjustment law that satisfies standard properties plus a prop-

erty of boundedness of the term multiplying the estimation

error (i.e. the regressor divided by the normalization term),

multiplied by the regressor signal, results in a stable system.

• In the case of dynamic observers, an additional condition
needs to be imposed on the observer gain to assure the overall

system stability.

II. Problem Statement

In this section the focus is on a first order plant whose

dynamics is described by:

ẋ = ax + bu, (1)

where a and b are unknown, and the lower bound on b,
denoted by b > 0, is known.
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The objective is to design a Certainty-Equivalence Adap-

tive Control (CEAC) signal u(t) such that limt→∞[x(t) −
xm(t)] = 0, where xm(t) is the output of the reference model

ẋm = −amxm + bmr, (2)

and where am, bm > 0 and r is a bounded reference input.

The CEAC control law is chosen in the form:

u =
1

b̂
[−(â + am)x + bmr]. (3)

Since the control law is given, now the objective is to design

an observer and adaptive law for generating estimates of a
and b in a way that assures the overall system stability.

Let e = x̂−x. It is well known that a dynamic series-parallel
observer and gradient adaptive algorithms of the form:

˙̂x = âx + b̂u − λe

˙̂a = −γ1ex,
˙̂
b = −γ2eu

assure overall system stability and achieve the control objec-

tive [2]. In the above expressions, λ > 0 denotes the observer
gain, while γi > 0 denote adaptive gains. In addition,
precautions need to be taken to prevent b̂(t) from crossing
zero which would invalidate the CEAC law.

With proper choice of λ and γi, the above adaptive laws

can achieve rapid stabilization of the system and ensure

that the control objective is met. However, these laws are

not designed with a primary objective of achieving accurate

estimation of the unknown parameters, and the resulting

steady-state values (if they exist) of the estimates may be far

from the true ones if there is not sufficient excitation in the

system. On the other hand, several adaptive algorithms with

normalization have been shown to result in ”good” estimates

even when signals in the system are not persistently exciting.

Since one of the objectivies of this paper is to study the

suitability of such adaptive algorithms in the CEAC law,

several possible algorithms with normalization for estimating

a and b are discussed next.

III. Stable Adaptive Control using Static Observers

and Normalized Adjustment Laws

The following filtered variables are introduced first:

xF =
1

s + λF

· x, uF =
1

s + λF

· u. (4)

Then the resulting filtered plant equation is of the form:

x = (λF + a)xF + buF , (5)

modulo an exponentially decaying term due to initial condi-

tions. The above equation is rewritten as: x = λF xF + θT ω,
where θ = [a b]T and ω = [xF uF ]T . Now the observer is
chosen as:

x̂ = λF xF + θ̂T ω, (6)

resulting in the error equation of the form: ǫ = θ̃T ω, where
ǫ = x̂−x denotes the estimation error, and θ̃ = θ̂−θ denotes
the parametric error.

Let the CEAC law (3) be used to control the plant, where the

estimator is chosen as in (6), while the parameter adjustment

law is to be determined. The following theorem states that

this law can be fairly general as long as it satisfies several

properties listed below.

Theorem 1: If the adaptive law ensures the following:

(a) θ̂ ∈ L∞.

(b)
ǫ√

1 + ωT ω
∈ L∞ ∩ L2.

(c)
˙̂
θ =

˙̃
θ ∈ L∞ ∩ L2, and

(d)

˙̂
θT ω

e
is bounded for all values of arguments,

then all the signals in the system are bounded and

limt→∞[x(t) − xm(t)] = 0.

Proof: The observer (6) is first differentiated to obtain:

˙̂x = −λ2
F xF + λF x +

˙̂
θT ω − λF (x̂ − λF xF ) + âx + b̂u,

which, after substituting the control law (3), reduces to

˙̂x =
˙̂
θT ω − λF ǫ − amx + bmr.

Let em = x̂−xm. Subtracting (2) from the above eq.yields:

ėm = −amem +
˙̂
θT ω − (λF − am)ǫ, (7)

Since θ̂ is bounded and
˙̂
θ ∈ L∞ ∩ L2, it follows that the

system (7) is a linear time varying system with bounded pa-

rameters in which the signals can grow at most exponentially.

Hence analysis based on the growth rates of signals in the

system (see [2]) can be used to study the signal boundedness.

Based on the fact that ǫ/
√

1 + ωT ω ∈ L∞ ∩ L2, it follows

that ǫ = β(t)
√

1 + ωT ω, where β ∈ L2.

Let ω̄ = [x u]T grow in an unbounded fashion. Since
ω = (1/(s + λF )ω̄, it follows that ω = O(supτ≤t‖ω̄(τ)‖).
In addition, since ω̇ = −λF ω + ω̄, it follows that ω̇ =
O(supτ≤t‖ω̄(τ)‖). Since ǫ = θ̃T ω and θ̃ is bounded, it
follows that ǫ = O(supτ≤t‖ω̄(τ)‖). Taking a derivative of ǫ
yields:

ǫ̇ =
˙̃
θT ω − λF ǫ + θ̃T ω̄.

Hence ǫ̇ = O(supτ≤t‖ω̄(τ)‖). From (7) it now follows
that em = O(supτ≤t‖ω̄(τ)‖) and ėm = O(supτ≤t‖ω̄(τ)‖).
Since em = x̂ − xm and xm is bounded, it follows that

x̂ = O(supτ≤t‖ω̄(τ)‖) and ˙̂x = O(supτ≤t‖ω̄(τ)‖). Since
ǫ = x̂− x, it follows that x = O(supτ≤t‖ω̄(τ)‖). Similarly,
it can be shown that u = O(supτ≤t‖ω̄(τ)‖). Hence ω̄ =
O(supτ≤t‖ω̄(τ)‖), and all the signals grow at the same rate,
i.e. supτ≤t|ǫ(τ)| ∼ supτ≤t‖ω̄(τ)‖.
On the other hand, since ǫ = β(t)

√
1 + ωT ω, where β ∈ L2,

and ǫ̇ = O(supτ≤t‖ω(τ)‖), it follows that ǫ =
o(supτ≤t‖ω(τ)‖) [2], i.e. ǫ and ‖ω‖ grow at different rates,
which is a contradiction. Hence all the signals in the closed-

loop system are bounded.

It can now be readily shown using the standard arguments

[2] that limt→∞em(t) = limt→∞[x(t) − xm(t)] = 0. �

Comment: The main reason for using the signal growth rate

arguments for stability analysis is that the estimator does not

guarantee that the estimation error will be bounded. This

is in contrast with the case when dynamic observers and
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adjustment laws without normalization are used.

It will next be shown that several parameter adjustment laws

satisfy the conditions (a)-(d) of Theorem 1.

IV. Normalized Parameter Adjustment Laws

A. Normalized Gradient

This adaptive law is of the form:

˙̂
θ = ˙̃θ = − −Γωǫ

1 + ωT ω
(8)

where Γ = diag([γ1 γ2]).

Properties of the estimator: The following tentative Lya-

punov function is chosen:

V (θ̃) =
1

2
θ̃T Γ−1θ̃. (9)

Its derivative along the solutions of the system yileds:

V̇ (θ̃) = − ǫ2

1 + ωT ω
= − ωωT θ̃

1 + ωT ω
≤ 0, ∀θ̃ 6= 0. (10)

Hence θ̂ ∈ L∞. It can be readily shown that conditions (b)

and (c) of Theorem 1 also hold. Based on (8) it is also seen

that the condition (d) holds. Hence gradient algorithm with

normalization can be used to estimate the parameters while

ensuring the closed-loop system stability.

B. Normalized Gradient with Projection

Let an m-vector θ satisfy θ ∈ Sθ = {θi : θi ≤ θi ≤
θi, i = 1, 2, ..., m}. Then the normalized adaptive law with
projection is expressed in the form:

˙̃θi =
˙̂
θi =Proj

θ̂∈Sθ
{− γiωie

1 + ωT ω
}, i = 1, 2, ..., m (11)

= − γiωie

1 + ωT ω
(1 − sign(eωi) · ϕ(θ̂i))

where θ̂i(0) ∈ Sθ , and

ϕ(θ̂i) =











θi − 2θi + θi

2(θi − θi)
if θi(t) ∈ ∂Sθ

0 if θi(t) ∈ Sθ\∂Sθ

.

The following proposition is useful for the proof of stability.

Proposition 1: Adaptive law (11) assures that

θ̃T ˙̃
θ ≤ − Γθ̃ωe

1 + ωT ω
,

for all values of arguments.

The proof of this proposition is standard for adaptive algo-

rithms with projection and is omitted here.

Now the same tentative Lyapunov function (9) is used,

resulting in

V̇ (θ̃) ≤ − ǫ2

1 + ωT ω
≤ 0, ∀θ̃ 6= 0. (12)

Hence the gradient adaptive algorithm with projection has the

same (a)-(c) properties as the one without projection. From

(11) it also follows that the condition (d) is satisfied. The

use of this algorithm also assures that b̂(t) ≥ b, ∀t ≥ to.

C. Least Squares Algorithm

As it is well known, the Recursive Least Squares (RLS)

algorithm is derived as a solution to the minimization of

the following cost [4]:

J(θ̂) =
1

2

∫ t

0

e−β(t−τ) (x̂(τ) − θ̂T (τ)ω(τ))2

1 + ωT (τ)ω(τ)
dτ

+
1

2
e−βt(θ̂ − θ̂(0))T Q0(θ̂ − θ̂(0)),

where Q0 = QT
0 > 0, and β ≥ 0. Since the above cost is

convex, any local minimum is also global and results in:

∇J(θ̂) = e−βtQ0(θ̂ − θ̂(0))

−
∫ t

0

e−β(t−τ) x̂(τ) − θ̂T (τ)ω(τ)

1 + ωT (τ)ω(τ)
ωdτ,

which yields the batch least squares algorithm:

θ̂ = P (t)
[

e−βtQ0θ̂(0) +

∫ t

0

e−β(t−τ) x̂(τ)ω(τ)

1 + ωT (τ)ω(τ)
dτ

]

where

P (t) =
[

e−βtQ0 +

∫ t

0

e−β(t−τ) ω(τ)ωT (τ)

1 + ωT (τ)ω(τ)
dτ

]−1

.

SinceQ is positive definite and ωωT is positive semi-definite,

P (t) exists at every instant. It can be readily shown that P
satisfies the following differential equation:

Ṗ = βP − P
ωωT

1 + ωT ω
P, P (0) = P0 = Q−1

0 . (13)

The adjustment law for θ̂ is now of the form:

˙̂
θ = − Pωǫ

1 + ωT ω
. (14)

1) Pure Least Squares: In this case β = 0. It is first noted
that Ṗ ≤ 0, i.e. P (t) ≤ P0. Since P ≥ 0, it follows that
P (t) is bounded for all time.

Now a tentative Lyapunov function is chosen as:

V (θ̃) =
1

2
θ̃T P−1θ̃. (15)

Noting that Ṗ−1 =
ωωT

1 + ωT ω
, it follows that

V̇ (θ̃) = − ǫ2

2(1 + ωT ω)
≤ 0, ∀θ̃ 6= 0.

Since P (t) is bounded for all time, it follows that the pure
LS algorithm satisfies conditions (a)-(d) of the Theorem 1.

2) Least Squares with Projection: Using the same tentative

Lyapunov function as in the case of pure least squares and

the results of Proposition 1 it follows that

V̇ (θ̃) ≤ − ǫ2

2(1 + ωT ω)
≤ 0, ∀θ̃ 6= 0.

Hence the least squares algorithm with projection has the

same properties as the pure least squares and satisfies the

conditions (a)-(d) of the Theorem 1.

3) Least Squares with Covariance Resetting: One of the

main drawbacks of the pure LS algorithm is a possibility of
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limt→∞ P (t) = 0 which slows down the adaptation in some
directions. To avoid this, the following modification, known

as LS with covariance resetting, is commonly used:

Ṗ = −P
ωωT

1 + ωT ω
P, P (t+R) = P0 = a0I (16)

where tR is the resetting time for which λmin(P (t)) ≤ a1

where a1 is a prespecified threshold, and a0 > a1 > 0.
With this modification it follows that a0I ≥ P (t) ≥ a1I
for all time, which implies that P (t) is positive definite and
bounded for all t ≥ 0.

Using the tentative Lyapunov function (15) results in

V̇ (θ̃) = − ǫ2

2(1 + ωT ω)
≤ 0,

everywhere except at the resetting instants.

At the points of discontinuity of P one has:

V (t+R) − V (tR) =
1

2
θ̃T (P−1(t+R) − P−1(tR))θ̃.

Since P−1(t+R) = 1
a0

I and P−1(tR) ≥ 1
a0

I , it follows

that V (t+R) − V (tR) ≤ 0. Hence V is a non-increasing

function of time for all t ≥ 0. This implies that V is

bounded and limt→∞ V (t) = V∞ < ∞. Since the points
of discontinuity form a set of measure zero, it follows that

ǫ/
√

1 + ωT ω ∈ L2. P−1 is bounded since a−1
1 I ≥ P−1 ≥

a−1
0 I . Bounded V and P−1 imply that θ̃ is bounded; it

follows that ǫ/
√

1 + ωT ω ∈ L∞, which implies that
˙̃θ ∈

L∞ ∩ L2. Hence properties (a)-(c) from Theorem 1 hold.

Resetting does not change the expression for
˙̂
θ. Hence the

property (d) holds as well.

It can be readily shown that this algorithm satisfies these

properties even when projection modification is used.

4) Least Squares with Exponential Forgetting: In this case

β > 0 and P (t) can grow without bound. A common
modification to the LS algorithm is given below [4].

˙̂
θ = − Pωǫ

1 + ωT ω

Ṗ =







βP − P
ωωT

1 + ωT ω
P, if ‖P (t)‖ ≤ p̄

0, elsewhere

where P (0) = P0 = PT
0 > 0, ‖P0‖ ≤ p̄, and p̄ is an

upper bound on the norm of P . This modification keeps
P (t) bounded for all time and results in the same estimator
properties as in the case of least squares and hence satisfies

the properties (a)-(d) from Theorem 1.

It can be concluded that all of the algorithms analyzed

in this section satisfy properties (a)-(d) of Theorem 1 and

corresponding parameter estimates can, therefore, be used in

the CEAC control law to guarantee closed-loop stability.

V. Stable Adaptive Control using Dynamic Observers

and Normalized Adjustment Laws

Next question that will be addressed in this paper is whether

adaptive laws with normalization can be used in the context

of dynamic observers. It will be shown that in such a case

an additional condition on the observer gain needs to be

imposed to assure system stability. This heuristically makes

sense since the dynamic observers are generally slower than

the static ones (since the state estimate is generated by a

differential equation, while in the case of static observers the

estimate is calculated instantaneously); adaptive laws with

normalization are slower than the ones without normalization

and, therefore, the dynamic observer needs to be sufficiently

fast to assure system stability.

In this section the same plant equation (1) is considered. Let

θ = [a b]T . It is assumed that θ ∈ Sθ = {θ : θi ≤ θiθi, i =
1, 2}, where θ2 > 0. The CEAC controller is of the form:

u =
1

b̂
[−(â + am)x + bmr], (17)

where the bound on ṙ is assumed known, i.e. |ṙ| ≤ r̄.

The dynamic observer for the above plant is now chosen as:

˙̂x = âx + b̂u − λe, (18)

where λ > 0 denotes the observer gain, and e = x̂ − x.

Let the adaptive law be of the form:

˙̃θ =
˙̂
θ = Proj

θ̂∈Sθ
{− Γω̄e

1 + ωT ω
} (19)

where Γ = diag[γ1 γ2], γi > 0, ω̄ = [x u]T , and ω =
[x u x̂/

√
λ]T .

The key in proving the stability with the above adaptive law

is to study the term ωT ω̇/(1 + ωT ω). The term ωT ω̇ is of
the form:

ωT ω̇ = x(ax + bu) + uu̇ − x̂e + x̂(âx + b̂u)/λ, (20)

while the derivative of the CEAC law yields:

|u̇| =
∣

∣

∣

eω̄T Γω̄

b̂(1 + ωT ω)
+

1

b̂
[−(â + am)(ax + bu) + bmṙ]

∣

∣

∣

≤ [(|x̂|+|x|)λmax(Γ)+((a + am)(a|x|+b|u|)+bmr̄)]/b
= c1|x| + c2|u| + c3|x̂| + c4.

Hence:

|ωT ω̇| ≤ ax2 + b|x||u| + c1|x||u| + c2u
2 + c3|x̂||u| + c4|u|

+x̂2 + (1 + a/λ)|x̂||x| + b|x̂||u|/λ.

It now follows that:

|ωT ω̇|
1 + ωT ω

≤ d1 +
d2

λ
, ∀ω, (21)

where di > 0, i = 1, 2, can be readily calculated.

Now the following theorem is considered:

Theorem 2: Let the plant (1) be controlled by the CEAC law

(17) where the state and parameter estimates are generated

using the observer (18) and adaptive law (19). Then, if the

observer gain satisfies λ > (d1 +
√

d2
1 + 4d2)/2, where di

are given by (21), all the signals in the system are bounded,

and limt→∞[x1(t) − xm1(t)] = 0.

Proof: Let θ = [a b]T , and θ̂ = [â b̂]T . Upon subtracting
(1) from the observer dynamics (18), the error equation is

obtained as:
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ė = −λe + θ̃T ω̄, (22)

where e = x̂ − x, ω̄ = [x u]T , and θ̃ = θ̂ − θ.

Let a coordinate transformation ζ be defined as:

ζ =
e√

1 + ωT ω
.

It follows that:

ζζ̇ =
−e2ωT ω̇

(1 + ωT ω)2
+

−λe2 + θ̃ω̄e

(1 + ωT ω)
.

Now the following Lyapunov function is chosen:

V (ζ, φ) =
1

2
(ζ2 + θ̃T Γ−1θ̃),

where Γ = diag[γ1 γ2]. The derivative of V along the

solutions of the system yields

V̇ (ζ, φ) ≤ −e2

1 + ωT ω
(λ − ωT ω̇

1 + ωT ω
).

The inequality follows from applying the adaptive law with

projection (19). Using expression (21) it follows that:

V̇ ≤ −e2

1 + ωT ω
(λ − d1 −

d2

λ
) ≤ 0,

i.e. V̇ ≤ 0 since λ > (d1 +
√

d2
1 + 4d2)/2. It can now be

concluded that ζ ∈ L∞ ∩ L2, θ̃ ∈ L∞. It also follows from

(19) that
˙̃
θ =

˙̂
θ ∈ L∞ ∩ L2.

To prove the overall stability, the CEAC law (17) is substi-

tuted into the observer (18) to obtain:

˙̂x = −λe − amx + bmr. (23)

It follows that ėm = −amem − (λ− am)e, where em = x̂−
xm. It is seen that if λ is chosen as λ = am, em is bounded

which implies that x̂ is bounded, and limt→∞ em(t) = 0.
However, choosing λ = am could violate the condition of

the Theorem 2. Hence arguments based on the growth rates

of signals can be used along the same lines as in the proof

of Theorem 1 to demonstrate system stability. �

Comments:

• Unlike the static observer case, in the case of a dynamic
observer an additional condition is imposed on the observer

gain to counteract the slowing down of the response due to

the normalization in the adaptive law.

• It is noted that the main condition that the adaptive
law needs to satisfy for the overall system stability is that

uu̇/(1 + ωT ω) is bounded for all values of its arguments.
Analysis of this condition reveals that it is satisfied if the

condition (d) of Theorem 1 is satisfied. Since the least

squares-based algorithms described in the previous sections

satisfy this condition, they can be used to estimate the plant

parameters without affecting the system stability.

VI. Higher-order Plants

In this case the plant dynamics is assumed in the form:

ẋ = Ax + BKu (24)

where x : IR+ → IRn, u : IR+ → IRm, m ≥ n, and where
A ∈ IRn×n and K = diag[k1 k2 ... km], ki ∈ [ǫi, 1], ǫi <<

1, are uncertain, while B ∈ IRn×m is known. It is assumed

that x and u are measurable. Let a denote a vector of
elements of A, and let p = [aT kT ] ∈ Sp = {p : (pi)min ≤
p ≤ (pi)max, i = 1, 2, ..., n2 + m}.
The objective is to design a control signal u(t) such that
limt→∞[x(t) − xm(t)] = 0, where xm is an output of the

following reference model:

ẋm = Amxm + Bmr, (25)

where Am ∈ IRn×n is Hurwitz, Bm ∈ IRn×n, and r ∈ IRn

denotes a bounded reference input vector.

CEAC Law: The CEAC law is chosen as:

u = K̂BT (BK̂2BT )−1(−Âx + Amx + Bmr). (26)

Static Adaptive Observer: To derive a static adaptive

observer, equation (24) is first filterd to obtain:

x = λF xF + AxF + BKuF (27)

modulo exponentially decaying terms due to initial condi-

tions. This equation is now rewritten as:

x = λF xF + F (xF )a + BUF k (28)

where F (xF ) = diag([xT
F xT

F ... xT
F ]), and UF =

diag[u1F u2F ... umF ]. The observer is now chosen as:

x̂ = λF xF + Ω(xF , uF )θ̂, (29)

where Ω = [F BUF ], θ = [aT kT ]T and θ̂ = [âT k̂T ]T .

We next note that, in the case when projection is used, the

adaptive algorithms from Section IV can be written for the

above observer in a unified manner as:

˙̂
θ = Proj

θ̂∈Sθ
{− PΩT e

1 + ω̃T ω̃
} (30)

Ṗ =























βP − δ1P
ω̃ω̃T

1 + ω̃T ω̃
P, if ‖P (t)‖ ≤ p̄ and β > 0

0, if ‖P (t)‖ > p̄ and β > 0

−δ2P
ω̃ω̃T

1 + ω̃T ω̃
P and P (t+R) = P0 = a0I, if β = 0

where P (0) = P0 = PT
0 > 0, ‖P0‖ ≤ p̄, p̄ is an upper bound

on the norm of P , and δi ∈ {0, 1}. It is now seen that: (i) for
δi = 0, β = 0 and P (0) = Γ, the above algorithm reduces
to the gradient algorithm with normalization and projection;

(ii) when β > 0, δ1 = 1 and δ2 = 0, it reduces to the least
squares with normalization and exponential forgetting; and

(iii) when β = 0, δ1 = 0 and δ2 = 1, it reduces to least
squares with normalization and covariance resetting. In all

cases P (t) is bounded and its upper bound is known. Hence
these algorithms have the following common properties:

(a) θ̂ is bounded.

(b)
e√

1 + ω̃T ω̃
∈ L∞ ∩ L2.

(c)
˙̂
θ = ˙̃θ ∈ L∞ ∩ L2, and

(d)
Ω

˙̂
θ

e
∈ L∞ for all values of arguments







































(31)
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Theorem 3: If the adaptive laws satisfy the properties (31),

then the plant, controlled by the CEAC will be stable, and

limt→∞[x(t) − xm(t)] = 0.

Proof: The observer equation is differentiated to obtain:

˙̂x = −λF e + Ω
˙̂
θ + Âx + BK̂u

which is derived based on the fact that

Ω̇(xF , uF )θ̂ = [Ḟ (xF ) BU̇F ]θ̂

= −λF (x̂ − λF xF ) + [F (x) BU ]θ̂

and where the identity [F (x) BU ]θ̂ = Âx + BK̂u is used.
The latter follows from the identities: Ax ≡ F (x)a and
Ku ≡ Uk. After substituting the control law (26), we have:

˙̂x = Ω
˙̂
θ − λF e + Amx + Bmr. (32)

Subtracting the reference model equation yields:

ėm = Amem + Ω
˙̂
θ − (λF I + Am)e, (33)

where em = x̂ − xm.

Similarly as in the first order case, it can be concluded that,

since θ̂ is bounded and
˙̂
θ ∈ L∞ ∩ L2, the system (7) is a

linear time varying system with bounded parameters in which

the signals can grow at most exponentially. Hence analysis

based on the growth rates of signals can again be used, and

the rest of the Theorem can be proved along exactly the same

lines as in the case of Theorem 1. �

Dynamic Adaptive Observer: The observer is chosen as:

˙̂x = −Λe + Ω(x, u)θ̂, (34)

where Λ = diag[λ1 λ2 ... λm], λi > 0 and Ω =
[F (x) BU ].

Let e = x̂ − x. Upon subtracting (28) from the observer
equation, one obtains:

ė = −Λe + Ω(x, u)θ̃, (35)

where θ̃ = θ̂ − θ. The error model is rewritten as:

ė = −Λe +

n2+m
∑

i=1

ωiθ̃i, (36)

where ωi is the ith column of Ω.

Let, for simplicity, λ1 = λ2 = ... = λm = λ. In this case the
normalization signal ω̃ is chosen as ω̃ = [xT uT x̂/

√
λ]T .

Theorem 4: If the adaptive laws for adjusting the parameters

of the CEAC (26) satisfy the properties (31) with a normal-

ization 1+ ω̃T ω̃, and if the observer gain is chosen to satisfy
λ > c0, where c0 is a calculable bound, then all the signals

in the system are bounded and limt→∞[x(t) − xm(t)] = 0.

Proof: We first note that

eT ė

1 + ω̃T ω̃
=

−λeT e +
∑n2+m

i=1 eT ωiθ̃i

1 + ω̃T ω̃
.

For adaptive laws (30), using the properties of adaptive

algorithms with projection, it can be readily shown that the

following holds:

n2+m
∑

i=1

θ̃i
˙̃
θi

γi

≤ −
n2+m
∑

i=1

θ̃ie
T ωi

1 + ω̃T ω̃
.

Hence:
eT ė

1 + ω̃T ω̃
+

n2+m
∑

i=1

θ̃i
˙̃θi

γi

≤ 0.

We also note that:

ω̃T ˙̃ω = −(xT (Ax + BKu) + uT u̇ − x̂T (x̂ − x − Ωθ̂/λ)).

Hence the proof reduces to demonstrating that uT u̇/(1 +
ω̃T ω̃) is bounded for all values of arguments.

We note that the CEAC can be rewritten as: BK̂u = −Âx+

Amx+Bmr. Hence BK̂u̇ = −Ω(x, u)
˙̂
θ+Amx+Bmr. It is

seen that, if the property (31)(d) is satisfied, it follows that

| − uT Ω(x, u)
˙̂
θ| ≤ c0λ‖u‖(‖x̂‖ + ‖x‖).Since elements of

K̂ are bounded away from zero, it now follows that uT u̇ is
bounded for all values of arguments. Hence

∣

∣

ω̃T ˙̃ω

1 + ω̃T ω̃

∣

∣ ≤ c̄1 +
c̄2

λ
, ∀(x, u, x̂), ∀(θ, θ̂) ∈ Sθ.

It can now be readily shown that choosing λ such that λ >
c0 = (c̄1 +

√

c̄2
1 + 4c̄2)/2, guarantees that e/

√
1 + ω̃T ω̃ ∈

L∞ ∩ L2, and the rest of the proof follows. �

VII. Conclusions

In the paper it is shown that the CEAC law, in which parame-

ter estimates are generated using static observers and several

adaptive laws with normalization, results in a stable system

in which the tracking control objective is achieved. The

adaptive laws include gradient algorithms with normalization

and projection, and least squares with covariance resetting

and exponential forgetting.

This is followed by an analysis of the case when dynamic

observers and adaptive laws with normalization are used to

generate parameter estimates. It is shown that the normalized

adaptive laws can be used provided that the observer is

sufficiently fast and that its gain is chosen to be larger than

a calculable worst-case bound.

The results from the paper enable the use of several different

adaptive algorithms with normalization to generate parameter

estimates for the CEAC law.

REFERENCES

[1] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediction and
Control, Prentice Hall, Englewood Cliffs, NJ, 1984.

[2] K. S. Narendra and A. M. Annaswamy. Stable Adaptive Systems.
Prentice-Hall Inc., Englewood Cliffs, NJ, 1989.

[3] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and
Robustness, Prentice-Hall, Englewood Cliffs, NJ,1989.

[4] P. Ioannou and K. Sun, Robust Adaptive Control, Prentice Hall Inc.,
Englewood Cliffs, NJ, 1996.

[5] S. Akhtar, R. Venugopal and D. S. Bernstein, ”Logarithmic Lyapunov
Functions for Direct Adaptive Stabilization with Normalized Adaptive
Laws”, International Journal of Control, Vol. 77, No. 7, pp. 630-638,
May 2004.
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