
Networked Control of Spatially Distributed Processes with

Sensor-Controller Communication Constraints

Yulei Sun, Sathyendra Ghantasala and Nael H. El-Farra†

Department of Chemical Engineering & Materials Science

University of California, Davis, CA 95616 USA

Abstract— This work presents a methodology for the design
of a model-based networked control system for spatially dis-
tributed processes described by linear parabolic partial differ-
ential equations (PDEs) with measurement sensors that trans-
mit their data to the controller/actuators over a bandwidth-
limited communication network. The central design objective
is to minimize the transfer of information from the sensors
to the controller without sacrificing closed-loop stability. To
accomplish this, a finite-dimensional model that captures the
dominant dynamic modes of the PDE is embedded in the
controller to provide it with an estimate of those modes when
measurements are not transmitted through the network, and
the model state is then updated using the actual measurements
provided by the sensors at discrete time instances. Bringing
together tools from switched systems, infinite-dimensional
systems and singular perturbations, a precise characterization
of the minimum stabilizing sensor-controller communication
frequency is obtained under both state and output feedback
control. The stability criteria are used to determine the
optimal sensor and actuator configurations that maximize the
networked closed-loop system’s robustness to communication
suspensions. The proposed methodology is illustrated using a
simulation example.

I. INTRODUCTION

With the significant growth in computing and networking

abilities in recent times, as well as the rapid advances

in actuator and sensor technologies, there has been an

increased reliance in the process industry on sensor and

control systems that are accessed over communication net-

works rather than dedicated links. The defining feature of

networked control systems is that the control system com-

ponents (sensors, controller, actuators) are connected using

a shared communication network (which could be wired or

wireless) over which information, such as the plant output

and control input, are exchanged. The communication chan-

nel is typically shared by multiple feedback control loops.

Compared with dedicated, point-to-point cables, commu-

nication networks have many advantages, such as reduced

installation and maintenance time and costs, flexibility and

ease of diagnosis and reconfiguration, as well as enhanced

fault-tolerance and supervisory control. Yet, control over

networks also poses a number of fundamental issues that

need to be resolved before process operation can take

full advantage of their potential. These issues, which stem

from intrinsic limitations on the information transmission

and processing capabilities of the communication medium,
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challenge many of the assumptions in traditional process

control theory dealing with the study of dynamical systems

linked through ideal channels, and have emerged as topics

of significant research interest to the control community

(e.g., see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10] for

some results and references in this area).

The development of a control strategy that enforces the

desired closed-loop objectives with minimal communication

requirements between the control system components is an

appealing goal since it reduces reliance on the communica-

tion medium and helps reduce network resource utilization.

This is an important consideration particularly when the

communication medium is a (potentially unreliable) wire-

less sensor network where conserving network resources is

key to prolonging the service life of the network. Beyond

saving on communication costs, the study of this problem

provides an assessment of the robustness of a given control

system and allows the designers to identify the fundamental

limits on the tolerance of a given networked control system

to communication suspension. This can be a major con-

sideration in deciding a priori whether the desired control

objectives can be met with a certain kind of network.

Despite the substantial and growing body of work on

control over communication networks, the overwhelming

majority of research studies in this area have focused on

lumped parameter systems modeled by ordinary differential,

or difference, equations. Many important engineering ap-

plications, however, are characterized by spatial variations,

owing to the underlying physical phenomena such as dif-

fusion, convection, and phase-dispersion, and are naturally

modeled by partial differential equations (PDEs). Typi-

cal examples of these systems include transport-reaction

processes and fluid flow systems. Unlike spatially homoge-

neous processes, the control problem arising in the context

of spatially-distributed processes often involves the regula-

tion of spatially distributed variables (such as temperature

and concentration spatial profiles) using spatially-distributed

control actuators and measurement sensors. While the study

of distributed parameter systems in process control has been

an active area of research (e.g., see [11], [12], [13], [14],

[15], [16], [17] and the references therein), the design and

implementation of networked control systems for spatially

distributed processes remain open problems that need to be

investigated and addressed.

Motivated by these considerations, we present in this

work a methodology for the design of networked control
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systems for a class of spatially distributed processes mod-

eled by linear parabolic PDEs with measurement sensors

that transmit their data to the controller/actuators over a

bandwidth-limited communication network. Our objective

is to enforce closed-loop stability while keeping the sensor-

controller communication to a minimum in order to reduce

network resource utilization. The key ideas are to embed

a finite-dimensional model that captures the dominant dy-

namic modes of the PDE in the controller to provide it

with an estimate of those modes when measurements are

not transmitted through the network, and to update the

model state using the actual measurements provided by the

sensors at discrete time instances. The networked closed-

loop system is analyzed by bringing together tools from

switched systems, infinite-dimensional systems and singular

perturbations leading to a precise characterization of the

minimum sensor-controller communication frequency.

The rest of the paper is organized as follows. Follow-

ing some mathematical preliminaries, modal decomposi-

tion techniques are used in Section II to obtain a finite-

dimensional system that captures the dominant dynamic

characteristics of the PDE. This system is then used in Sec-

tions III and IV, respectively, to design finite-dimensional

state and output feedback networked control architectures

and obtain explicit characterizations of the minimum allow-

able sensor-controller communication frequency in terms

of model uncertainty, and sensor and actuator locations.

Finally, the proposed methodology is used to stabilize an

unstable steady-state of a diffusion-reaction process under

sensor-controller communication constraints.

II. PRELIMINARIES

A. Class of Systems

We consider spatially-distributed processes modeled by

linear parabolic PDEs of the form:

∂x̄(z, t)

∂t
= α

∂2x̄(z, t)

∂z2
+ βx̄(z, t) + ω

m∑

i=1

bi(z)ui(t) (1)

yj(t) =

∫ π

0

qj(z)x̄(z, t)dz, j = 1, · · · , n (2)

subject to the boundary and initial conditions:

x̄(0, t) = x̄(π, t) = 0, x̄(z, 0) = x̄0(z) (3)

where x̄(z, t) ∈ IR denotes the process state variable,

z ∈ [0, π] ⊂ IR is the spatial coordinate, t ∈ [0,∞) is

the time, ui denotes the i-th manipulated input (control

actuator), bi(·) is a function that describes how the control

action is distributed in [0, π], yj(t) ∈ IR is a measured

output, qj(·) is a function that describes how the measured

output is distributed in [0, π], the parameters α > 0, β, ω
are constants, and x̄0(z) is a smooth function of z.

Throughout the paper, the notations ‖ · ‖ and ‖ · ‖2

will be used to denote the L2 norms associated with a

finite-dimensional and infinite-dimensional Hilbert spaces,

respectively. Furthermore, a bounded linear operator M is

said to be power-stable if there exists positive real numbers

β and γ such that ‖Mk‖ ≤ βe−γk, for any non-negative

integer k. The spectral radius of a bounded linear operator

M is defined as r(M) = limk→∞ ‖Mk‖1/k ≤ ‖M‖.

From these definitions, it can be verified that M is power-

stable if and only if r(M) < 1. Finally, the notation x(t−k )
will be used to denote the limit limt→t−

k

x(t).

For a precise characterization of the class of PDEs

considered in this work, we formulate the PDE of Eqs.1-3

as an infinite-dimensional system in the state space H =

L2(0, π), with inner product 〈ω1, ω2〉 =

∫
π

0

ω1(z)ω2(z)dz,

and norm ‖ω1‖2 = 〈ω1, ω1〉
1

2 , where ω1, ω2 are two elements

of L2(0, π). Defining the input and output operators as

Bu = ω
m∑

i=1

bi(·)ui, Qx = [〈q1, x〉 〈q2, x〉 · · · 〈qn, x〉]′, the

system of Eqs.1-3 can be written in the following form:

ẋ = Ax + Bu, x(0) = x0 (4)

y = Qx (5)

where x(t) is the state function defined on an appro-

priate Hilbert space, A is the differential operator, u =
[u1 u2 · · · um]′ and x0 = x̄0(z). For A, the solution of the

eigenvalue problem (Aφj = λjφj , j = 1, . . . ,∞), where

λj denotes an eigenvalue and φj denotes an eigenfunction,

yields real and ordered eigenvalues. Also, for a given α and

β, only a finite number of unstable eigenvalues exist, and the

distance between two consecutive eigenvalues (i.e., λj and

λj+1) increases as j increases. Furthermore, for parabolic

PDEs, the spectrum of A can be partitioned, where σ1(A) =
{λ1, · · · , λm} contains the first m (with m finite) “slow”

eigenvalues and σ2(A) = {λm+1, λm+2, · · ·} contains the

remaining “fast” stable eigenvalues where |λm|/|λm+1| =
O(ǫ) and ǫ < 1 is a small positive number characteristic of

the large separation between the slow and fast eigenvalues

of A. This implies that the dominant dynamics of the

PDE can be described by a finite-dimensional system, and

motivates the use of modal decomposition to derive a

finite-dimensional system that captures the dominant (slow)

dynamics of the PDE.

B. Modal Decomposition

Let Hs, Hf be modal subspaces of A, defined as Hs =
span{φ1, . . . , φm} and Hf = span{φm+1, φm+2, . . .}.

Defining the orthogonal projection operators, Ps and Pf ,

such that xs = Psx, xf = Pfx, the state of the system

of Eq.4 can be decomposed as x = xs + xf . Applying Ps

and Pf and using the decomposition of x, the system of

Eqs.4-5 can be decomposed as:

ẋs = Asxs + Bsu, xs(0) = Psx0 (6)

ẋf = Afxf + Bfu, xf (0) = Pfx0 (7)

y = Qxs + Qxf (8)

where As = PsA is an m × m diagonal matrix of

the form As = diag{λj}, Bs = PsB, Af = PfA is

an unbounded differential operator which is exponentially

stable (following from the fact that λm+1 < 0 and the

selection of Hs and Hf ), Bf = PfB. In what follows,

the xs- and xf -subsystems will be referred to as the slow

and fast subsystems, respectively.
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III. ANALYSIS AND DESIGN OF NETWORKED CONTROL

SYSTEM UNDER STATE FEEDBACK

A. Finite-dimensional Networked Control Architecture

1) Feedback controller synthesis: To realize the desired

networked control structure, the first step is to synthesize

a stabilizing feedback controller of the form u(xs) = Kxs,

where K is the feedback gain chosen to exponentially

stabilize the origin of the non-networked closed-loop slow

subsystem. It is worth noting that, due to the stability of

Af , a controller that exponentially stabilizes the finite-

dimensional slow subsystem also exponentially stabilizes

the infinite-dimensional closed-loop system.

2) Reducing sensor-controller communication over the

network: To minimize the transfer of information between

the sensors and the controller without sacrificing closed-

loop stability, a dynamic model of the slow subsystem is

embedded in the controller to provide it with an estimate of

the evolution of the slow states when measurements of those

states are not transmitted over the network. This allows

the sensors to send their data at discrete times, since the

model can provide an approximation of the slow dynamics.

Feedback from the sensors to the controller is performed

by updating the state of the model using the actual slow

state provided by the sensors at discrete time instances.

Under this communication logic, the networked control law

is implemented as follows:

u(t) = Kx̂s(t)
˙̂xs(t) = Âsx̂s(t) + B̂s(z)u(t), t ∈ (tk, tk+1)

x̂s(tk) = xs(tk), k = 0, 1, 2, · · ·

(9)

where x̂s is an estimate of xs, Âs and B̂s are bounded oper-

ators that model the dynamics of the slow subsystem. Note

from Eq.9 that a choice of Âs = O, B̂s = O, corresponds to

the special case where in between consecutive transmission

times, the model acts as a zero-order hold by keeping the

last available measurement from the sensors until the next

one is available from the network.

3) Characterizing the minimum allowable communica-

tion frequency: A key parameter in the analysis of the

control law of Eq.9 is the update period h := tk+1 − tk,

which determines the frequency at which the controller

receives measurements from the sensors through the net-

work to update the model state. To simplify the analysis,

we focus on the case when the update period is constant

and the same for all the sensors, i.e., we require that

all sensors communicate their measurements concurrently

every h seconds. To characterize the maximum allowable

update period between the sensors and the controller, we

define the model estimation error as es(t) = xs(t)− x̂s(t),
where es ∈ Hs represents the difference between the slow

state of the system of Eq.6 and the state of its model given

in Eq.9. Defining the augmented state ξ = [xs es]
′

which

is an element of the extended state space He
s = Hs ×Hs,

it can be shown that the augmented slow subsystem can

be formulated as a switched system and written in the

following operator-matrix form for clarity:

ξ̇(t) = Fξ(t), t ∈ (tk, tk+1)
es(tk) = 0, k = 0, 1, 2, · · · ,

(10)

where

F =

[
As + Bs(z)K −Bs(z)K

Ãs + B̃s(z)K Âs − B̃s(z)K

]
(11)

is a bounded linear operator with a dense domain D(F) :=
D(As) × D(As) → He

s, Ãs = As − Âs, B̃s = Bs − B̂s

represent the modeling errors. Note that while the slow state

xs evolves continuously in time, the error es is reset to zero

at each transmission instance since the state of the model

is updated every h seconds.

In order to derive conditions for closed-loop stability,

we need to express the closed-loop response as a func-

tion of the update period. To this end, it can be shown

that the system described by Eq.10 with initial condition

ξ(t0) = [xs(t0) 0]
′

= ξ0 has the following solution for

t ∈ [tk, tk+1):

ξ(t) = TF (t − tk) (IsTF(h)Is)
k
ξ0 (12)

with tk+1 − tk = h, where TF (t) : He
s → He

s is a C0-

semigroup generated by F on He
s, Is = diag [I O], I is

the identity operator. The following proposition provides

a necessary and sufficient condition for stability of the

networked finite-dimensional closed-loop system. The proof

is conceptually similar to the one presented in [3] – except

that it involves operators defined over functional spaces –

and is omitted for brevity.

Proposition 1: Consider the networked closed-loop system

of Eqs.6-9 and the augmented system of Eqs.10-11 whose

solution is given by Eq.12. Let M(h) = IsTF (h)Is. Then

the zero solution, ξ = [xs es]
′

= [0 0]
′
, is exponentially

stable if and only if r(M(h)) < 1.

Remark 1: By examining the structure of F in Eq.11, it

can be seen that the minimum stabilizing communication

frequency is dependent on the degree of mismatch between

the dynamics of the slow subsystem and the model used

to describe it. Given bounds on the size of the uncertainty,

the stability criteria of Proposition 1 can therefore be used

to determine the range of stabilizing update periods, h.

Alternatively, for a fixed h, the maximum tolerable process-

model mismatch can be determined. Note that since M is

defined over a finite-dimensional space, its spectral radius

can be determined by computing the eigenvalues of M.

Remark 2: Due to the dependence of F on Bs(z) (which

is parameterized by the control actuator locations), the

maximum allowable update period is also dependent on

the choice of the control actuator locations. The result

of Proposition 1 can therefore be used to identify the

actuator locations that are more robust to communication

suspension (i.e., the ones that require measurement updates

less frequently than others) for a given feedback gain.

B. Analysis of the Networked Infinite-dimensional System

Theorem 1 below establishes that the characterization

of the maximum allowable update period obtained based

on the finite-dimensional system is exactly preserved when

implementing the networked control law on the infinite-

dimensional system. As shown in the proof that follows,
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this is due to the fact that the networked closed-loop slow

subsystem is decoupled from the stable fast subsystem

which is driven by a bounded and converging input.

Theorem 1: Consider the infinite-dimensional system of

Eqs.6-7 subject to the control and update laws of Eq.9.

Then, the zero solution is exponentially stable if and only

if r(M(h)) < 1, where M(h) = IsTF (h)Is.

Proof: Substituting the control law of Eq.9 into the system

of Eqs.6-7, it can be shown that the infinite-dimensional

networked closed-loop system takes the form:

ξ̇(t) = Fξ(t), t ∈ (tk, tk+1)
ẋf (t) = Afxf (t) + BfKxs(t) − BfKe(t)
es(tk) = 0, k = 0, 1, 2, · · ·

(13)

Sufficiency: From the properties Af and the fact that Bf

is a bounded operator, it follows [18] that there exists a

C0-semigroup Tf such that the xf -subsystem admits the

following mild solution:

xf (t) = Tf (t)xf (0)+

∫ t

0

Tf (t−τ)BfK (xs(t) − e(t)) dτ (14)

Furthermore, since Af is a stable operator, the spectrum

of Af satisfies sup{Re σ(Af )} < −γf for some γf >
|β−α(m+1)2|; and thus, Tf satisfies ‖Tf (t)‖2 ≤ M0e

−γf t;

t ≥ 0 [18]. Based on this, by taking the 2-norm in space of

both sides of Eq.14, the following bound can be obtained:

‖xf (t)‖2 ≤ K0e
−γf t‖xf (0)‖2+M1

∣∣∣∣
∫ t

0

e−γf (t−τ)‖ξ(τ)‖dτ

∣∣∣∣
(15)

where K0 ≥ M0, M1 = 2M0‖BfK‖2 and we have used

the fact that ‖xs‖ ≤ ‖ξ‖ and ‖es‖ ≤ ‖ξ‖. From the result

of Proposition 1, we have ‖ ξ(τ) ‖ ≤ ϕe−γsτ‖ ξ(0) ‖ which

when substituted into Eq.15 yields:

‖xf (t)‖2 ≤ K0e
−γf t‖xf (0)‖2 +M2(e

−γst + e−γf t)‖ξ(0)‖

where M2 = M1ϕ/|(γf − γs)|. Finally, defining γ =
min{γf , γs} > 0 and Kf = 4 · max{K0, M2, ϕ} > 0,

we arrive at the following bound:∥∥∥∥
[

ξ(t)
xf (t)

]∥∥∥∥
2

≤ Kfe−γt

∥∥∥∥
[

ξ(0)
xf (0)

]∥∥∥∥
2

(16)

which implies that the origin is exponentially stable.

Necessity: Using a contradiction argument, we assume that

the zero solution is exponentially stable but that r(M(h)) >
1. However, if r(M(h)) > 1 the slow subsystem will

be unstable (from Proposition 1) and xs(t) will grow

unbounded with time. From Eq.14, this also means that

we cannot ensure xf (t) will converge to zero for a general

initial condition. This implies that the zero solution of the

infinite-dimensional system cannot be exponentially stable,

and thus we have a contradiction. This completes the proof.

IV. OUTPUT FEEDBACK IMPLEMENTATION OF THE

NETWORKED CONTROL STRATEGY

In this section, we consider the case where measurements

of the state variable are available only at a finite number of

locations in the spatial domain. The main idea is to include

a finite-dimensional state observer that uses the available

output measurements to generate estimates of xs and to use

these estimates to update the model state. The networked

output feedback controller is then implemented as follows:

u(t) = Kx̂s(t), t ∈ [tk, tk+1)
˙̂xs(t) = Âsx̂s(t) + B̂s(z)u(t)
˙̄xs(t) = (Âs − LQ)x̄s(t) + B̂su(t) + Ly(t)

x̂s(tk) = x̄s(tk), k = 0, 1, 2, · · ·

(17)

where x̄s is the observer-generated estimate of the slow

state, L is the observer gain and tk+1−tk = h is the update

period. As noted in [3], implementing this set-up requires

that the observer be collocated with the sensor and that it

has a copy of the model and controller, and has knowledge

of h in order to acquire u(t), which is at the other side of

the communication link. In this way u(t) is simultaneously

and continuously generated at both ends of the feedback

path with the only requirement that the observer makes sure

that the model has been updated to ensure that both the

controller and the observer are synchronized.

Defining the error variable eo = x̄s − x̂s, where eo ∈ Hs

is the difference between the observer’s estimate of the slow

state and the model state, and introducing the augmented

state ξo = [xs x̄s eo]
′
, which is an element of the extended

state space He
o = Hs ×Hs ×Hs, it can be shown that the

augmented slow subsystem can be formulated as a switched

system of the form:

ξ̇o(t) = Foξo(t) + Goxf , t ∈ (tk, tk+1)
eo(tk) = 0, k = 0, 1, 2, · · · ,

(18)

where the operators Fo and Go are given below in matrix

form for clarity:

Fo =




As BsK −BsK

LQ C −B̂sK

LQ −LQ Âs



 ,Go =




0
LQ
LQ



 (19)

and C = Âs + B̂sK−LQ. The following theorem provides

a stability condition for the networked infinite-dimensional

closed-loop system that ties the update period with the

separation between the slow and fast eigenvalues of A,

ǫ = |λm|/|λm+1|. In the statement of this theorem, the

notation TFo
(t) : He

o → He
o refers to a C0-semigroup

generated by Fo on He
o, and Io = diag [I I O], where

I is the identity operator. The proof of the theorem can be

obtained using singular perturbation arguments [12] and is

omitted for brevity.

Theorem 2: Consider the infinite-dimensional system of

Eqs.6-8 subject to the control and update laws of Eq.17.

Then, if r(Mo(h)) < 1, where Mo(h) = IoTFo
(h)Io,

there exists ǫ∗ > 0 such that if ǫ ∈ (0, ǫ∗], the zero solution

of the closed-loop system is exponentially stable.

Remark 3: According to the result of Theorem 2, an update

period that stabilizes the approximate finite-dimensional

system of Eqs.18-19 with xf = 0 continues to stabilize

the infinite-dimensional system provided that the separation

between the slow and fast eigenvalues is sufficiently large.

Therefore, unlike the state feedback result of Theorem 1,

a restriction must be placed on the separation between the

slow and fast eigenvalues to ensure closed-loop stability.

This restriction, which requires that a sufficient number of

slow states and measurements be included in the controller

design, is needed to ensure that the error introduced by
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updating the model state using x̄s rather than xs is suf-

ficiently small. Notice also that, unlike the state feedback

case, the evolution of the augmented slow subsystem of Eq.

18 is dependent on xf (which is a consequence of using y
instead of xs in the controller).

Remark 4: Beyond generalizing the results in [3] to distrib-

uted parameter systems modeled by linear PDEs, the results

of Theorems 1 and 2 provide an explicit characterization of

the dependence of the maximum allowable update period

on the choice of the sensor and actuator spatial locations.

This dependence is a consequence of the parametrization

of the operators F and Fo by the actuator and sensor

locations. The results can therefore be used to identify

optimal sensor and actuator locations that are most robust

to communication suspension.

V. SIMULATION STUDY: APPLICATION TO A

DIFFUSION-REACTION PROCESS

In this section, we illustrate through computer simulations

how the networked control systems described earlier can

be used to stabilize the open-loop unstable zero solution

of a linearized diffusion-reaction process of the form of

Eq.1 subject to the boundary and initial conditions of Eq.3,

where α = 1, β = 1.66, and ω = 2. We consider

the first eigenvalue as the dominant one and use standard

Galerkins method to derive an ODE that describes the

temporal evolution of the amplitude of the first eigenmode:

ȧ1 = λ1a1 + g(za)u, where x̄(z, t) =
∑

∞

i=1 ai(t)φi(z),
g(za) = 2〈φ1(z), b(z)〉, and a single point actuator (with

finite support) is used for stabilization, i.e., b(z) = 1/(2µ)
for z ∈ [za − µ, za + µ], where µ is a sufficiently small

number, and b(z) = 0 elsewhere. The ODE is used to design

the networked controllers which are then implemented on

a 30-th order Galerkin discretization of the PDE.

The state feedback results are presented first. In this

case, and following the methodology outlined in Section

III, the networked closed-loop system takes the form ξ̇(t) =
Λξ(t), t ∈ [tk, tk+1), where ξ := [a1 e1]

T , e1 = a1 − â1,

â1 is an estimate of a1 generated by a model of the form
˙̂a1 = λ̂1â1 + ĝ(za)u, λ̂1 and ĝ(za) are estimates of λ1 and

g(za), respectively, and

Λ =

[
λ1 + g(za)k −g(za)k

λ̃1 + g̃(za)k λ̂1 − g̃(za)k

]

where λ̃1 = λ1 − λ̂1, g̃(za) = g(za) − ĝ(za) and k
is the feedback control gain. For any initial condition

ξ0 = [a1(0) 0]T , the system admits the following response

ξ(t) = eΛ(t−tk)Mk(h)ξ0, for t ∈ [tk, tk+1), where M(h) =
Ise

ΛhIs and Is = diag [1 0], and is therefore exponentially

stable if and only if the eigenvalues of the matrix M
are strictly inside the unit circle. The above expressions

show that the eigenvalues of M depend on the mismatch

between the model and the plant, the control gain, the

actuator location, and the update period. In the remainder

of this section, we will investigate the interplays between

these parameters. Since closed-loop stability requires all

eigenvalues of M to lie within the unit circle, it is sufficient

to consider only the maximum eigenvalue magnitude which

we denote by λmax.
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Fig. 1. Dependence of λmax on the update period and actuator position
under (a) a zero-order hold scheme and a fixed feedback gain, and (b) a
model-based scheme and a location-dependent feedback gain.

Fig.1(a) is a contour plot showing the dependence of

λmax on both the position of the actuator, za, and the update

period, h, when a constant feedback gain of k = −15
is used for the state feedback controller and a zero-order

hold model is used for the update (i.e., the controller just

holds the last value of a1 received from the network until

the next measurement is transmitted). The area enclosed

by the unit contour line represents the stability region of

the plant. It can be seen that (1) the set of stabilizing

actuator locations increases as the update period decreases

and (2) the maximum stabilizing update period shrinks as

the actuator is moved closer to the middle. This result

can be explained by the fact when all actuator locations

share the same feedback gain, the non-networked closed-

loop response ȧ1 = (λ1 +g(za)k)a1 is fastest at the middle

location (where the first eigenfunction has a maximum) and

therefore more frequent updates are needed at this location.

The predictions of Fig.1(a) are further confirmed by the

simulation results in Fig.2 which show that the closed-loop

system is stable (right) for (h = 0.1, za = 3) and unstable

(left) for (h = 0.1, za = 2) when the networked control

system is implemented on the PDE.

(a) (b)
Fig. 2. Closed-loop state profiles with zero-order hold for (a) (h =
0.1, za = 2) and (b) (h = 0.1, za = 3).

The trend predicted by Fig.1(a) can change if the feed-

back gain is chosen to vary with the actuator location. An

example of this is shown in Fig.1(b) which is a contour plot

showing the dependence of λmax on za and h when k is

designed to place the non-networked closed-loop eigenvalue

at −5 and an uncertain model (with λ̂1 = 0.5 and ĝ(za) =
2) is used to estimate the evolution of a1 when actual
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measurements are not received through the network. The

area enclosed by the unit contour line represents the stability

region of the plant. The plot shows that the maximum allow-

able update period increases as the actuator is moved closer

to the middle. The predictions of Fig.1(b) are confirmed by

the simulation results in Fig.3 which show that the closed-

loop system is stable (left) for (h = 0.2, za = 2) and

unstable (right) for (h = 0.2, za = 3).

(a) (b)
Fig. 3. Closed-loop state profiles with imperfect model for (a) (h =
0.2, za = 2) and (b) (h = 0.2, za = 3).

To address the output feedback control problem where a1

is not directly measurable, we use a state observer of the

form ˙̄a1 = (λ̂1 − LQs(zs))ā1 + ĝ(za)u + Ly to estimate

a1 from the measured output, y(t) = 〈q(z − zs), x̄(z, t)〉,
provided by a point sensor located at z = zs, where ā1 is

the observer estimate of a1, Qs(zs) = 〈q(z − zs), φ1(z)〉,
q(z−zs) is the sensor distribution function and the observer

gain L is chosen so that λ̂1 −LQs(zs) < 0. Following the

analysis presented in Section IV, it can be shown that the

networked output feedback control system is exponentially

stable if an only if the eigenvalues of the matrix Mo(h) =
Ioe

ΛohIo are inside the unit circle, where:

Λo =




λ1 g(za)k −g(za)k

LQs(zs) λ̂1 + ĝ(za)k − LQs(zs) −ĝ(za)k

LQs(zs) −LQs(zs) λ̂1





and Io = diag [1 1 0]. Unlike the state feedback case,

closed-loop stability under output feedback is also depen-

dent on the location of the measurement sensor. Fig.4 is

a contour plot showing the dependence of λmax on both

the location of the sensor, zs, and the update period, when

a zero-order hold scheme is used for the output feedback

controller with constant controller and observer gains of

k = −15 and L = 100, respectively, and a fixed actuator

location at za = 2 are used. The area enclosed by the unit

contour line is the stability region. The predictions of Fig.4
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Fig. 4. Dependence of λmax on the update period and sensor position
under networked output feedback control structure.

are consistent with the plots in Fig. 5, which show that the

closed-loop system is stable (left) for (zs = 1.5, h = 0.04)

which lies inside the stability region, and unstable (right)

for (zs = 1.5, h = 0.14) which is outside the region.

Fig. 5. Closed-loop state profiles under networked output feedback control
structure for (zs = 1.5, h = 0.04) (left) and for (zs = 1.5, h = 0.14)
(right).
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