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Abstract— This paper addresses the asymptotic stability of a
continuous-time deterministic car-following model with respect
to different driving strategies. More precisely, the model takes
into account a constant time headway driving behavior as
well as the presence of multiple decision-making and actuation
delays in describing the drivers’ actions. The stability analysis
of the corresponding derived models is challenging and we
will focus on characterizing the stability regions in the delay
parameter space. Such a problem depicts some interesting
properties in terms of delays that simplify the overall analysis
leading to some simple frequency-sweeping based algorithms
as well as to various practical interpretations of the results in
terms of drivers’ behaviors. Illustrative examples complete the
presentation.

Index Terms— traffic dynamics, car following, delay, stability.

I. INTRODUCTION AND PROBLEM STATEMENT

According to a recent research note published by National

Highway Traffic Safety Administration (NHTSA) [35], mo-

tor vehicle crashes were the leading cause for death in the

U.S. in 2002 for the ages between 3 and 33. This can be

seen as one of the many reasons why traffic behavior is a

research focus since 1930s [14], with increasing interest in

the last decades, primarily due to undesirable impacts on

the environment and energy conservation concerns [3]. As

a consequence, numerous mathematical models have been

developed via macroscopic and microscopic approaches [1],

[4], [7], [23], [38], [39]. Based on the degree of detail

and the physics aimed to be captured, these approaches

can incorporate various parameters defining the traffic flow

including the consideration of single/multiple lanes, on/off

ramps, lane changes, traffic lights and their synchronization

and roundabouts [14].

Since the framework/ideas deployed to derive mathemati-

cal models are too broad, we will focus on a particular sub-

class which is widely preferred [1], [14], [20], [21], [34],

[39], [41] when studying traffic behavior: Pipes model [22],

a deterministic microscopic follow-the-leader type model in

which drivers cruise at a constant velocity on a single-lane

without changing lanes. This selection is strongly motivated

by the earlier work where it was shown that Pipes model

effectively predicts the car following behavior of human
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drivers in the experiments [3]. With this motivation in mind,

we attempt to reveal intrinsic features of the traffic flow under

the conditions Pipes model is desirably reliable in predicting

car following traffic flow. This also enables to develop

traffic control strategies by constructing decentralized [34],

adaptive [36], non-linear spacing controllers [24], [40], [41],

gain scheduling techniques [40] and collision avoidance [6]

among automated heavy-duty vehicles. Common objective

in the cited references is to analytically investigate how the

headway (spacing between consecutive vehicles) dynamics

propagates upstream of the traffic flow [3], [25], [37]; to

propose analysis tools to reveal how headway dynamics

behaves under perturbations [3], [6] and to design appropriate

controllers to prevent amplification of such perturbations

[24], [34], [36], [40], [41]. These efforts fall within the

studies of car string stability (CSS), which aim to investigate

spacing (headway) error propagation upstream of the traffic

flow where in some cases the errors may amplify and in some

other cases they may attenuate. For an appropriate definition

of CSS and related problems, we refer to [3], [36], [40], to

cite only a few.

CSS indicates attenuation of the periodic perturbations

(excitations) arising in the acceleration, velocity and position

errors between consecutive vehicles, and propagating from

one vehicle to another, while asymptotic stability (AS) refers

to exponential decay of the response of the system states

(velocity and position of vehicles) in time against impulsive

perturbations. Despite the simplicity of the mathematical

models, assessment of AS and CSS may not be trivial tasks,

as evident from the cited references. In this paper, we focus

on AS since instability precludes the CSS analysis. Due to

the presence of human drivers and physiological delays of

human drivers [1], [4], [7], [9], the microscopic traffic flow

problem becomes a human-in-the-loop dynamics in which

delays play a major role in determining the AS.

Delay in closed loop dynamics is a well-known source

of poor performance (low damping), weak robustness and

instability [10], [17]. Furthermore, the presence of multiple

delays leads to unexpected behaviors in the parameter-space

defined by the delays: stability rays, delays ratio sensitivity,

delay interference, bounded and unbounded regions [8], [12].

Such problems, far from trivial, are challenging and one of

the main research interests in such cases is to find appropriate

algorithms for characterizing them globally. In this context,

one of the interesting ideas proposed in the literature is based

on frequency-sweeping [5], [10], [12], [32], which we also

use to assess the AS with respect to delays and drivers’
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aggressiveness. To obtain tractable results, we will follow the

lines of [1], [3], [14], [15], [31], [39] and assume that delays

τk are time invariant. The bottleneck in analyzing AS in this

paper is then due to our consideration of driver heterogeneity
in the traffic, and this will bring about multiple delays, each

one of which is likely to play a different or counter-intuitive

role in AS.

This paper is a continuation of authors’ earlier work in

[26]–[28], [31], [32]. In the earlier work, authors studied con-
stant headway spacing strategy of the drivers. Inspired by [3],

we study here the effects of constant time headway driving

strategy of the drivers (Section II) by accounting for multiple

delays without approximating the analysis associated with

delays. The main objective is to construct a stability analysis

framework that considers the multiple delays, and to develop

a practicable approach to reveal AS features of traffic flow

with respect to delays and driver aggressiveness coefficients

(Section III). To our best knowledge, a complete analytical

study in this context has not been pursued in the literature

and we form our main objective along this line. Illustrative

examples in Section IV complete the work. Research in this

direction has impacts on understanding human behavior and

its interconnection with AS/CSS, studying adaptive cruise

control, automated car following control and semi-active

driver assistance systems.

Notation. The notations are standard. Set of real and

positive real numbers are denoted by R and R+, respectively,

and C and C− represent the entire complex plane and left

half of the complex plane, respectively. The imaginary axis

is denoted by jR, where j =
√−1 and we use s for the

Laplace variable.

II. MATHEMATICAL MODELING

Mathematical modeling and the pertaining discussions in

this section are largely borrowed from [1], [3], [27], however,

the model is extended based on our main interest of studying

the effects of multiple delays. The justification comes from

the fact that the vehicles and the drivers are not identical [14],

[26], [27], [39] and this heterogeneity brings in different de-

lays to the flow dynamics. Moreover, mechanical properties

of different vehicles add different delays and drivers have

different driving habits, physiologies and capabilities [1],

[27]. We start with Pipes model [3], [4], [14], [22], [23],

[28], which is a single-lane continuous-time deterministic

microscopic car following model, in which the vehicles of

the chain travel at a constant velocity, at the so-called quasi

steady-state, without changing lanes. Although Pipes model

is single delayed τk = τk+1, we consider its multiple delay

form

v̇k(t) = αk(vk+1(t−τk+1)−vk(t−τk)), k = 1, . . . , n, (1)

where vk is the velocity of the kth vehicle, see Fig 1, τk >
0 is the constant delay, n is the number of vehicles and

the weighting αk > 0 can be seen as a measure of driver

aggressiveness per unit mass. The above differential equation

Vehicle k Vehicle k + 1

xk

xk+1

lk k

… …

k Flow direction

Fig. 1. Platoon of vehicles, inspired from [3].

describes that driver k attempts to vanish the velocity error

vk+1(t) − vk(t) by penalizing it using the gain αk, but a

driver’s sensing is not instantaneous, hence the velocity error

couples with delays.

In [3], it was assumed that delays are identical to each

other τk = τ and it was shown that Pipes model closely

predicts the experiments conducted with two manually driven

vehicles following each other. The simplicity and the relia-

bility of the model is appealing, however, considering the

general case with non-identical delays τk complicates the

AS analysis.

Constant time headway strategy considers that driver k
aims to perform control to maintain a constant time head-

way. This formulates the headway expression as δk(t) =
xk+1(t)−xk(t)−lk−Δk−hkvk(t), where hk > 0 is the time

headway, and lk and Δk do not contribute to AS analysis as

they are constants. Considering this driving strategy along

with multiple delays, a stability analysis method free of

approximations will be developed in main results section,

extending our earlier works where we studied different

driving strategies [28], [31], [32]. Interestingly, time headway

strategy leads to a more complicated AS problem in which

some parameters become extremely sensitive against large

decision-making gains.

A. Spacing Dynamics with Constant Time Headway

With the knowledge of (1), one has the transfer function

Gk(s, τk, τk+1) =
αke−τk+1s

s + αke−τks
. (2)

Let Dk(s), Vk(s) and Ak(s) are the Laplace transforms of

time functions δk(t), vk+1(t) − vk(t) and v̇k+1(t) − v̇k(t),
respectively. From [3], one obtains,

Dk(s)
Dk+1(s)

=
1−Gk − shkGk

1−Gk+1 − shk+1Gk+1
Gk+1 = Ĝk(s), (3)

Vk(s)
Vk+1(s)

=
Ak(s)

Ak+1(s)
=

1−Gk

1−Gk+1
Gk+1 = Ḡk(s), (4)

where some arguments are suppressed for easier reading.

Notice that among (3)-(4), studying only Eq.(3) for hk ≥ 0
is sufficient since one recovers (4) when hk → 0 in (3). In

the following, we only treat (3) for hk > 0, and extensions

to hk → 0 will be trivial.

4899



B. Preliminaries for AS Analysis

From (3), we have

Dk(s)
Dk+1(s)

=
P (s, τ ,α)
f(s, τ ,α)

, (5)

where f(s, τ ,α) is the characteristic function,

f(s, τ ,α) = s2(−1 + hk+1 αk+1 e−τk+2 s)

+s
(
αk+1 e−τk+2 s − αk+1 e−τk+1 s − αk e−τk s

+hk+1 αkαk+1 e−(τk+τk+2)s
)

−αkαk+1 e−τk s
(
e−τk+1 s − e−τk+2s

)
, (6)

with τ = (τk, τk+1, τk+2) and α = (αk, αk+1).

In order to analyze AS, one should investigate the location

of zeros of f(s, τ ,α) = 0 on the complex plane C. Several

methods have been proposed in the literature for handling

such problems in the corresponding parameter space (see,

for instance, [16] for some classification and further discus-

sions). In order to make the paper self-contained, a short

overview from time delay systems (TDS) literature [11] is

provided next regarding the stability analysis of the charac-

teristic function. Characteristic function (6) is quadratic since

the highest power of s is two and it is of neutral type in the

sense defined by [2], [13].

Since (6) is neutral type, a necessary condition should be

checked first before analyzing the AS, that is the stability

of the corresponding delay-difference operator having the

characteristic function

f̃(s, hk+1, αk+1, τk+2) = −1 + hk+1 αk+1 e−τk+2 s. (7)

If (7) is stable, then the stability of (6) is given only by the

point spectrum since the essential spectrum is located on C−.

If this is not the case, the system is always unstable [16]. In

the case studies, we will show that the stability condition of

(7) imposes an additional constraint on the parameters hk+1

and αk+1.

As discussed in [16], the spectral abscissa function (supre-

mum of the real part of the rightmost root) is not nec-

essarily a continuous function in general for the neutral

case. However under the assumption of the stability of (7),

a loss or acquisition of the exponential stability of the

trivial solution of the original system is associated with

characteristic roots on the imaginary axis. In other words,

similar to the retarded case, the change of stability is given

by a root jω “crossing” the imaginary axis. Next, in the

corresponding delay-parameter space, one needs to make a

partition of the space in several regions, where such regions

are characterized by two properties: (i) the number of strictly

unstable roots of (6) is constant for all the delays located

inside the region, and (ii) for each delay-point located on the

boundary, there exists at least one characteristic root located

on the imaginary axis. The regions corresponding to the case

when there are no unstable roots define the stability regions

[16]. In the sequel, we present how to find and compute the

stability regions. As we see below, the particular form of

the characteristic function will allow taking advantage of its

structure reducing the stability analysis to a two-delay case.

III. MAIN RESULTS: STABILITY ANALYSIS

As mentioned earlier, a frequency sweeping framework is

adapted to reveal the stability features of the dynamics. Fre-

quency sweeping enables some convenient geometry argu-

ments leading to a practical stability analysis method which

is presented step-by-step. The stability analysis method is

a versatile technique which helps analyzing AS of the

dynamics for any given driver parameters. Some unexpected

and intriguing stability features are pointed out. Using the

stability analysis, we particularly investigate (i) how AS is

affected in the delay parameter, (ii) how αk and hk affect

AS, and (iii) how stability robustness is affected by studying

independent delays as opposed to assuming all these delays

identical. The proofs of theorems are suppressed, but they

can be found in [33].

A. Theoretical Development

Recall that detection of imaginary roots, s = jω, of the

characteristic function is the starting point of the stability

analysis,

f(jω, τ ,α) = 0, (8)

in which we assume that driver aggressiveness coefficients

α are known prior to the stability analysis.

In the following, we present two different approaches in

analyzing AS on Eq. (8). First approach takes this equation

as it is and reveals some properties regarding AS. Second

approach reveals some ‘delay decoupling’ features that exist

in this equation. With the availability of decoupling, it will

be possible to use the approaches proposed in [12], [32].

1) Approach 1: Replace the exponential functions in (8)

with

e−τms = xm + jym, m = k, k + 1, k + 2, (9)

and obtain a new function g(jω, xm, ym,α) where xm, ym

are real numbers. Exponential terms in (9) define unit circles

on (xm, ym) planes,

Cm = x2
m + y2

m − 1 = 0, m = k, k + 1, k + 2. (10)

Theorem 1: Boundaries of stability switching curves

(SSC) and ultimately of the stability regions on (τk+1, τk+2)
plane are independent from the choice of any τk.

Theorem 2: The only s = jω solution of

g(jω, xm, ym,α) = 0 along τk axis can be found at

τ̃k = π(1 +∓4π�)/(2αk), � = 0, 1, . . ..

Notice that Theorem 1 only indicates that the geometry

of the potential stability switching curves does not change

for different choices of τk. On the other hand, choice of τk

affects AS as we shall show below. What Theorem 2 shows

is that there exists only τ̃k points along τk axis for which

s = jω is a solution.
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Corrolary 1: Connecting Theorem 1 and Theorem 2, all

the points τ̃k are independent of (τk+1, τk+2) ∈ R
2
+.

Remark 1: It is easy to check that AS with respect to

τk holds for only 0 ≤ τk < τ∗k , where τ∗k = π/(2αk).
Furthermore, since the characteristic function in (8) repre-

sents a neutral type dynamics, for AS it is necessary but

not sufficient that the condition |hk+1αk+1| < 1 holds. This

guarantees the stability of the difference equation (7).

Remark 2: The work in [3] chooses αk+1 and hk+1 as

0.37 and 1.8, respectively, for human drivers. Although

the cited work does not consider multiple delays, these

numerical choices can be tested in the inequality conditions

obtained within our framework. If the traffic flow dynamics

is governed by multiple delays, the condition |hk+1αk+1| =
0.666 < 1 is not violated by these realistic numerical

choices. Moreover, one calculates the upper bound τ∗k =
π/(2αk) = 4.24 sec.

Theorem 3: Stability switching curves on (τk+1, τk+2) ∈
R

2
+ can be found to be generated by only two fundamental

(kernel) curves for ∀ω ∈ R+.

It is important to state that the solutions discussed in

Theorem 3 belong to the kernel curves, [29]. In other words,

these solutions are the only generators of infinitely many

other solutions that exist on the plane of τk+1− τk+2. Once

the kernel curves are identified, it is straightforward to obtain

the entire set of stability switching curves.

When τk = τk+1 = τk+2 = 0, the characteristic function

has two roots s1 = 0 and s2 = −αk. This reveals that the

delay system is marginally stable since s2 < 0 and s1 is an

invariant root (it is independent of the choice of the delays),

see also [8]. Due to this invariant root, ω = 0 becomes

a solution to (6). The following theorem characterizes the

stability features associated with ω = 0.

Theorem 4: A characteristic root crosses the origin of

C for any (τk+1, τk+2) pair residing on the line equation

L(τk+1, τk+2) = 1 + αk+1(τk+2 − τk+1 − hk+1) = 0.

Remark 3: Notice that the invariant s = 0 root of the

dynamics is due to rigid body dynamics of the perturbations.

In other words, s = 0 defines the static part of the modes

of the perturbations. Physically, one may disregard the rigid

body dynamics and analyze the behavior of perturbations

around a static mode. In this regard, marginal stability feature

mentioned above may be seen as AS around the rigid body

motion.

Theorem 5: As per the remark above and if 0 ≤ τk <
π/(2αk) holds, then the dynamics is AS for any delay

τk+2 ∈ R+ along the τk+1 = 0 axis.

Property 1: Assuming difference equation (7) is stable

(|hk+1αk+1| < 1), the maximum of ω for which s = jω
is a solution to (8) is upper bounded, [13]. In the following,

this conservative upper bound is denoted by ω̄.

2) Approach 2: It is easy to see that the following holds,

f(jω, τ ,α) = P (jω, τk) Q(jω, τk+1, τk+2) = 0, (11)

P (jω, τk) = jω + αke−jωτk , (12)

Q(jω, τk+1, τk+2) = jω(hk+1αk+1e
−jωτk+2 − 1)

+αk+1(e−jωτk+2 − e−jωτk+1). (13)

The manipulation above decouples the effects of τk and the

pair (τk+1, τk+2) to AS. In other words, AS analysis can be

divided into two steps; one concerning AS along the axis τk

and the other in (τk+1, τk+2) ∈ R
2
+. Assessing the stability

of P (s, τk) = 0 is straightforward [18], [19]. Consequently,

the objective is now to solve all (τk+1, τk+2) ∈ R
2
+ and

ω ∈ R+ from Eq. (13) precisely.

Notice that one can write

Q(jω, τk+1, τk+2) = Qk(jω) + Qk+1(jω)e−jωτk+1

+Qk+2(jω)e−jωτk+2 ,

where Qk(jω) = −jω. For ω 	= 0, define now ai =
Qi+1/Qk, i = k, k + 1, and Ω as the set of crossing

frequencies. Next, the main results can be rewritten as:

Theorem 6: The frequency ω0 (ω0 > 0) is a crossing

frequency, that is ω0 ∈ Ω, if one of the following conditions

is satisfied:

(i) ω0 = |αk|;
(ii) The following triangle inequalities hold simultane-

ously: { | ak(jω0) | + | ak+1(jω0) |≥ 1

−1 ≤| ak(jω0) | − | ak+1(jω0) |≤ 1.

}

Remark 4: It is important to point out the behavior of the

imaginary root crossing for small frequency values. In other

words, for ω → 0, see Theorem 4.

The remaining analysis concerning the classification of the

stability crossing curves, as well as the smoothness and the

crossing direction characterizations follow closely the ideas

presented in [12].

3) Numerical Implementation: An algorithm for deriving

the stability crossing curves can be resumed as follows:

• Compute τk from Remark 1. If 0 ≤ τk < π/(2αk) holds

and delay-difference operator (7) is stable, proceed to

the following steps. Otherwise the system is unstable.

• Assume first that ω 	= 0 is numerically known and

sweep ω within a prescribed range as per Property 1.

• Approach 1: For the given hk+1 and α values, solve

g(jω, xm, ym,α) = 0 simultaneously with the unit cir-

cles Ck+1 and Ck+2. Common roots xk+2, yk+2 can be

used along with ω to compute the delay τk+2 from (9).

Approach 2: Use ω to compute the triangle inequalities

in Theorem 6. If these inequalities are satisfied, one

can use the arguments of the vectors |ak| and |ak+1| to

compute the corresponding delays τk+1 and τk+2.
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• Approach 1: Using the common roots xk+2, yk+2 from

the previous step, obtain the pairs xk+1, yk+1 from the

common solutions between g(jω, xm, ym,α) = 0 and

Ck+1. From (9), find τk+1 using xk+1, yk+1, ω.

• Repeat the above steps for a range of ω, 0 < ω < ω̄ and

extract all τk+1, τk+2 pairs. Deploy the trigonometric

properties to compute the infinitely many roots using

2π�/ω, � = 0, 1, . . . shifting. All these delays lie on the

stability switching curves, [29].

• For the given hk+1 and α values, find L(τk+1, τk+2) =
0 defined in Theorem 4. Superpose this line on top of

the stability switching curves.

• Following from [30], identify asymptotically stable ver-

sus unstable regions in the parameter space of τk+1 −
τk+2.

IV. ILLUSTRATIVE EXAMPLES

In this section, we borrow appropriate numerical values

from [3]. The cited work suggests that αk = 0.37 and hk =
1.8, k = 1, . . . , n. In order to represent the heterogeneity of

the drivers, we will use the suggestions as nominal values.

First case analyzes two different driver behaviors αk =
0.33 and αk+1 = 0.40, but hk+1 = 1.8 for both drivers.

The arising stability map is given in Figure 2, where on

this figure the shaded gray regions correspond to AS of the

two consecutive spacing dynamics. It is crucial to state that

the stability regions are valid only for 0 ≤ τk < 4.76.

For τk ≥ 4.76, the spacing dynamics is unstable for any

τk+1, τk+2. Also note that AS is a necessary condition but

it is not sufficient to claim that traffic flow will be collision
free. The collision analysis is the following step that needs

to be studied once AS is understood. We leave this part of

the work to future studies.

AS (shaded) 

Double roots occur at s = 0

Fig. 2. Asymptotic stability regions (shaded) for αk = 0.33, αk+1 =
0.40, hk+1 = 1.8. For stability, 0 ≤ τk < 4.76.

Next, we investigate the AS assuming αk = αk+1 = 0.37.

Three different scenarios are taken where in each one a

different hk+1 is used. We choose hk+1 = 1.25, hk+1 = 1.5
and hk+1 = 1.8 and compare the arising stability maps,

Figure 3. From practical point of view, hk+1 = 1.8 is a

realistic value for human drivers, whereas hk+1 = 1.2 is

more realistic for automated vehicles. In a sense, Figure 3

compares the effectiveness of human drivers and automated

vehicles. We see that stability regions (gray) are narrower

and smaller with human drivers, especially around the point

τk+1 = 2 and τk+2 = 6.

hk+1 = 1.25 

hk+1 = 1. 8 

hk+1 = 1. 5 

Fig. 3. Effects of constant time headway controller hk+1 to stability.
αk = αk+1 = 0.37, hk+1 = 1.25 (black curves), hk+1 = 1.5 (red
curves, thin), hk+1 = 1.8 (blue curves, thicker). For stability, 0 ≤ τk <
4.2454.

We now study how stability is affected if a more aggressive

driver follows a less aggressive driver (scenario 1), or vice

versa (scenario 2). We take hk+1 = 1.8 for both drivers in

both scenarios. In scenario 1, αk = 0.40 and αk+1 = 0.30;

and in scenario 2, αk = 0.30 and αk+1 = 0.40. For scenario

1 and scenario 2, stability boundaries are given by black

and blue curves, respectively, in Figure 4. Clearly, the black

curves leave more space for the stability regions (regions

connected to the origin of the plane). This result points out

that stability regions of spacing dynamics in delay space

become larger in the case when more aggressive drivers (or

automated vehicles with higher actuation bandwidth) follow

less aggressive drivers (scenario 1). Larger stability regions

can also be interpreted as a degree of robustness against un-

certainties, perturbations and unmodeled dynamics. Finally,

we comment that larger driver aggressiveness coefficients

(αk and αk+1) lead to narrower stability regions. This may

be an expected result, however, it surfaces within the context

of analytical stability analysis.

V. CONCLUSIONS

Spacing (headway) dynamics in a chain of vehicles is

studied by departing from a widely studied Pipes model

over which we consider the natural presence of drivers’

heterogeneity and ultimately multiple delays arising from

these drivers due to their ‘delayed’ reactions to stimuli. A

constant time headway driving strategy is considered for

all the drivers and the asymptotic stability of the spacing
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Fig. 4. Effects of a more aggressive driver following a less aggressive
driver (Scenario 1: thick black curves and 0 ≤ τk < 3.9270), or vice vera
(Scenario 2: thin blue curves and 0 ≤ τk < 5.2360) to asymptotic stability.
Constant time headway controller hk+1 = 1.8 for both drivers.

dynamics is investigated with respect to parameters defin-

ing the strategy and drivers’ aggressiveness coefficients. A

neutral characteristic function with three independent delays

governs the stability features which we reveal by developing

frequency sweeping and geometric arguments. Case studies

demonstrate how stability is affected with respect to constant

time headway driving strategy, drivers’ aggressiveness and

more (less) aggressive drivers following behind less (more)

aggressive drivers.
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