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Adaptive Robust Control of a Class of Nonlinear Systems in Semi-strict
Feedback Form with Non-uniformly Detectable Unmeasured Internal
States

Lu Lu and Bin Yao

Abstract— This paper proposes a novel control method for
a special class of nonlinear systems in semi-strict feedback
form. The main characteristics of this class of systems is that
the unmeasured internal states are non-uniformly detectable,
which means that no observer for these states can be designed
to make the observation error exponentially converge to zero.
In view of this, a projection-based adaptive robust control
law is developed in this paper for this kind of system. This
method uses a projection-type adaptation algorithm for the
estimation of both the unknown parameters and the internal
states. Robustifying feedback term is synthesized to make the
system robust to uncertain nonlinearities and disturbances.
It is theoretically proved that all the signals are bounded,
and the control algorithm is robust to bounded disturbances
and uncertain nonlinearities with guaranteed transient per-
formance. Furthermore, the output tracking error converges
to zero asymptotically if the system has only parametric
uncertainties. The class of system considered here has wide
engineering applications, and a practical example - control
of mechanical systems with dynamic friction - is used as a
case study. Simulation results are obtained to demonstrate the
applicability of the proposed control methodology.

Index Terms— Nonlinear Control; Dynamic Uncertainties;
Adaptive Robust Control; Dynamic Friction

I. INTRODUCTION

The control of nonlinear systems with various kinds of
uncertainties is receiving more and more attention these
years. Parametric uncertainties and non-parametric uncertain-
ties (external disturbances) are two major sources of uncer-
tainties. To deal with them, the deterministic robust control
(DRC) [8] and the adaptive control (AC) [4] have been
developed. The deterministic robust controllers are able to
guarantee transient performance and final tracking accuracy
in the presence of various kinds of uncertainties. However,
some problems like switching or infinite-gain feedback [8]
will happen. In contrast, the adaptive controllers [4] are able
to achieve asymptotic tracking in the presence of parametric
uncertainties without using infinite gain feedback. However,
this approach may result in unbounded control signals in
the presence of external disturbances. In [9], an adaptive
robust control (ARC) algorithm has been proposed, which
incorporates the design methods of DRC and AC effectively.
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The resulting ARC controllers have the advantages of both
DRC and AC while overcoming their practical limitations.
Besides parametric uncertainties and uncertain nonlinear-
ities, some systems may be further subjected to dynamic
uncertainties. This kind of system has exogenous dynamic
systems whose states can not be measured. The control of
this kind of system has received more and more attention
in recent years because some real systems are of that form,
e.g., the dynamic friction in [1], [7] and the eccentric rotor
in [2]. In [2], an adaptive controller was designed for a
class of extended strict feedback nonlinear systems in which
the unmeasured states enter the systems in a linear affine
fashion. However, it is unclear how the approach can be
made robust to uncertain nonlinearities and disturbances. In
[3], Jiang and Praly proposed a modified robust adaptive
control procedure for a class of uncertain nonlinear systems
subject to dynamic uncertainties. However, since this method
does not explicitly use the structural information of the
original system, it does not have some desirable properties
like asymptotic output tracking in presence of parametric
uncertainties only. In [10], [5], an observer based ARC
algorithm was proposed. Robustness and asymptotic tracking
can both be achieved using this algorithm. However, the
original system is assumed to be uniformly detectable. This
assumption limits the application of this method because
some systems, e.g., the mechanical systems with dynamic
friction, does not satisfy the assumed detectability condition.
In this paper, we propose a novel ARC algorithm for the
control of a class of nonlinear systems in semi-strict feedback
form whose unmeasured internal states are bounded but not
uniformly detectable. For this kind of system, no observer
can be designed to make the observation error converge
to zero. Instead, we design a projection-type adaptation
algorithm to give the state estimation. It is theoretically
proved that with the proposed control law, the closed-loop
system is robust to nonlinear uncertainties and disturbances
and has guaranteed transient performances. Furthermore, in
the presence of parametric uncertainties only, asymptotic
output tracking can be achieved. These two characteristics
combine the good merits of DRC and AC. To illustrate its
applicability, we take a practical example - the control of
linear motor system with dynamic friction - as a case study.
This system satisfies the assumptions made in the paper, i.e.,
the unmeasured internal states are bounded but not uniformly
detectable. The simulation results demonstrate the applica-
bility of the proposed method in practical applications.
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II. PROBLEM FORMULATION

In this paper, we consider the following nonlinear system.

17 = Fn(x)6+Gn(x)n+Hn(x)+AT]('xanauat)7
X = Xip1 + 07 @oi(%i) + hi(%) + Ai(x,m,u,1),
1<i<l—1
Go= ut 0" g (x) + @ (0N +h(x) +Ai(x,n,u,0),
y = Xxi
(1

where x = [x,---,x/]7 € R is the vector of measurable states.
% = [x1,--+,x;] € R' is the vector of first i measurable states. u

and y are the control input and output, respectively. n € R™
is the vector of unmeasured internal states. 8 € RP is the
vector of unknown constant parameters. F; € R™*?, Gy €
R™ ™, Hy € R", @g; € R, h; € R and ¢y; € R™ are matrices,
vectors or scalars of known smooth functions. Ay and A;
represent the lumped unknown nonlinear functions such as
disturbances and modeling errors.

Remark 1: In order to simplify the deduction and focus
on how to deal with non-uniformly detectable internal states,
the internal states here are assumed to appear only in the
dynamic equation directly related to input u. However, with
some unharmful modifications of the control algorithm, the
class of systems which can be handled with the proposed
method can be extended to the same one as in [10], i.e., the
internal states can appear from [-th to n-th dynamic equation.

Now some practical assumptions are made as follows:

Assumption 1: The extents of parametric uncertainties are
known. And the uncertain nonlinearities are bounded by
known functions. In other words, parametric uncertainties
and uncertain nonlinearities satisfy

GGQQ é {9 emingegemax}7
Ap€Qy = {An: [Ag(enun) <8}, @
AEQy = (A A M.ut)| < &(E)).

Assumption 2: 1 is physically bounded with known
bounds, i.e., N € Qy, where €, is a known bounded convex
set.

Remark 2: This assumption is different from the uniform
detectability assumption made in [10], [5]. In [10], [5], the
pair ((pg ;» Gn) is assumed to satisfy the uniform detectability
condition, i.e., there exists an @(x) = [@;(x), -, @, (x)]7,
such that the unperturbed system & = A(x)€ is exponentially
stable, where A(x) = Gy (x) — g—fg(pg ;- But for some practical
systems, e.g., mechanical systems with dynamic friction, this
condition can not be satisfied. In this paper, we will deal
with the systems where ((pgl, Gy) may not be uniformly
detectable, but the internal states are physically bounded by
known bounds.

Assumption 3: There exists a positive definite matrix I'y €
R™™ such that T'y' Gy (x) + Gh (x)[,' <0, Vxe R

Besides the above assumption on Gy (x), we also make the
following mild assumption on how the parametric uncertain-
ties affect the dynamics of unmeasured internal states:

Assumption 4: Let Fy;(x) be the j-th column of Fy(x).
Then dynamic systems §; = Fy;(x) +Gp(x)&; (1 < j < p)

with the input x and state [{j,---,{,] are bounded-input-
bounded-state stable in the sense that for every x(t) €
LL,[0 ), the solution [{y,---,{,] starting from any initial
condition is bounded, i.e., [$i(¢),---,{,(1)] € LEZ*P[0 o0).

Let y;(t) be the desired motion trajectory, which is
assumed to be known, bounded, with bounded derivatives
up to [-th order. The objective is to synthesize a bounded
control input u such that the output y = x; tracks y,(¢) as
closely as possible in spite of various model uncertainties
and unmeasured states.

ITII. DISCONTINUOUS PROJECTION BASED ARC
BACKSTEPPING DESIGN

A. Parameter Projection

Let § denote the estimate of @ and @ the estimation error,
i.e. 8 =60 —0. A discontinuous projection based ARC design
will be constructed to solve the tracking control problem for
(1). Specifically, under Assumption 1, the parameter estimate
6 is updated through a parameter adaptation law with the
form

6 =Proj,(T'e o) (3)

where I'g is a symmetric positive definite (s.p.d.) diagonal
adaptation rate matrix, Ty is an adaptation function to be syn-
thesized later. Proj; = [Projg (e1),--- 7Projép(op)}T where
each projection function is defined as

0 if ;> 6, and ® >0
0 if ;< 6, and ® < 0 4)
e otherwise

Projg (e) =

It can be shown that for any adaptation function 7y, the
projection mapping guarantees

P1 QGQQZ{QI emmgegemax} (5)
P2 QT(FglprOjé(Fefg) —T9) <0

B. State Estimation

The estimation of unmeasured states 1] forms the core part
of this paper. In [10], [5], using the detectability condition,
the estimation error € is proved to converge to zero exponen-
tially, thus the effect of € will ’diminish’. It is impossible,
however, to make the estimation error converge to zero
without the detectability condition when the pair ((pg ,» Gn)
is not assumed to be uniformly detectable. In view of this,
we add an adaptation function to the state estimator and
apply the projection algorithm. With this approach, although
the estimation error may not converge to zero, the output
tracking error will do in presence of parametric uncertainties
only, as will be proved later in this paper. Furthermore,
the boundedness of the estimation signals is guaranteed
with the projection algorithm, which will also be used later
to synthesize the robustifying feedback term to guarantee
transient performance and final tracking accuracy.
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Let {; € R" (0 < j < p) be the estimated variables, similar
to those defined in [10], [5]. Let the estimation law be

(1 Iy~ 2 r e > (Gnbo+Hy+Tyty)
- if {o € 9Qg, and nf (Gnlo+Hy +InTy) >
Gnlo+Hy+Ty1y, otherw1se
§ = GnGj+hyj, 1<j<p
(6)
where I';; € R™*™ is a positive definite matrix satisfying

Assumption 3. 7, is any function to be synthesized later.
Q, denotes the time-varying convex set that $o lies in
(sometimes we drop the notation ’#* for simplicity), 8Q§O is
its boundary. ng, represents the outward unit normal vector

at §o € dQg,. Qg is derived as follows
Qg (1) =
P
a+b:acQy, [b] <supl Y, max(|6naxjl; [Ominj])C;(1)l]

>0 j=1
(7)

where sup(e) function denotes the supremum of all (¢) from

beginnitrig to the current time. Since € is convex, it can be
easily checked that Q¢ is also convex.

Now put §;, 1 < j<p into a matrix { = [§; -+~ §p).
We have Q’ = Gy + Fy. Defining the estimation error to be
€ ={y+ 06 —n, then we have the following lemma

Lemma 1: For any function 7y,

i) If £o(0) € Q¢ (0), then o(r) € Q¢ (1)

ii)

" Ty ' [Projg, (Gy o+ Hy + Ty ty) — Gy o — Hy — Ty ] <0.

®)

Proof: At any time, if {y touches the bound, i.e., { €
89;0, then according to (6),

PrOJCO Gn §0+Hr, +FnTn)

nc()n()
— 0

Gn Co + Hp+Tyty), otherwise

T (Gy Co +Hy+Tyt), otherwise

{

Thus, the derivative of {y always points inward or to the
tangential direction of current Qg at the point {o. From
(7), Q, (¢) is monotonically expanding. So we conclude that
&o(r) €92, (1) if Go(0) € g, (0).

For ii), we see that:

Case 1: If either §y € dQ or ng (Gnbo+Hy+Iyty) >0
is not true, then Proj (GnCo+ Hy +1I'yty) = Gnlo + Hy +
I'y Ty, ii) is obviously true.

Case 2: If {p € dQ; and ng (Gn&o+Hy +Tyty) >0,
then {p is on the boundary of Q. From (7), n — {0 € Qg,
since Qg is convex, nl € =nl ({o—(n—{6)) > 0. Then, a
simple mathematical deduction leads to ii). |

IN

Lemma 1 is very important. Although € may not converge
to zero in our design, with the proposed state estimator, we
also have Lemma 1 to help us. Later on in the proof of part
B of Theorem 1, making use of Lemma 1, we will construct
a Lyapunov function different to those used in [10], [5], and
prove the asymptotic output tracking in a different way.

C. ARC Controller Design

1) Step 1 <i<I—1: First, we denote ay(t) = y,(t). At
step i (1 <i<I—1),let z; be the error between the state x;

and the desired control signal ¢;_1, then z; = x; — o;—1. Take
its derivative
o= X1+ 0T Qo +hi+A— iy, (10)
Noting that ¢;_; = _Z 3 =L (xjp1 4+ 0T @g; + hj + Aj) +
a‘;’é 19 + a’;’t , We have 2 = Xiy1 + e + 0,, wWhere
’ _ T i—1 dai_g
o = 6 ((Pel ZJ 1 7 9x; (PGj)
1 daoig i—1 90 0,
+hi— X0 KT J = Lot G X azl
a - doy
Oy = *GT((PGI Z a (pej) - 19+A Zl OC :
=
(11)

are compensatible and uncompensatible parts respectively.

We construct a control function ¢; for the virtual input x; |
such that x; tracks its desired control law o;_; synthesized
at step i — 1.

ai(fiy é t) = Qg+ s, aza = —Zi—1 — Oic, Oz = Q51 +ais2>
Ois1 = —kiszi, kis > g+ | al 1C91|2 + |C¢iF9¢i|27
(12)
where g; is a positive constant, Cg; and Cy; are positive
constant diagonal matrices. Let z;11 = xj4+1 — ¢ denote the
input discrepancy. With (12), we have

9015

i+ kiszi = 2ip1 — 2ie1 + G2 — 07 ¢+ A — (13)

i—1 doy_ A i da;
where ¢; = (pe,-*Zj 11 S‘X Lpg; and A; :A'*Z, 11 gx HA,
(et A} = Ay, 01 = Po1). Choosmg Vi=Vioi+ 2z2 then its
time derivative is
. ‘ > T ~ aOCj,I A
Vi=zizipi+ ), | —kjsz+zj(@j— 0 ¢j+Aj)—WGZj

j=1
(14)

The ARC design can be applied to synthesize a robust control
function oy, satisfying the following two conditions

i zi(o— 0T ¢+ A) <

ii. 7O <0 (15

where ¢; is a positive design parameter.
2) Step 1: At the last step (step [), noting that the
derivative of z; =x; — oy is

G =u+0" (o1 + LT Qi)+ oplo+h — Cu_y + A — @pe
(16)
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1 9a_g

Noting that &_| = 25‘11 7, (xj41+ 0T @g; +hj+A)) +
8a1,1 A aOCl

[ 0+ =5, we have Z; = u+ oy + oy, where

o = éT(‘PelJrCT(Pnl*Z[, ﬁag‘i I(PGJ)+(P1§ZC0
+hy =Y agif i~ X 1183)1: jH*%
O = —éT((P9/+CT<Pnl—ZI, 1183[)1 ~o;)
O gren o —xI ]
a7

We construct the control input u such that x; tracks its
desired ARC control law oy_; synthesized at step [ — 1.

u(x, &, ¢, é,f) = Oig + 05, Og = —21—1 — O,
Oy = Oy +061s2, oys1 = —kiszy,
kiy > g1+ 2% 55 +|CoTodul* +colyil?,

(18)

where g; and cg are positive constants, Y; = @p;, Co; and Cy,
are positive constant diagonal matrices to be specified later.
Let z;41 = x7+1 — oy denote the input discrepancy. With (18),
we have

Gtk =—z-1+ o — 0T g —yle+A —

—1 doy_
where ¢ = @o; + {7 @y — Zi’:l a)lcjl

il 2 A;. Choosing V;

Do j and A[ =A -

=Vi1+ %212, then its time deriva-

j=1 dx;
tive is
. l ~ ~ d0i 1 A
V= '21 —kjszi 20— 679 —yle+A)) - 9’91921‘]
J:

(20)
where l//jT =0, Vj <l. The ARC design can be applied
to synthesize a robust control function oy satisfying the
following two conditions

i. z(n—0T¢ — W1T8+Az) <¢

ii. ziogp <0 @D

Remark 3: One smooth example of oy satisfying (21)
can be found in the following way. Let A; be any n-th order
continuous function satisfying

heo> 0 0ullon] + willQg | + & (22)

where Oy ES Omin and & éZj 11 aa, L8+ 0. [Qg, | is
the length of the set QCO’ i.e., the maximum distance between

any two points in Q¢ . Then @, can be chosen as

6max -

O = — ]’ZIZZ[ (23)

4e;
It is easy to verify that this choice of oy, satisfies (21).

D. Main Results

Theorem 1: Let the parameter estimates be updated by the
adaptation law (3) in which 7y is chosen as 79 = ):5-:1 0z,
and Ty is chosen as 7, = Z§:1Zjllfj.

Let cgj; and cyi; be the i-th diagonal elements of the
diagonal matrices Cp; and Cy; respectively. If the con-
troller parameters Cg; and Cy; are chosen such that céki >

%le:Z C%, Vk, i, Then, the control law (18) guarantees that
N 0ji

A. In general, all signals are bounded. Furthermore, the
positive definite function V; is bounded above by

I
Yioi€

_ 711[
-

Vi(t) < e MV (0) + (24)
where 4; = 2min{gj,---,g;}.

B. If after a finite time 7y, there exist parametric uncertain-
ties only (i.e., Ay =0 and A; =0, Vt > 1y), then, in addition to
results in A, zero final output tracking error is also achieved,
i.e, z1 —> 0 and as t — oo,

Proof: For part A, from (12), (18) and (20), we have

. 0
Vi< T {(e- 1555 CoiP - CoTodsf <ol
+Zj(ajszf9T¢jfl[/j8+A)*Zj 55 9}
(25)
By completion of square
Lo dajy 2 &, 00
~ Yy 0= Y755 Col' g 11Co18P) @8

Noting that Cy jl and 'y are diagonal matrices, from (3) and
(4), we have

2|C 9|2 = 2|C PrOJg(FGT)‘Z < Z Gy, 'Tg|?
< z,zz(zk=1 Co} Totiadl)? < 1Y (Tie |Ce}re¢k|2 7
@7)

Thus, if Cg; and Cy; satisfy the conditions in the theorem,
we have

G+ Z Cor To x|’z

(28)
From (25) and the properties of each s>, we have

l 1
Z gjzj+e, ) < lez—erj (29)

J=1

which leads to (24). The boundedness of z; is thus proved.
Using the standard arguments in the backstepping designs
[4], it can be proved that all internal signals in the first [ — 1
steps are globally uniformly bounded. Furthermore, since
x; =2z+ 041, x; is also bounded. Thus, x = [x;,---,x;]7 are
bounded. From the bounded-input-bounded-state Assump-
tion 4, Lemma 1 and the bounded internal state Assumption
2, &, § and n are all bounded. Recursively using the fact
that x; = z; + «;_1, it is obvious that ¢; and x; are bounded.
Thus the boundedness of u is apparent. This proves the part
A.

For part B, when Ay =0 and A; =0, from (25) and (28),
noting the condition ii of (21) and (15), we have

1
<Y (—g—colwil’ — 2,679, — ;v ¢)

(30)

Define a new p.s.d function V, as V, =V, + %éTl"e_lé +
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%STFEIS. Then after a series of derivations,

Vo <
+&" Ty ' [Projg, (Gy §o + Hy + Ty ty)
—Gplo—Hy —Tyy] +€'T,'Gpe

(31)

Since "I ' Gy e = %ST(FEIGn (x)+Gh ()T e, from As-

sumption 3, ETF,’IIG,-,S < 0. Using (5) and (8), we have

V, < Zﬁ‘:l fgjzﬁ, from which z; € L,[0, o). It is also easy

to check that z; is bounded. Hence, by the Barbalat’s lemma,

z— 0 as t — 0, which proves part B of Theorem 1. |

IV. PRACTICAL DESIGN EXAMPLE AND
SIMULATION RESULTS

A. Systems with Dynamic friction

Nowadays, the control of mechanical systems with dy-
namic friction has become increasingly popular. A kind
of friction model called LuGre model [1] has seen wide
application. Now we consider a linear motor driven stage
with dynamic friction existing between the contact surfaces.
With the LuGre model proposed in [1], [7],

7 = x— ﬂu—Az (32)
g(x)

gt) = ogtoye (33)

mi = Ku—0pz— 01h(X)z— opx+ A, (34)

where m is the mass, u is the input voltage, K is the gain
from voltage to the force, z represents the unmeasurable
internal friction state, oy, 0y, 0p are unknown friction force
parameters that can be physically explained as the stiffness,
the damping coefficient of bristles, and viscous friction
coefficient. x, X are the position and velocity respectively.
g(%) describes the Stribeck effect: ooy and op(0p + o)
represent the levels of the Coulomb friction and stiction force
respectively, and vy is the Stribeck velocity. A, and A, are the
modeling errors and disturbances. Let y,(¢) be the desired
motion trajectory, which is assumed to be known, bounded,
with bounded derivatives up to the second order. We want
to design a control law u, such that the output x can track
va(t) as close as possible, in spite of various uncertainties.

Let us denote 1) = [ ZE]7 to be the unmeasured inter-

nal states, 0 = [ 9 22 A]” and 6, = % be the unknown
parameters with known bound_s, where A is the constant
portion of disturbances, and A = (o1h(X)A; + Ay)/K — A.

A is the time-varying portion of the disturbances. Denote

x = [x; x2)7 =[x &]T. Then the system can be represented by
X1 = x
. 35
0% = u+9T(P9+(PTJ;TI + A (35)
y = X

Ehot (—23 — colw;?22) + 67 (I Projg(I'sg) — 79) 71 = [ 0 x

where
_ Inal
| x 0 00 G — o) 0
0o 0}’ n 0 7|(x72‘)
8x2
9o =[0 —h(x)xs —x 17, @y =[-1 eyl
Ap = [00A; 014", A=A

(36)
This system is of the form (1), except that the unknown
parameter 6,, appears in front of x;. In this case, we only
need to make a small modification to the proposed algorithm,
as shown later. Now, we will show that this system satisfies
all the assumptions made in section II and the internal states
are non-uniformly detectable.

Since the physical meanings of all unknown parameters
in (35) are known, it is safe to assume that the unknown
parameters, uncertain nonlinearities and disturbances are
bounded by known bounds. Thus Assumption 1 is satisfied.
It can also be seen that the pair ((pg , Gp) is not uniformly
detectable. Because at x = [x; 0]7, we have G, = 022,
Thzn for any ®(x) € R?, the matrix A(x) = Gp(x) — 3—;‘;(;)% =

()]

axz

S will always have zeros in the second column.

Thlfg,z techniques in [10], [5] do not apply here. However,
since z represents the deflection of bristles between the
contact surfaces, z is physically bounded [1]. Then 1 =
[%2 ST s also bounded. So Assumption 2 is satisfied.

Since Gy (x) is a diagonal negative semi-definite matrix for
all x, for any diagonal matrix I', > 0, we have TEIGT, (x)+
Gy ()T = 2T ' Gy (x) <0, ¥V x € R%. So Assumption 3 is
satisfied. It can also be easily checked that Assumption 4 is
satisfied. Since all assumptions required for the system are
satisfied, we can use the technique proposed in this paper to
design a control law.

B. Control Law Design

Letting g = y4(t), and z; = x; — 0 be the tracking error,
then, 71 = x| — &y = xo — Q. Selecting oy = —kjz1 + O to
be the desired x,, and defining zp = x» — @, then

9mZ2 - u+9T((P9 + C(Pn) -HP%CO - (P1€8+Ax+kl 6}712] - emaO

(37)
Then the state estimator and the parameter adaptation laws
are chosen as

g() = PrOjCO(GnCO +Fn(PnZQ), C.: GnC+Fn

6 = Projs (To (9o + {7 @n)z2), 6, = Projy [1s,, (kiz1 — ?;08))22}
In this case, Qy is a square set, i.e., Qy = [Nmint, Mmaxt] X
[(Mmin2> Mmax2). From the special structure of F; and Gy, it
is obvious that only {;; and {;, take effect. With this fact,
QCO = [COminl, C()maxl] X [COminZ» COmaxZL where

COmaxi Nmaxi + Sug [max (|9maxi|a ‘emini|)|gii(t) ”
>

(39)

gOmini = MNmini — suIO)[max (|6max1|7 |9mim'|)|Cii(t) H
>

for i =1,2. oy is chosen as 0y = kazp. For apg, we use
the form given by (23): aps = —ihzm. h is chosen to be
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the right side of (22), which is a continuous function with
respect to @, @y, {. The control law is thus given by

"(@0+ " 0y) — 05 G0 — On(k121 + o)
(40)

u=—kyzp+ 0y —06

C. Simulation Results

For simulation, we choose the system parameters to
be the same as that used in [6], 6, =0.12, 6 =
[7000 1176 0.166 0], g(xy) = 21236+0. 078355 Far000l ) =
%' The internal state z is within 40.00005.
In addition, we set the uncertain nonlinearity term
A, = 0. lsin(oole) + 0.1cos( @ x1) + 0.02sin(3%x;) +
0. 02c0€(002x1) to simulate the effect of cogging forces on
the linear motor, and A, = n(t)|x>| to represent the modeling
error of the internal state dynamics where n(¢) is a uniformly
distributed random number between —0.2 and 0.2.

The controller parameters are chosen as 6,,(0) = 0.1,
6(0) = [6000 1100 0.2 0)7, Bumar = 0.2, Opmin = 0.08,
Omax = [10000 1500 0.5 0.5]7, 6,4, = [4000 500 0 —
0.5]7, ki = 50, kp = 10, € = 0.008, 7y, = 5 x 108, Ty =
diag{2.5x 10" 2.5x10° 10 500}, I';, = diag{1500 200},

Nmax = [Zmax ' elmax Zmax * 92max]T = [05 0-075]T, Nmin =
[Zmin “Otmax Zmin - 62max]T = [_05 _0-075}T, CO(O) = [O O]T
and £(0) = 024,

The design trajectory is chosen as a sinusoidal signal, with
the amplitude of 0.002 and the frequency of 1Hz. We set the
initial value of the unknown internal state z to be 0.00003.
The tracking error and control input with disturbances added
to the system are plotted in Fig. 1. As can be seen from the
plots, the tracking error converges very fast after the first
few cycles, showing a good transient performance and final
tracking accuracy. Furthermore, the input signal is bounded,
and the tracking error is less than 0.05% magnitude of the
desired trajectory in spite of large disturbances, showing the
robustness and good capability of disturbance rejection of
the proposed ARC algorithm.

Then, we remove all the disturbances and modeling errors,
and use the same trajectory, same initial internal state value
and same controller parameters. The tracking error and con-
trol input are plotted in Fig. 2. As can be seen, in the presence
of parameters uncertainties only, asymptotic output tracking
is achieved. These results demonstrate the applicability of
the proposed method in practical design cases.

V. CONCLUSION

In this paper, a discontinuous projection based adaptive
robust control algorithm has been designed for a class of
nonlinear systems in semi-strict feedback form with bounded
but non-uniformly detectable internal states. Specifically,
discontinuous projection algorithm has been used to give
the estimation of both the internal states and the unknown
parameters. This algorithm has been theoretically proved to
be robust to disturbances and uncertain nonlinearities with
guaranteed transient performance while having asymptotic
output tracking performance in the presence of parametric
uncertainties only. A practical example - control of mechan-
ical systems with dynamic friction - is used for case study.
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Fig. 1. Tracking error and control ingut, system with disturbances
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Fig. 2. Tracking error and control input, system without disturbances

The simulation results demonstrate the applicability of the
proposed control methodology.
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