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Abstract— This paper proposes a novel control method for
a special class of nonlinear systems in semi-strict feedback
form. The main characteristics of this class of systems is that
the unmeasured internal states are non-uniformly detectable,
which means that no observer for these states can be designed
to make the observation error exponentially converge to zero.
In view of this, a projection-based adaptive robust control
law is developed in this paper for this kind of system. This
method uses a projection-type adaptation algorithm for the
estimation of both the unknown parameters and the internal
states. Robustifying feedback term is synthesized to make the
system robust to uncertain nonlinearities and disturbances.
It is theoretically proved that all the signals are bounded,
and the control algorithm is robust to bounded disturbances
and uncertain nonlinearities with guaranteed transient per-
formance. Furthermore, the output tracking error converges
to zero asymptotically if the system has only parametric
uncertainties. The class of system considered here has wide
engineering applications, and a practical example - control
of mechanical systems with dynamic friction - is used as a
case study. Simulation results are obtained to demonstrate the
applicability of the proposed control methodology.

Index Terms— Nonlinear Control; Dynamic Uncertainties;
Adaptive Robust Control; Dynamic Friction

I. INTRODUCTION

The control of nonlinear systems with various kinds of

uncertainties is receiving more and more attention these

years. Parametric uncertainties and non-parametric uncertain-

ties (external disturbances) are two major sources of uncer-

tainties. To deal with them, the deterministic robust control

(DRC) [8] and the adaptive control (AC) [4] have been

developed. The deterministic robust controllers are able to

guarantee transient performance and final tracking accuracy

in the presence of various kinds of uncertainties. However,

some problems like switching or infinite-gain feedback [8]

will happen. In contrast, the adaptive controllers [4] are able

to achieve asymptotic tracking in the presence of parametric

uncertainties without using infinite gain feedback. However,

this approach may result in unbounded control signals in

the presence of external disturbances. In [9], an adaptive

robust control (ARC) algorithm has been proposed, which

incorporates the design methods of DRC and AC effectively.
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The resulting ARC controllers have the advantages of both

DRC and AC while overcoming their practical limitations.

Besides parametric uncertainties and uncertain nonlinear-

ities, some systems may be further subjected to dynamic

uncertainties. This kind of system has exogenous dynamic

systems whose states can not be measured. The control of

this kind of system has received more and more attention

in recent years because some real systems are of that form,

e.g., the dynamic friction in [1], [7] and the eccentric rotor

in [2]. In [2], an adaptive controller was designed for a

class of extended strict feedback nonlinear systems in which

the unmeasured states enter the systems in a linear affine

fashion. However, it is unclear how the approach can be

made robust to uncertain nonlinearities and disturbances. In

[3], Jiang and Praly proposed a modified robust adaptive

control procedure for a class of uncertain nonlinear systems

subject to dynamic uncertainties. However, since this method

does not explicitly use the structural information of the

original system, it does not have some desirable properties

like asymptotic output tracking in presence of parametric

uncertainties only. In [10], [5], an observer based ARC

algorithm was proposed. Robustness and asymptotic tracking

can both be achieved using this algorithm. However, the

original system is assumed to be uniformly detectable. This

assumption limits the application of this method because

some systems, e.g., the mechanical systems with dynamic

friction, does not satisfy the assumed detectability condition.

In this paper, we propose a novel ARC algorithm for the

control of a class of nonlinear systems in semi-strict feedback

form whose unmeasured internal states are bounded but not

uniformly detectable. For this kind of system, no observer

can be designed to make the observation error converge

to zero. Instead, we design a projection-type adaptation

algorithm to give the state estimation. It is theoretically

proved that with the proposed control law, the closed-loop

system is robust to nonlinear uncertainties and disturbances

and has guaranteed transient performances. Furthermore, in

the presence of parametric uncertainties only, asymptotic

output tracking can be achieved. These two characteristics

combine the good merits of DRC and AC. To illustrate its

applicability, we take a practical example - the control of

linear motor system with dynamic friction - as a case study.

This system satisfies the assumptions made in the paper, i.e.,

the unmeasured internal states are bounded but not uniformly

detectable. The simulation results demonstrate the applica-

bility of the proposed method in practical applications.
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II. PROBLEM FORMULATION

In this paper, we consider the following nonlinear system.

η̇ = Fη(x)θ +Gη(x)η +Hη(x)+∆η(x,η ,u, t),
ẋi = xi+1 +θ T ϕθ i(x̄i)+hi(x̄i)+∆i(x,η ,u, t),

1 ≤ i ≤ l −1

ẋl = u+θ T ϕθ l(x)+ϕT
η l(x)η +hl(x)+∆l(x,η ,u, t),

y = x1

(1)

where x = [x1, · · · ,xl ]
T ∈Rl is the vector of measurable states.

x̄i = [x1, · · · ,xi]∈Ri is the vector of first i measurable states. u

and y are the control input and output, respectively. η ∈ Rm

is the vector of unmeasured internal states. θ ∈ Rp is the

vector of unknown constant parameters. Fη ∈ Rm×p, Gη ∈
Rm×m, Hη ∈ Rm, ϕθ i ∈ Rp, hi ∈ R and ϕη l ∈ Rm are matrices,

vectors or scalars of known smooth functions. ∆η and ∆i

represent the lumped unknown nonlinear functions such as

disturbances and modeling errors.

Remark 1: In order to simplify the deduction and focus

on how to deal with non-uniformly detectable internal states,

the internal states here are assumed to appear only in the

dynamic equation directly related to input u. However, with

some unharmful modifications of the control algorithm, the

class of systems which can be handled with the proposed

method can be extended to the same one as in [10], i.e., the

internal states can appear from l-th to n-th dynamic equation.

Now some practical assumptions are made as follows:

Assumption 1: The extents of parametric uncertainties are

known. And the uncertain nonlinearities are bounded by

known functions. In other words, parametric uncertainties

and uncertain nonlinearities satisfy

θ ∈ Ωθ
∆
= {θ : θmin ≤ θ ≤ θmax},

∆η ∈ Ω∆η

∆
= {∆η : |∆η(x,η ,u, t)| ≤ δη(x)},

∆i ∈ Ω∆i

∆
= {∆i : |∆i(x,η ,u, t)| ≤ δi(x̄i)}.

(2)

Assumption 2: η is physically bounded with known

bounds, i.e., η ∈ Ωη , where Ωη is a known bounded convex

set.

Remark 2: This assumption is different from the uniform

detectability assumption made in [10], [5]. In [10], [5], the

pair (ϕT
η l , Gη) is assumed to satisfy the uniform detectability

condition, i.e., there exists an ω(x) = [ω1(x), · · · ,ωm(x)]T ,

such that the unperturbed system ε̇ = A(x)ε is exponentially

stable, where A(x) = Gη(x)− ∂ω
∂xl

ϕT
η l . But for some practical

systems, e.g., mechanical systems with dynamic friction, this

condition can not be satisfied. In this paper, we will deal

with the systems where (ϕT
η l , Gη) may not be uniformly

detectable, but the internal states are physically bounded by

known bounds.

Assumption 3: There exists a positive definite matrix Γη ∈
Rm×m such that Γ−1

η Gη(x)+GT
η(x)Γ−1

η ≤ 0, ∀ x ∈ Rl .

Besides the above assumption on Gη(x), we also make the

following mild assumption on how the parametric uncertain-

ties affect the dynamics of unmeasured internal states:

Assumption 4: Let Fη j(x) be the j-th column of Fη(x).
Then dynamic systems ζ̇ j = Fη j(x) + Gη(x)ζ j (1 ≤ j ≤ p)

with the input x and state [ζ1, · · · ,ζp] are bounded-input-

bounded-state stable in the sense that for every x(t) ∈
Ll

∞[0 ∞), the solution [ζ1, · · · ,ζp] starting from any initial

condition is bounded, i.e., [ζ1(t), · · · ,ζp(t)] ∈ Lm×p
∞ [0 ∞).

Let yd(t) be the desired motion trajectory, which is

assumed to be known, bounded, with bounded derivatives

up to l-th order. The objective is to synthesize a bounded

control input u such that the output y = x1 tracks yd(t) as

closely as possible in spite of various model uncertainties

and unmeasured states.

III. DISCONTINUOUS PROJECTION BASED ARC

BACKSTEPPING DESIGN

A. Parameter Projection

Let θ̂ denote the estimate of θ and θ̃ the estimation error,

i.e. θ̃ = θ̂ −θ . A discontinuous projection based ARC design

will be constructed to solve the tracking control problem for

(1). Specifically, under Assumption 1, the parameter estimate

θ̂ is updated through a parameter adaptation law with the

form

˙̂θ = Projθ̂ (Γθ τθ ) (3)

where Γθ is a symmetric positive definite (s.p.d.) diagonal

adaptation rate matrix, τθ is an adaptation function to be syn-

thesized later. Projθ̂ = [Projθ̂1
(•1), · · · ,Projθ̂p

(•p)]
T where

each projection function is defined as

Projθ̂i
(•) =







0 if θ̂i ≥ θimax and • > 0

0 if θ̂i ≤ θimin and • < 0

• otherwise

(4)

It can be shown that for any adaptation function τθ , the

projection mapping guarantees

P1 θ̂ ∈ Ωθ = {θ̂ : θmin ≤ θ ≤ θmax}

P2 θ̃ T (Γ−1
θ Projθ̂ (Γθ τθ )− τθ ) ≤ 0

(5)

B. State Estimation

The estimation of unmeasured states η forms the core part

of this paper. In [10], [5], using the detectability condition,

the estimation error ε is proved to converge to zero exponen-

tially, thus the effect of ε will ’diminish’. It is impossible,

however, to make the estimation error converge to zero

without the detectability condition when the pair (ϕT
η l , Gη)

is not assumed to be uniformly detectable. In view of this,

we add an adaptation function to the state estimator and

apply the projection algorithm. With this approach, although

the estimation error may not converge to zero, the output

tracking error will do in presence of parametric uncertainties

only, as will be proved later in this paper. Furthermore,

the boundedness of the estimation signals is guaranteed

with the projection algorithm, which will also be used later

to synthesize the robustifying feedback term to guarantee

transient performance and final tracking accuracy.
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Let ζ j ∈ Rm (0 ≤ j ≤ p) be the estimated variables, similar

to those defined in [10], [5]. Let the estimation law be

ζ̇0 = Projζ0
(Gη ζ0 +Hη +Γη τη)

∆
=















(

I −Γη

nζ0
nT

ζ0

nT
ζ0

Γη nζ0

)

(Gη ζ0 +Hη +Γη τη)

if ζ0 ∈ ∂Ωζ0
and nT

ζ0
(Gη ζ0 +Hη +Γη τη) > 0

Gη ζ0 +Hη +Γη τη , otherwise

ζ̇ j = Gη ζ j +Fη j, 1 ≤ j ≤ p
(6)

where Γη ∈ Rm×m is a positive definite matrix satisfying

Assumption 3. τη is any function to be synthesized later.

Ωζ0
denotes the time-varying convex set that ζ0 lies in

(sometimes we drop the notation ’t’ for simplicity), ∂Ωζ0
is

its boundary. nζ0
represents the outward unit normal vector

at ζ0 ∈ ∂Ωζ0
. Ωζ0

is derived as follows

Ωζ0
(t) =

{

a+b : a ∈ Ωη , |b| ≤ sup
t>0

[
p

∑
j=1

max(|θmax j|, |θmin j|)|ζ j(t)|]

}

,

(7)

where sup
t>0

(•) function denotes the supremum of all •(t) from

beginning to the current time. Since Ωη is convex, it can be

easily checked that Ωζ0
is also convex.

Now put ζ j, 1 ≤ j ≤ p into a matrix ζ = [ζ1 · · · ζp].
We have ζ̇ = Gη ζ +Fη . Defining the estimation error to be

ε = ζ0 +ζ θ −η , then we have the following lemma

Lemma 1: For any function τη ,

i) If ζ0(0) ∈ Ωζ0
(0), then ζ0(t) ∈ Ωζ0

(t).
ii)

εT Γ−1
η [Projζ0

(Gη ζ0 +Hη +Γη τη)−Gη ζ0−Hη −Γη τη ]≤ 0.
(8)

Proof: At any time, if ζ0 touches the bound, i.e., ζ0 ∈
∂Ωζ0

, then according to (6),

nT
ζ0

Projζ0
(Gη ζ0 +Hη +Γη τη)

=















nT
ζ0

(

I −Γη

nζ0
nT

ζ0

nT
ζ0

Γη nζ0

)

(Gη ζ0 +Hη +Γη τη)

if nT
ζ0

(Gη ζ0 +Hη +Γη τη) > 0

nT
ζ0

(Gη ζ0 +Hη +Γη τη), otherwise

=

{

0, if nT
ζ0

(Gη ζ0 +Hη +Γη τη) > 0

nT
ζ0

(Gη ζ0 +Hη +Γη τη), otherwise

≤ 0

(9)

Thus, the derivative of ζ0 always points inward or to the

tangential direction of current Ωζ0
at the point ζ0. From

(7), Ωζ0
(t) is monotonically expanding. So we conclude that

ζ0(t) ∈ Ωζ0
(t) if ζ0(0) ∈ Ωζ0

(0).
For ii), we see that:

Case 1: If either ζ0 ∈ ∂Ωζ0
or nT

ζ0
(Gη ζ0 +Hη +Γη τη) > 0

is not true, then Projζ0
(Gη ζ0 +Hη +Γη τη) = Gη ζ0 +Hη +

Γη τη , ii) is obviously true.

Case 2: If ζ0 ∈ ∂Ωζ0
and nT

ζ0
(Gη ζ0 + Hη + Γη τη) > 0,

then ζ0 is on the boundary of Ωζ0
. From (7), η −ζ θ ∈ Ωζ0

,

since Ωζ0
is convex, nT

ζ0
ε = nT

ζ0
(ζ0− (η −ζ θ))≥ 0. Then, a

simple mathematical deduction leads to ii).

Lemma 1 is very important. Although ε may not converge

to zero in our design, with the proposed state estimator, we

also have Lemma 1 to help us. Later on in the proof of part

B of Theorem 1, making use of Lemma 1, we will construct

a Lyapunov function different to those used in [10], [5], and

prove the asymptotic output tracking in a different way.

C. ARC Controller Design

1) Step 1 ≤ i ≤ l −1: First, we denote α0(t) = yd(t). At

step i (1 ≤ i ≤ l −1), let zi be the error between the state xi

and the desired control signal αi−1, then zi = xi−αi−1. Take

its derivative

żi = xi+1 +θ T ϕθ i +hi +∆i − α̇i−1, (10)

Noting that α̇i−1 =
i−1

∑
j=1

∂αi−1

∂x j
(x j+1 + θ T ϕθ j + h j + ∆ j) +

∂αi−1

∂ θ̂

˙̂θ +
∂αi−1

∂ t
, we have żi = xi+1 +αic +αiu, where

αic = θ̂ T (ϕθ i −∑i−1
j=1

∂αi−1

∂x j
ϕθ j)

+hi −∑i−1
j=1

∂αi−1

∂x j
h j −∑i−1

j=1
∂αi−1

∂x j
x j+1 −

∂αi−1

∂ t

αiu = −θ̃ T (ϕθ l −
i−1

∑
j=1

∂αi−1

∂x j
ϕθ j)−

∂αi−1

∂ θ̂

˙̂θ +∆i −
i−1

∑
j=1

∂αi−1

∂x j
∆ j

(11)

are compensatible and uncompensatible parts respectively.

We construct a control function αi for the virtual input xi+1

such that xi tracks its desired control law αi−1 synthesized

at step i−1.

αi(x̄i, θ̂ , t) = αia +αis, αia = −zi−1 −αic, αis = αis1 +αis2,

αis1 = −kiszi, kis ≥ gi + |
∂αi−1

∂ θ̂
Cθ i|

2 + |Cφ iΓθ φi|
2,

(12)

where gi is a positive constant, Cθ i and Cφ i are positive

constant diagonal matrices. Let zi+1 = xi+1 −αi denote the

input discrepancy. With (12), we have

żi + klszi = zi+1 − zi−1 +αis2 − θ̃ T φi + ∆̃i −
∂αi−1

∂ θ̂

˙̂θ (13)

where φi = ϕθ i −∑i−1
j=1

∂αi−1

∂x j
ϕθ j and ∆̃i = ∆i −∑i−1

j=1
∂αi−1

∂x j
∆ j

(let ∆̃1 = ∆1, φ1 = ϕθ1). Choosing Vi = Vi−1 + 1
2
z2

i , then its

time derivative is

V̇i = zizi+1 +
i

∑
j=1

[

−k jsz
2
j + z j(α js2 − θ̃ T φ j + ∆̃ j)−

∂α j−1

∂ θ̂

˙̂θz j

]

(14)

The ARC design can be applied to synthesize a robust control

function αls2 satisfying the following two conditions

i. zi(αis2 − θ̃ T φi + ∆̃i) ≤ ǫi

ii. ziαis2 ≤ 0
(15)

where ǫi is a positive design parameter.

2) Step l: At the last step (step l), noting that the

derivative of zl = xl −αl−1 is

żl = u+θ T (ϕθ l +ζ T ϕη l)+ϕT
η lζ0 +hl − α̇l−1 +∆l −ϕT

η lε
(16)
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Noting that α̇l−1 = ∑l−1
j=1

∂αl−1

∂x j
(x j+1 + θ T ϕθ j + h j + ∆ j) +

∂αl−1

∂ θ̂

˙̂θ +
∂αl−1

∂ t
, we have żl = u+αlc +αlu, where

αlc = θ̂ T (ϕθ l +ζ T ϕη l −∑l−1
j=1

∂αl−1

∂x j
ϕθ j)+ϕT

η lζ0

+hl −∑l−1
j=1

∂αl−1

∂x j
h j −∑l−1

j=1
∂αl−1

∂x j
x j+1 −

∂αl−1

∂ t

αlu = −θ̃ T (ϕθ l +ζ T ϕη l −∑l−1
j=1

∂αl−1

∂x j
ϕθ j)

−
∂αl−1

∂ θ̂

˙̂θ −ϕT
η lε +∆l −∑l−1

j=1
∂αl−1

∂x j
∆ j

(17)

We construct the control input u such that xl tracks its

desired ARC control law αl−1 synthesized at step l −1.

u(x,ζ0,ζ , θ̂ , t) = αla +αls, αla = −zl−1 −αlc,
αls = αls1 +αls2, αls1 = −klszl ,

kls ≥ gl + |
∂αl−1

∂ θ̂
Cθ l |

2 + |Cφ lΓθ φl |
2 + cθ |ψl |

2,

(18)

where gl and cθ are positive constants, ψl = ϕη l , Cθ l and Cφ l

are positive constant diagonal matrices to be specified later.

Let zl+1 = xl+1−αl denote the input discrepancy. With (18),

we have

żl +klszl = −zl−1 +αls2 − θ̃ T φl −ψT
l ε + ∆̃l −

∂αl−1

∂ θ̂

˙̂θ (19)

where φl = ϕθ l + ζ T ϕη l − ∑l−1
j=1

∂αl−1

∂x j
ϕθ j and ∆̃l = ∆l −

∑l−1
j=1

∂αl−1

∂x j
∆ j. Choosing Vl =Vl−1 + 1

2
z2

l , then its time deriva-

tive is

V̇l =
l

∑
j=1

[

−k jsz
2
j + z j(α js2 − θ̃ T φ j −ψT

j ε + ∆̃ j)−
∂α j−1

∂ θ̂

˙̂θz j

]

(20)

where ψT
j = 0, ∀ j < l. The ARC design can be applied

to synthesize a robust control function αls2 satisfying the

following two conditions

i. zl(αls2 − θ̃ T φl −ψT
l ε + ∆̃l) ≤ ǫl

ii. zlαls2 ≤ 0
(21)

Remark 3: One smooth example of αls2 satisfying (21)

can be found in the following way. Let hl be any n-th order

continuous function satisfying

hl ≥ |θM||φl |+ |ψl ||Ωζ0
|+ δ̃l (22)

where θM
∆
= θmax−θmin and δ̃l

∆
= ∑l−1

j=1 |
∂αl−1

∂x j
|δ j +δl . |Ωζ0

| is

the length of the set Ωζ0
, i.e., the maximum distance between

any two points in Ωζ0
. Then αls2 can be chosen as

αls2 = −
1

4ǫl

h2
l zl (23)

It is easy to verify that this choice of αls2 satisfies (21).

D. Main Results

Theorem 1: Let the parameter estimates be updated by the

adaptation law (3) in which τθ is chosen as τθ = ∑l
j=1 φ jz j,

and τη is chosen as τη = ∑l
j=1 z jψ j.

Let cθ ji and cφki be the i-th diagonal elements of the

diagonal matrices Cθ j and Cφk respectively. If the con-

troller parameters Cθ j and Cφk are chosen such that c2
φki ≥

n
4 ∑l

j=2
1

c2
θ ji

, ∀k, i, Then, the control law (18) guarantees that

A. In general, all signals are bounded. Furthermore, the

positive definite function Vl is bounded above by

Vl(t) ≤ e−λl tVl(0)+
∑l

j=1 ǫ j

λl

(1− e−λlt) (24)

where λl = 2min{g1, · · · ,gl}.

B. If after a finite time t0, there exist parametric uncertain-

ties only (i.e., ∆η = 0 and ∆i = 0, ∀t ≥ t0), then, in addition to

results in A, zero final output tracking error is also achieved,

i.e, z1 −→ 0 and as t −→ ∞.

Proof: For part A, from (12), (18) and (20), we have

V̇l ≤ ∑l
j=1

{

(−g j −|
∂α j−1

∂ θ̂
Cθ j|

2 −|Cφ jΓθ φ j|
2 − cθ |ψ j|

2)z2
j

+z j(α js2 − θ̃ T φ j −ψT
j ε + ∆̃ j)− z j

∂α j−1

∂ θ̂

˙̂θ
}

(25)

By completion of square

−
l

∑
j=2

z j

∂α j−1

∂ θ̂

˙̂θ ≤
l

∑
j=2

(|
∂α j−1

∂ θ̂
Cθ j|

2z2
j +

1

4
|C−1

θ j
˙̂θ |2) (26)

Noting that C−1
θ j and Γθ are diagonal matrices, from (3) and

(4), we have

∑l
j=2 |C

−1
θ j

˙̂θ |2 = ∑l
j=2 |C

−1
θ j Projθ̂ (Γθ τ)|2 ≤ ∑l

j=2 |C
−1
θ j Γθ τ|2

≤ ∑l
j=2(∑

l
k=1 |C

−1
θ j Γθ φkzk|)

2 ≤ l ∑l
j=2(∑

l
k=1 |C

−1
θ j Γθ φk|

2z2
k)

(27)

Thus, if Cθ j and Cφk satisfy the conditions in the theorem,

we have

−
l

∑
j=2

z j

∂α j−1

∂ θ̂

˙̂θ ≤
l

∑
j=2

|
∂α j−1

∂ θ̂
Cθ j|

2z2
j +

l

∑
k=1

|C−1
φk Γθ φk|

2z2
k

(28)

From (25) and the properties of each α js2, we have

V̇l ≤
l

∑
j=1

(−g jz
2
j + ǫ j) ≤−λlVl +

l

∑
j=1

ǫ j (29)

which leads to (24). The boundedness of z j is thus proved.

Using the standard arguments in the backstepping designs

[4], it can be proved that all internal signals in the first l−1

steps are globally uniformly bounded. Furthermore, since

xl = zl +αl−1, xl is also bounded. Thus, x = [x1, · · · ,xl ]
T are

bounded. From the bounded-input-bounded-state Assump-

tion 4, Lemma 1 and the bounded internal state Assumption

2, ζ0, ζ and η are all bounded. Recursively using the fact

that xi = zi +αi−1, it is obvious that αi and xi are bounded.

Thus the boundedness of u is apparent. This proves the part

A.

For part B, when ∆η = 0 and ∆i = 0, from (25) and (28),

noting the condition ii of (21) and (15), we have

V̇l ≤
l

∑
j=1

(

−g jz
2
j − cθ |ψ j|

2z2
j − z jθ̃

T φ j − z jψ
T
j ε

)

(30)

Define a new p.s.d function Va as Va = Vl + 1
2
θ̃ T Γ−1

θ θ̃ +
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1
2
εT Γ−1

η ε . Then after a series of derivations,

V̇a ≤ ∑l
j=1

(

−g jz
2
j − cθ |ψ j|

2z2
j

)

+ θ̃ T (Γ−1Projθ̂ (Γτθ )− τθ )

+εT Γ−1
η [Projζ0

(Gη ζ0 +Hη +Γη τη)

−Gη ζ0 −Hη −Γη τη ]+ εT Γ−1
η Gη ε

(31)

Since εT Γ−1
η Gη ε = 1

2
εT (Γ−1

η Gη(x)+GT
η(x)Γ−1

η )ε , from As-

sumption 3, εT Γ−1
η Gη ε ≤ 0. Using (5) and (8), we have

V̇a ≤ ∑l
j=1−g jz

2
j , from which z j ∈ L2[0, ∞). It is also easy

to check that ż j is bounded. Hence, by the Barbalat’s lemma,

z → 0 as t → 0, which proves part B of Theorem 1.

IV. PRACTICAL DESIGN EXAMPLE AND

SIMULATION RESULTS

A. Systems with Dynamic friction

Nowadays, the control of mechanical systems with dy-

namic friction has become increasingly popular. A kind

of friction model called LuGre model [1] has seen wide

application. Now we consider a linear motor driven stage

with dynamic friction existing between the contact surfaces.

With the LuGre model proposed in [1], [7],

ż = ẋ−
|ẋ|

g(ẋ)
z+∆z (32)

g(ẋ) = α0 +α1e−(ẋ/vs)
2

(33)

mẍ = Ku−σ0z−σ1h(ẋ)ż−α2ẋ+∆x (34)

where m is the mass, u is the input voltage, K is the gain

from voltage to the force, z represents the unmeasurable

internal friction state, σ0, σ1, α2 are unknown friction force

parameters that can be physically explained as the stiffness,

the damping coefficient of bristles, and viscous friction

coefficient. x, ẋ are the position and velocity respectively.

g(ẋ) describes the Stribeck effect: σ0α0 and σ0(α0 + α1)
represent the levels of the Coulomb friction and stiction force

respectively, and vs is the Stribeck velocity. ∆z and ∆x are the

modeling errors and disturbances. Let yd(t) be the desired

motion trajectory, which is assumed to be known, bounded,

with bounded derivatives up to the second order. We want

to design a control law u, such that the output x can track

yd(t) as close as possible, in spite of various uncertainties.

Let us denote η = [σ0z
K

σ1z
K

]T to be the unmeasured inter-

nal states, θ = [σ0
K

σ1
K

α2
K

∆̄]T and θm = m
K

be the unknown

parameters with known bounds, where ∆̄ is the constant

portion of disturbances, and ∆̄ = (σ1h(ẋ)∆z + ∆x)/K − ∆̃.

∆̃ is the time-varying portion of the disturbances. Denote

x = [x1 x2]
T = [x ẋ]T . Then the system can be represented by

η̇ = Fη θ +Gη η +∆η ,
ẋ1 = x2

θmẋ2 = u+θ T ϕθ +ϕT
η η +∆x

y = x1

(35)

where

Fη =

[

x2 0 0 0

0 x2 0 0

]

, Gη =

[

− |x2|
g(x2) 0

0 − |x2|
g(x2)

]

ϕθ = [0 −h(x2)x2 − x2 1]T , ϕη = [−1
h(x2)|x2|

g(x2) ]T ,

∆η = [σ0∆z σ1∆z]
T , ∆x = ∆̃

(36)

This system is of the form (1), except that the unknown

parameter θm appears in front of ẋ2. In this case, we only

need to make a small modification to the proposed algorithm,

as shown later. Now, we will show that this system satisfies

all the assumptions made in section II and the internal states

are non-uniformly detectable.

Since the physical meanings of all unknown parameters

in (35) are known, it is safe to assume that the unknown

parameters, uncertain nonlinearities and disturbances are

bounded by known bounds. Thus Assumption 1 is satisfied.

It can also be seen that the pair (ϕT
η , Gη) is not uniformly

detectable. Because at x = [x1 0]T , we have Gη = 02×2.

Then for any ω(x)∈ R2, the matrix A(x) = Gη(x)− ∂ω
∂x2

ϕT
η =

[

∂ω1
∂x2

0
∂ω2
∂x2

0

]

will always have zeros in the second column.

Thus, techniques in [10], [5] do not apply here. However,

since z represents the deflection of bristles between the

contact surfaces, z is physically bounded [1]. Then η =
[σ0z

K
σ1z
K

]T is also bounded. So Assumption 2 is satisfied.

Since Gη(x) is a diagonal negative semi-definite matrix for

all x, for any diagonal matrix Γη > 0, we have Γ−1
η Gη(x)+

GT
η(x)Γ−1

η = 2Γ−1
η Gη(x) ≤ 0, ∀ x ∈ R2. So Assumption 3 is

satisfied. It can also be easily checked that Assumption 4 is

satisfied. Since all assumptions required for the system are

satisfied, we can use the technique proposed in this paper to

design a control law.

B. Control Law Design

Letting α0 = yd(t), and z1 = x1 −α0 be the tracking error,

then, ż1 = ẋ1 − α̇0 = x2 − α̇0. Selecting α1 = −k1z1 + α̇0 to

be the desired x2, and defining z2 = x2 −α1, then

θmż2 = u+θ T (ϕθ +ζ ϕη)+ϕT
η ζ0−ϕT

η ε +∆x +k1θmż1−θmα̈0

(37)

Then the state estimator and the parameter adaptation laws

are chosen as

ζ̇0 = Projζ0
(Gη ζ0 +Γη ϕη z2), ζ̇ = Gη ζ +Fη

˙̂θ = Projθ̂ (Γθ (ϕθ +ζ T ϕη)z2),
˙̂θm = Projθ̂m

[γθm
(k1ż1 − α̈0)z2].

(38)

In this case, Ωη is a square set, i.e., Ωη = [ηmin1,ηmax1]×
[ηmin2,ηmax2]. From the special structure of Fη and Gη , it

is obvious that only ζ11 and ζ22 take effect. With this fact,

Ωζ0
= [ζ0min1,ζ0max1]× [ζ0min2,ζ0max2], where

ζ0maxi = ηmaxi + sup
t>0

[max(|θmaxi|, |θmini|)|ζii(t)|]

ζ0mini = ηmini − sup
t>0

[max(|θmaxi|, |θmini|)|ζii(t)|]
(39)

for i = 1,2. α2s1 is chosen as α2s1 = k2z2. For α2s2, we use

the form given by (23): α2s2 = − 1
4ǫ

h2z2. h is chosen to be
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the right side of (22), which is a continuous function with

respect to ϕθ , ϕη , ζ . The control law is thus given by

u = −k2z2 +α2s2 − θ̂ T (ϕθ +ζ T ϕη)−ϕT
η ζ0 − θ̂m(k1ż1 + α̈0)

(40)

C. Simulation Results

For simulation, we choose the system parameters to

be the same as that used in [6], i.e., θm = 0.12, θ =

[7000 1176 0.166 0]T , g(x2) = 0.1236+0.0861e−|x2/0.0022|

7000
, h(x2) =

0.00013
0.00013+|x2|

. The internal state z is within ±0.00005.

In addition, we set the uncertain nonlinearity term

∆x = 0.1sin( 2π
0.02

x1) + 0.1cos( 2π
0.02

x1) + 0.02sin( 4π
0.02

x1) +
0.02cos( 4π

0.02
x1) to simulate the effect of cogging forces on

the linear motor, and ∆η = n(t)|x2| to represent the modeling

error of the internal state dynamics where n(t) is a uniformly

distributed random number between −0.2 and 0.2.

The controller parameters are chosen as θ̂m(0) = 0.1,

θ̂(0) = [6000 1100 0.2 0]T , θmmax = 0.2, θmmin = 0.08,

θmax = [10000 1500 0.5 0.5]T , θmax = [4000 500 0 −
0.5]T , k1 = 50, k2 = 10, ǫ = 0.008, γθm

= 5 × 108, Γθ =
diag{2.5×1011 2.5×109 10 500}, Γη = diag{1500 200},

ηmax = [zmax · θ1max zmax · θ2max]
T = [0.5 0.075]T , ηmin =

[zmin ·θ1max zmin ·θ2max]
T = [−0.5 −0.075]T , ζ0(0) = [0 0]T

and ζ (0) = 02×4.

The design trajectory is chosen as a sinusoidal signal, with

the amplitude of 0.002 and the frequency of 1Hz. We set the

initial value of the unknown internal state z to be 0.00003.

The tracking error and control input with disturbances added

to the system are plotted in Fig. 1. As can be seen from the

plots, the tracking error converges very fast after the first

few cycles, showing a good transient performance and final

tracking accuracy. Furthermore, the input signal is bounded,

and the tracking error is less than 0.05% magnitude of the

desired trajectory in spite of large disturbances, showing the

robustness and good capability of disturbance rejection of

the proposed ARC algorithm.

Then, we remove all the disturbances and modeling errors,

and use the same trajectory, same initial internal state value

and same controller parameters. The tracking error and con-

trol input are plotted in Fig. 2. As can be seen, in the presence

of parameters uncertainties only, asymptotic output tracking

is achieved. These results demonstrate the applicability of

the proposed method in practical design cases.

V. CONCLUSION

In this paper, a discontinuous projection based adaptive

robust control algorithm has been designed for a class of

nonlinear systems in semi-strict feedback form with bounded

but non-uniformly detectable internal states. Specifically,

discontinuous projection algorithm has been used to give

the estimation of both the internal states and the unknown

parameters. This algorithm has been theoretically proved to

be robust to disturbances and uncertain nonlinearities with

guaranteed transient performance while having asymptotic

output tracking performance in the presence of parametric

uncertainties only. A practical example - control of mechan-

ical systems with dynamic friction - is used for case study.
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Fig. 1. Tracking error and control input, system with disturbances
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Fig. 2. Tracking error and control input, system without disturbances

The simulation results demonstrate the applicability of the

proposed control methodology.
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