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Abstract— The paper deals with a class of linear continuous-
time state-delay systems with norm-bounded uncertainties
which are composed by overlapped subsystems. The main goal
is to design overlapping guaranteed cost controllers for this
class of systems by using the corresponding feasible solution of
a linear matrix inequality (LMI) problem. In the overlapping
decompositions context the selection of so-called complementary
matrices is crucial. The paper presents a procedure to obtain
numerical complementary matrices such that a bounded cost
of the quadratic performance index is minimized. A simple
example is supplied to illustrate the use of the proposed strategy.

I. INTRODUCTION

Frequently, complex systems share components and can
be treated as interconnected systems with overlapped subsys-
tems. For these kind of systems a mathematical framework,
the Inclusion Principle, has been developed [6], [7], [8],
[9], [11]. The inclusion principle gives the conditions under
which an initial system, sharing some components, can be
expanded to a bigger dimensional space in such a manner
that the overlapped subsystems appear now as disjoint. In
this virtual new system, decentralized control laws can be
designed to be contracted and implemented into the initial
one in order to control it.

The initial and expanded system are related by linear
transformations. These transformations involve a set of so-
called complementary matrices. The influence of the choice
of these matrices on properties like stability, controllability
or observability has been illustrated in previous works [1],
[2], [3], [4].

A generic goal is to design robust controllers which make
the resulting closed-loop systems not only asymptotically sta-
ble but also guaranteeing an adequate level of performance.
In this paper an LMI approach will be used to obtain the
control laws. Working with overlapping decompositions we
are interested in designing decentralized controllers such that
the corresponding gain matrices have a tridiagonal block
form, which offer maximal improvement in performance at
a minimal cost in information exchange, [12]. The main
motivation of this paper is to offer a computational strategy
to obtain numerical complementary matrices which are used
to design an overlapping controller with a minimum cost
bound of the performance index.
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II. BACKGROUND RESULTS

Consider two systems described by the state equations

S : ẋ(t) = [A+∆A(t)]x(t)+ [B+∆B(t)]u(t)
+ [C +∆C(t)]x(t−d),

x(t) = ϕ(t), −d ≤ t ≤ 0,

(1)

S̃ : ˙̃x(t) =
[
Ã+∆Ã(t)

]
x̃(t)+

[
B̃+∆B̃(t)

]
u(t)

+
[
C̃ +∆C̃(t)

]
x̃(t−d),

x̃(t) = ϕ̃(t), −d ≤ t ≤ 0,

(2)

where x(t)∈Rn and u(t)∈Rm are the state and the input
of S, x̃(t)∈Rñ and u(t)∈Rm are the corresponding to S̃.
Let ϕ(t) be a continuous vector valued initial function. Let
x0=x(0), x̃0=x̃(0) be the initial states of the systems S and S̃,
respectively. Suppose that the dimension of the state vector
x(t) of S is smaller than the vector x̃(t) of S̃. The matrices
A, B, C, Ã, B̃ and C̃ are constant of appropriate dimensions.
∆A(t), ∆B(t), ∆C(t), ∆Ã(t), ∆B̃(t) and ∆C̃(t) are real-valued
matrices of uncertain parameters. Uncertainties are assumed
to be norm-bounded as follows:

[∆A(t) ∆B(t) ∆C(t)] = E F(t) [E1 E2 E3] , (3)[
∆Ã(t) ∆B̃(t) ∆C̃(t)

]
= Ẽ F̃(t)

[
Ẽ1 Ẽ2 Ẽ3

]
, (4)

where E, E1, E2, E3, Ẽ, Ẽ1, Ẽ2 and Ẽ3 are known constant
real matrices. F(t), F̃(t) are unknown matrix functions with
Lebesgue measurable elements such that

FT (t)F(t)≤ I, F̃T (t)F̃(t)≤ I. (5)

Associated with the systems S and S̃ we have the following
cost functions:

J(x0,u) =
∫

∞

0

[
xT (t)Q∗x(t)+uT (t)R∗u(t)

]
dt, (6)

J̃(x̃0,u) =
∫

∞

0

[
x̃T (t)Q̃∗x̃(t)+uT (t)R̃∗u(t)

]
dt, (7)

respectively. Q∗, Q̃∗ are symmetric positive semidefinite
matrices and R∗, R̃∗ are symmetric positive definite matrices.

A. An LMI Approach
Theorem 1: Suppose that there exist constant parame-

ters µ>0, ε>0, symmetric positive-definite matrices X , S,
Z∈Rn×n and a matrix Y∈Rm×n such that the following LMI

Ψ (E1X +E2Y )T X Y T CS 0 X
E1X +E2Y −µI 0 0 0 0 0

X 0 −(Q∗)−1 0 0 0 0
Y 0 0 −(R∗)−1 0 0 0

SCT 0 0 0 −S SET
3 0

0 0 0 0 E3S −εI 0
X 0 0 0 0 0 −S

<0

(8)
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is feasible, where Ψ=AX+BY +(AX+BY )T+Z+(µ+ε)EET .
Then, the feedback control law u(t)=Kx(t)=Y X−1x(t) is
a quadratic guaranteed cost controller for the closed-loop
uncertain time-delay system and satisfies

J(x0,u)≤J∗=ϕT (0)X−1ϕ(0)+
∫ 0
−d ϕT (s)

[
S−1+X−1ZX−1]ϕ(s)ds.

(9)
Proof: A similar proof can be seen in [10].

B. Inclusion Principle

Consider the following transformations:

V : Rn −→ Rñ, U : Rñ −→ Rn, (10)

where V and U are full-rank matrices such that UV =I.
Definition 1: (Inclusion Principle) A system S̃ includes

the system S, denoted by S̃⊃S, if there exists a pair of
matrices (U,V ) satisfying UV =I and such that for any initial
state x0 and any fixed input u(t) of S, the choice x̃0=V x0 of
the system S̃ implies x(t;x0,u)=Ux̃(t;V x0,u) for all t. If S̃⊃S,
then S̃ is said to be an expansion of S and S is a contraction
of S̃.

Definition 2: A control law u(t)=K̃x̃(t) designed in the
system S̃ is contractible to u(t)=Kx(t) of S if the choice
ϕ̃(t)=V ϕ(t) implies Kx

(
t;ϕ(t),u(t)

)
=K̃x̃

(
t;V ϕ(t),u(t)

)
for

all t, any initial function ϕ(t) and any fixed input u(t).

C. Complementary Matrices

Suppose that (U,V ) is a given pair of matrices. Then, Ã,
∆Ã, B̃, ∆B̃, C̃, ∆C̃, Q̃∗ and R̃∗ can be described as follows:

Ã = VAU +M, ∆Ã(t) = V ∆A(t)U,

B̃ = V B+N, ∆B̃(t) = V ∆B(t),
C̃ = VCU +Md , ∆C̃(t) = V ∆C(t)U,

Q̃∗ = UT Q∗U +MQ∗ , R̃∗ = R∗+NR∗ ,

(11)

where M, N, Md , MQ∗ and NR∗ are the so-called comple-
mentary matrices. For S̃ to be an expansion of S, a proper
selection of M and N is required [6], [7], [8], [9], [11].

In this paper, we assume that the structure of the matrices
A, B and C given in (1) have the form

A,C =

∗11 ∗12

p
p
p
∗13−−−

p
p
p
−−−∗21 ∗22 ∗23−−−

p
p
p
−−−

∗31

p
p
p
∗32 ∗33

 , B =

[B11 B12

B21 B22

B31 B32

]
, (12)

where the submatrices (∗)ii and Bi j for i=1,2,3, j=1,2
are ni×ni and ni×m j dimensional matrices, respectively.
According to (12), a standard selection of the transformation
matrix V is given by

V =

 In1 0 0
0 In2 0
0 In2 0
0 0 In3

 . (13)

Theorem 2: Consider the systems (1) and (2) satisfying
(3), (4) and (5). Then S̃⊃S if and only if

UMiV = 0, UMi−1MdV = 0, UMi−1N = 0 (14)

for all i=1,2, ..., ñ.

Theorem 3: Consider the systems (1) and (2) satisfying
(3), (4) and (5) with the structures given in (12) and (13).
Suppose that Md=0. Then, S̃⊃S if and only if the comple-
mentary matrices M and N have the form

M =

[ 0 M12 −M12 0
M21 M22 M23 M24

−M21 −(M22+M23+M33) M33 −M24
0 M42 −M42 0

]
, N =

[
0 0

N21 N22
−N21 −N22

0 0

]
(15)

and satisfy the conditions[
M12

M23+M33
M42

]
[M22+M33 ]i−1 [M21 M22+M23 M24 ] = 0,

[
M12

M23+M33
M42

]
[M22+M33 ]i−1 [N21 N22 ] = 0

(16)

for all i=1,2, · · · , ñ−1.
Remark 1: By using the transformation V given in (13),

Theorem 3 provides the most general structure of the com-
plementary matrices M and N such that S̃⊃S.

D. Overlapping Guaranteed Cost Controllers

The objective is to implement an overlapping guaranteed
cost control, denoted by uD(t)=KDx(t), in the system (1) but
as a contraction of a guaranteed cost control uD(t)=K̃D x̃(t)
designed for the system S̃, [13]. The gain matrix K̃D in the
expanded system has the following structure:

K̃D =

[
K̃11 K̃12

p
p
p

0 0
−−− −−−

p
p
p
−−−−−−

0 0 p
p K̃23 K̃24

]
(17)

and the contracted gain matrix KD corresponds to

KD = K̃DV =

[
K̃11 K̃12

p
p 0

−−− −−− −−−
0 p

p K̃23 K̃24

]
. (18)

Remark 2: It is possible to use an LMI approach to
determine directly a gain matrix KD with the structure given
in (18) for the system S. However, it is necessary to impose
structural restrictions on the matrices Y and X in the form

Y =
[ y11 y12 0

0 y22 y23

]
, X =

[
x11 0 0
0 x22 0
0 0 x33

]
(19)

and, consequently, the cost bound J∗ can increase consider-
ably.

Remark 3: In (12), if B21=0 and B22=0 the corresponding
LMI may be infeasible and in this case the problem can be
harder to solve.

III. COMPUTATIONAL PROCEDURE

Up to now, we know the structure and the conditions on
the complementary matrices M and N given by Theorem 3,
but it is necessary to select their numerical values. For this
purpose, we consider two stages:
(a) The selection of the initial matrices M0 , N0 such that

S̃⊃S.
(b) The implementation of a Matlab-based iterative routine

seeking for “optimal” complementary matrices M and
N such that the cost bound J̃∗ is minimum.
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To solve the stage (a), we can observe that in the literature
the complementary matrices M and N are chosen in the
following forms (restrictions and aggregations) [11]:

1) M12 =
1
2

A12, M22 =
1
2

A22, M32 =−1
2

A22, M42 =−1
2

A32.

(20)

2) M21 = A21, M22 =
1
2

A22, M23 =−1
2

A22, M24 =−A23,

N21 = B21, N22 =−B22.
(21)

The full computational procedure corresponding to the
previous stage (b) can be summarized as follows:

• Consider
(
A,B,C,E,E1,E2,E3,Q∗,R∗

)
which defines a

system S together with a cost function J(x0,u).
• Select initial complementary matrices M0 and N0 with

the structures given in (20) or (21).
• Select the matrices MR∗ , NR∗ to construct an expanded

cost function J̃(x̃0,u).
• Define a function J̃∗(M,N) to calculate the bounded

cost from the matrices M and N.
• Minimize J̃∗(M,N) starting from the initial matrices

M0 , N0 .
At the end of this process, the optimal complementary
matrices Mopt and Nopt together with the minimum cost
bound J̃∗opt for the expanded system S̃ are obtained. For
these complementary matrices the corresponding gain
matrix K̃D is calculated.

IV. EXAMPLE

Consider the system S given in (1) with an associated cost
function (6) defined by the following matrices:

A =

 1 0
p
p
p

0
−−−

p
p
p
−−−

0 −2 1−−−
p
p
p
−−−

0
p
p
p

1 1

 , B =

[
1 0

1 0

0 1

]
, C =

0.1 0
p
p
p

0
−−−

p
p
p
−−−

0 0 0−−−
p
p
p
−−−

0.1
p
p
p

0 0.1

 ,

E =

[
0.1 0

0.1 0

0 0.1

]
, E1 = E3 =

[
0.1 0 0

0 0 0.1

]
, E2 =

[
0.1 0.1

0 0.1

]
,

Q∗ =

[
1 0 0

0 2 0

0 0 1

]
, R∗ =

[
1 0

0 1

]
, ϕ(t) =

[
0.1

t

0.1

]
, d = 1.

(22)
By choosing the complementary matrices

MQ∗ =

[
0 0 0 0
0 0.5 −0.5 0
0 −0.5 0.5 0
0 0 0 0

]
, NR∗ =

[
0 0

0 0

]
, (23)

we obtain Q̃∗=I4 and R̃∗=I2. In order to simplify the problem,
the matrix Md given in (11) is selected as Md=0. However,
any Md matrix satisfying (15)-(16) can be chosen. In this
example, we select the initial complementary matrices M0

and N0 in the form

M0 =

[
0 0 0 0
0 −1 1 −1
0 1 −1 1
0 0 0 0

]
, N0 =

[
0 0
1 0

−1 0
0 0

]
, (24)

according to (21). For the complementary matrices M0 and
N0 the initial cost bound is J̃∗

0
=2.55. Following the proposed

procedure, we obtain

Mopt =

[
0 0 0 0

0.2216 −1.2500 0.7500 −0.8697
−0.2216 1.2500 −0.7500 0.8697

0 0 0 0

]
, (25)

Nopt =

[
0 0

0.7500 −0.0263
−0.7500 0.0263

0 0

]
. (26)

By using the optimal complementary matrices Mopt and
Nopt given in (25) and (26), the minimum cost bound for the
decentralized expanded system S̃ results to be J̃∗opt=1.41. We
can observe that the difference between J̃∗

0
and J̃∗opt is very

significative, almost a 45% of reduction. The corresponding
contracted tridiagonal gain matrix is

KD = K̃DV =
[−9.2617 −0.2827 0

0 −2.2021 −11.5887

]
, (27)

which can be implemented into the initial system S in order
to control it. All computations have been performed using
Matlab LMI Control Toolbox and Optimization Toolbox [5].

V. CONCLUSION

This paper has dealt with guaranteed cost control for a
class of linear continuous-time state-delay uncertain systems
which are decomposed into overlapped subsystems. A design
strategy to obtain a tridiagonal guaranteed cost controller has
been presented. A procedure for the numerical computation
of complementary matrices such that a bounded cost is
minimized has been given. A simple illustrative example has
been offered.
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[6] M. Ikeda and D.D. Šiljak. Overlapping decompositions, expansions
and contractions of dynamic systems. Large Scale Systems, 1(1):29–
38, 1980.
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