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Abstract— In this paper, we focus on improving performance
and robustness in precision motion control (PMC) of multi-axis
systems through the use of time-varying weighting matrices. A
Norm Optimal (N.O.) framework is used to design optimal
learning filters based on design objectives. The general N.O.
framework is reformatted to include time-varying weighting
matrices which enable the controller to take the trajectory,
position-dependent dynamics, and time-varying disturbances
into consideration when designing the optimal learning con-
troller. A general approach for designing the different weighting
matrices is included. The time-varying weighting approach of
this framework enables one to focus on individual compo-
nents that affect the system at different times throughout the
trajectory independently. The performance benefits of time-
varying weighting matrices are illustrated through simulation
and experimental testing on a multi-axis robotic testbed.

I. INTRODUCTION

In this paper we present a method for improving the

precision motion control (PMC) of multi-input multi-output

(MIMO) manufacturing systems that execute the same task

repetitively. In many of these systems, there are position-

or time-varying dynamics that affect the performance or

robustness of the system at different times throughout a

single iteration. For these types of systems, it is beneficial

to consider a time-varying controller which enables one to

focus on the different position/time dynamics independently.

Focusing on individual dynamics at different times through-

out the iteration may result in a final outcome that not only

improves tracking control but is more robust to time-varying

disturbances.

The general norm optimal (N.O.) iterative learning control

(ILC) approach for PMC on multi-axis repetitive systems has

been used to implement time-invariant weighting matrices

that are designed to satisfy all constraints [1]. This approach

works well for systems that do not include time-varying

dynamics or disturbances. However, for systems which ex-

hibit time and/or position dependent behavior, limiting the

performance of the learning controller to the worst-case

dynamics may result in a more conservative controller.

In [2], [3], two novel control designs which focus on

N.O. time-varying weighting matrix design were introduced.

[2] presented a technique for improved contour tracking

of MIMO systems which requires coordinated positioning

between two or more axes. Reformatting the general N.O.

framework to include weighting on the contour error results

in a time-varying weighting matrix which is a function of

the contour tracking and the individual axis errors. [3] seeks

to maximize system performance while maintaining robust

monotonic convergence by shaping the weighting matrix

based on the initial tracking error.

While each of these approaches presents a motivating

example for time-varying one of the weighting matrices in

the cost function, this paper presents circumstances under

which the performance and/or the robustness of the system

would benefit by time-varying each of the weighting matri-

ces independently. Under certain design constraints, system

dynamics, and time-varying disturbances, a combination of

time-varied weighting matrices may be required for any

given system.

The outline of this paper is as follows. Section II motivates

the use of time-varying weighting matrices for enhanced

performance and robustness of a given system. The norm

optimal framework with regards to iterative learning control

will be discussed in Section III, including guidelines for

tuning the weighting matrices and the formulation of a

typical cost function. The design of time-varying weighting

matrices for enhanced performance and robustness benefits

using the norm optimal framework is described in Section

IV and V. Results from implementation of a time-varying

controller to a multi-axis robotic testbed are given in Section

VI. Conclusions are given in Section VII.

II. SYSTEMSETUP

ILC has often been used to improve the tracking perfor-

mance of systems that execute the same task multiple times

[4]–[6]. ILC uses the tracking errors from each iteration to

generate a feedforward control signal as a means of learning

and compensating for repetitive disturbances, unmodelled

dynamics, and tracking errors. In many manufacturing sys-

tems, the disturbances, dynamics, and tracking errors are

time and position dependent. For these systems, time-varying

controllers may be implemented in order to address specific

challenges at specific time intervals.

In this paper, we consider MIMO systems consisting of

two or more uncoupled axes (Fig. 1). The system is subject to

a trajectory which includes linear and contoured trajectories,

as well as low and high acceleration movements. The con-

toured trajectory requires coupled movements from multiple

axes in order to achieve the desired trajectory (see Fig. 2).
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Focusing on systems which contain multiple uncoupled axes

enables one to use cross-coupled iterative learning control

(CCILC) [7] to minimize contour tracking errors.

Fig. 1. Multi-axis Robotic Testbed
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Fig. 2. Raster trajectory containing linear, contoured, low acceleration,

and high acceleration sections

The contour tracking errors for the class of MIMO systems

described above can be defined with respect to individual axis

errors, ex and ey , and trajectory dependent gains known as

coupling gains [8], cx(k) and cy(k), where k is the time

interval from k = 0, 1, . . . , N − 1. Mathematically, this can

be shown as

ε(k) = −cx(k) · ex(k) + cy(k) · ey(k) (1)

ε(k) = C(k) · e(k), (2)

Linearized coupling gains have the following format

cx(k) = sin θ(k); cy(k) = cos θ(k), (3)

where θ is defined as the instantaneous angle of the reference

trajectory with respect to the x-axis of the testbed coordinate

system. Note that the use of trajectory-dependent coupling

gains leads to a time-varying controller.

Previous work in [2] introduced a N.O.-CCILC design

which focuses on minimizing contour tracking errors. The

objective of this work is to implement additional time-

varying design strategies in an effort to improve contour

tracking performance and robustness through the use of time-

varying weighting matrices in the N.O. framework. The

generalized structure for this framework, along with some

guidelines for tuning the design of the controller, is given in

the following section.

III. NORM OPTIMAL ILC

ILC control design using the N.O. framework uses the

lifted setting [9]. The lifted-system representation transforms

the qi-input, qo-output, two-dimensional (time and iteration)

system into an Nqi-input, Nqo-output, one-dimensional (it-

eration) system. In this setting, the discrete-time representa-

tion of a linear time invariant (LTI) system P (k) is presented

by its convolution matrix P using impulse response data

H(K),

P =







H(0) 0
...

. . .

H(N − 1) · · · H(0)






. (4)

For MIMO systems, H(K) represents the impulse response

from each qi input to each qo output,

H(k) =







H11(k) · · · H1qi(k)
...

...

Hqo1(k) · · · Hqoqi(k)






, (5)

with Hil(k) the impulse response from input l to output i.

The error at trial j is defined as, ej = yr−yj, where yr is

the reference signal and yj = Puj, with yr and uj defined

as,

yr =
[

yr
T (0) yr

T (1) · · · yr
T (N − 1)

]T
, (6)

uj =
[

uT
j (0) uT

j (1) · · · uT
j (N − 1)

]T
, (7)

with yr
T (k) =

[

yr
1(k) · · · yr

qo(k)
]

and uT
j (k) =

[

u1
j (k) · · · u

qi

j (k)
]

.

The N.O. algorithm is designed to minimize a quadratic

optimization problem [1], [10], [11],

J = e
T
j+1Qej+1 + u

T
j+1Suj+1 + (uj+1 − uj)

T
R(uj+1 − uj).

(8)

where (Q,R,S) are symmetric, positive definite real-valued

matrices of appropriate dimension and PT QP + S + R is

positive definite. For many designs, (Q,R,S) ≡ (qI, sI, rI),
with q, s, r real-valued positive scalars. Applying the substi-

tution ej+1 = ej − P(uj+1 − uj), differentiating J with

respect to uj+1, setting the result to zero, and rearranging
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the solution, yields the general N.O. controller,

uj+1 = Luuj + Leej (9)

Lu = (PT QP + S + R)−1(PT QP + R)

Le = (PT QP + S + R)−1PT Q.

An essential part of the design process involves determin-

ing the weighting matrices (Q,S,R). In order to determine

which weighting matrices should be time-varied depending

on performance and robustness requirements, it is necessary

to understand how these matrices affect monotonic conver-

gence, performance, robust convergence, and performance

in the presence of stochastic disturbances. [2] presents some

guidelines for tuning the matrices based on these criteria. A

brief summary of the guidelines is listed below.

A. Tuning Guidelines

Based on the analysis of monotonic convergence, perfor-

mance, robust convergence, and performance in the presence

of stochastic disturbances in [2], the following tuning guide-

lines for norm-optimal ILC control can be used.

1) Design Q to correspond to the desired weighting of

the error.

2) Design S such that the system is monotonically con-

vergent. Start with an S yielding ||S||i2 ≈ 0.01||P||i2,

where the magnitude of ||P||i2 is related to system un-

certainty. Subsequently, reduce ||S||i2 until the system

diverges. Set ||S||i2 = 2 · ||S||min
i2 to allow for a safety

factor of 2.

3) When trial-varying disturbances are present, steady

state error fluctuations will occur. Start with ||R||i2 =
0 and increase ||R||i2 until the error fluctuations are

within desired bounds, or the root mean square (RMS)

error does not decrease anymore.

The next section presents a design method for determining

time-varying matrices based on initial contour error signals

for the trajectory in Fig. 2.

IV. Q WEIGHTING MATRIX DESIGN

When designing the Q weighting matrix, it is advanta-

geous to hold the S and R matrices constant. Using the

tuning guidelines from [2], the scalar gains for the S and

R weighting matrices were heuristically chosen as (s =
1e−2, r = 2e−2) to meet design specifications. Previous

work [2] demonstrated a technique for reformatting the N.O.

algorithm to comply with contour tracking objectives, result-

ing in a time-varying Q weighting matrix. In this section, the

initial error signal resulting from implementing the reference

trajectory of Fig. 2 on the multi-axis system in Fig. 1 is used

to design a time-varying weighting matrix which takes into

consideration linear versus contoured sections, as well as low

versus high acceleration sections within the given trajectory.

A. Switching between CCILC and ILC

In order to explore the performance benefits of implement-

ing individual axis versus cross-coupled ILC on different

sections of the reference trajectory, we first extend the N.O.

algorithm to include contour and individual axis errors. Using

a cost function of the form (8), replace the error term, e, with

the contour error term, ε. Substituting (2) for the contour

error and setting Q = aI results in:

J = eT
j+1(a · Qccilc)ej+1 + uT

j+1Suj+1 (10)

+(uj+1 − uj)
T R(uj+1 − uj)

with Qccilc given by

Qccilc =







CT (0)C(0) 0
. . .

0 CT (N − 1)C(N − 1)






,

(11)

where

CT (k)C(k) =

[

cx(k)cx(k) −cx(k)cy(k)
−cy(k)cx(k) cy(k)cy(k)

]

. (12)

Combining (8) with Q = bI and (10) results in a

cost function capable of focusing on individual axis errors,

contour errors, or a combination of the two.

J = eT
j+1(aI · Qccilc + bI)ej+1 + uT

j+1Suj+1 (13)

+(uj+1 − uj)
T R(uj+1 − uj).

The gains a and b refer to the weighting gains applied to

the contour or individual axis tracking, respectively. While

generally constant, these gains can be varied throughout

the trajectory using shaping criteria based on the reference

trajectory.

Consider the trajectory in Fig. 2. N.O.-CCILC has been

shown to result in the most improved contour tracking

performance for rasters ( [2]), such as sections A and C. The

contour tracking performance comes from decoupling the

position profile from the time profile. N.O.-ILC can be used

to reestablish position-time synchronization by focusing on

minimizing the individual axis errors during the linear sec-

tions. In order to maximize the contour tracking performance,

while maintaining position/time synchronization at the start

of each raster, N.O.-CCILC is implemented in sections A

and C, while N.O.-ILC is used in section B.

In order to switch between the two controllers, the a and

b gains alternate between values of 1 and 0. To facilitate

smooth transitions between the sections, the time-varying

vectors, a(k) and b(k) for k = 1, . . . , N − 1, are filtered

using a lowpass Gaussian filter with a bandwidth of 15 Hz.

This results in gain vectors of the form shown in Fig. 3.

While switching between ILC and CCILC tracking focuses

on the differences between linear and contour trajectories,

the high and low acceleration components of the reference

trajectory can also be addressed using time-varying gains.

B. High acceleration versus low acceleration tracking

If we focus on section A from Fig. 2, the scalar weighting

a represents constant performance weighting on contour

error across the entire section. In many applications, the
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desired trajectory does not remain uniform throughout the

time interval resulting in marked differences in system per-

formance at these locations. For example, in section A, the

raster trajectory includes short durations of high acceleration

content (see circled sections of Fig. 2) combined with

large durations of low acceleration content. For these types

of trajectories, the contour tracking performance degrades

drastically in the high acceleration content locations, as

illustrated in Fig. 4.

0 200 400 600 800 1000 1200
−15

−10

−5

0

5

10

Sample number

C
o
n
to

u
r 

e
rr

o
r 

[µ
m

]

t
2

t
4

t
5

t
1

t
3

t
6

Fig. 4. Initial contour tracking errors without the use of learning

Figure 4 clearly indicates the locations where increased

emphasis on the contour error (larger a gains) may result in

better contour tracking. From this information, the locations

where the a gain will be increased from 1 to 30 have been

identified as t1, t2, t3, t4, t5, and t6. As with the switching

process described in Section IV-A, the transitions between

high and low gain were smoothed out using a lowpass

Gaussian filter with a 15 Hz bandwidth. The modified time-

varying a profile is given in Fig. 5.

The value of the gain during the high acceleration sections

was chosen by increasing the value until the performance

of the system either became erratic or unstable, and then

reducing the gain to provide for a safety factor on the real

system. For this system we chose a safety factor of 2.
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Combining the two methods results in a time-varying

weighting matrix that includes switching between CCILC

and ILC and incorporating high gains at locations requiring

high acceleration tracking. The resulting weighting vectors

for gains a(k) and b(k) are plotted in Fig. 6. Note the high

gain section for b at the beginning and end of the switching

sections. The transitions between CCILC and ILC occur at

high acceleration sections of the trajectory, thereby requiring

higher gain values for these locations.
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Fig. 6. Profile for the weighting gains for a time-varying Q matrix

C. Monotonic Convergence

An important consideration in ILC design is stability and

convergence. In some cases, a stable ILC design may produce

a system which exhibits large transients before convergence

[6]. Therefore, this paper focuses on monotonic convergence.

Given the ILC controller (9) and the system dynamics

yj = Puj, the trial domain update law can be given by

uj+1 = (Lu − LeP)uj + Leyr. (14)

Monotonic convergence requires the relatively well known

condition |Lu − LeP|i2 < 1 such that ‖uj+1‖2 < ‖uj‖2.

Here ‖ · ‖i2 is defined as the largest singular value of a
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given matrix. For the norm optimal controller, we have Lu−
LeP = (PT QP + S + R)−1R. As a result, convergence

is guaranteed for any symmetric positive definite (Q,S,R)
with PT QP + S + R positive definite.

V. S AND R WEIGHTING MATRIX DESIGN

The previous section presented a technique for designing

a time-varying weighting matrix for performance benefits.

An equally important aspect in control design is ensuring

robustness of the controller. This section focuses on imple-

menting time-varying weighting matrices in order to provide

robustness in the presence of position dependent dynamics

and position/time dependent disturbances and noise.

A. Time-varying S Weighting Matrix

Using analysis provided in [2], [12] it can be shown that

the S weighting matrix should be designed to ensure robust

monotonic convergence in the presence of model uncertainty.

Assuming a weighting matrix of the form S = sI, the

weighting gain s provides constant weighting for uniform

model uncertainty. However, in some applications, the dy-

namics are position dependent [13]. For applications which

extend into locations with different dynamics, a time-varying

weighting gain s(k) enables the controller to adequately

address the model uncertainty at each location.

B. Time-varying R Weighting Matrix

In this subsection, we consider performance in the pres-

ence of stochastic disturbances. As is shown in [3], the

influence of stochastic disturbances can be reduced by re-

ducing the convergence speed. In [2] the dominating factor

in convergence speed was shown to be the R weighting

matrix. While a constant weighting gain r in R = rI

provides consistent influence on the effect of stochastic

disturbances, many applications include disturbances that

change depending on time or position. For these cases,

designing a time-varying weighting gain r(k) results in a

more robust controller that is capable of handling different

types of disturbances without being overly conservative or

becoming unstable.

The next section presents some results from implement-

ing time-varying N.O. controllers on a multi-axis robotic

testbed.

VI. RESULTS

A. Experimental Setup

In this section we apply the methodology presented in

Section IV to design a time-varying N.O. controller for the

multi-axis robotic testbed of Fig. 1. For simulation purposes,

dynamics models of the x and y axes, along with stabilizing

feedback controllers, were developed in [14]. Numerical

values identified for the plant models along with controller

coefficients can be found in the Appendix.

Pi(z) =
K(z + αi1)(z

2
− αi2z + αi3)(z

2
− αi4z + αi5)

(z − βi1)(z − 1)(z2 − βi2z + βi3)(z2 − βi4z + βi5)
.

(15)

kpi(z) =
k(z − αi1)(z − αi2)(z − αi3)

(z − βi1)(z − βi2)(z − βi3)
, i = x, y. (16)

The reference signal applied to the system is the combined

raster scanning trajectory of Fig. 2 (N = 1300), in which the

motion consists of linear and contour sections, as well as long

periods of low acceleration content followed by short periods

of high acceleration transitions from one direction to another.

This type of trajectory is commonly used in atomic force

microscopy (AFM), as well as other manufacturing systems

which require sharp transitions between signals. Sections A

and C of Fig 2 correspond to locations where a N.O.-CCILC

design focuses on minimizing contour tracking, while in

section B N.O.-ILC is used to improve individual axis

tracking and reestablish position/time synchronization. The

high acceleration transition points, identified using circles on

Fig. 2, correspond to locations within the trajectory where

the desired trajectory results in increased contour tracking

errors. These areas indicate potential opportunities for large

weighting gains to provide improved tracking capabilities as

compared to small weighting gains with respect to contour

tracking.

B. Simulation Results

The following results were obtained using the stabilized

dynamic models from (15) and (16), the reference trajectory

from Fig 2, and the N.O. controllers (9).

Since [2] demonstrates the contour tracking performance

benefits of N.O.-CCILC over N.O.-ILC, this paper focuses

on comparing the modified N.O. controller with time-varying

weighting matrices to the N.O.-CCILC design. Figure 7

illustrates the effect of using time-varying weighting gains,

a(k) and b(k), on the RMS contour error, as compared to

basic feedback control and N.O.-CCILC. Figure 8 shows the

improvement in the contour tracking at the corners as a result

of high weighting gains at these particular locations. Figure 9

demonstrates the improvement in the individual y-axis track-

ing, and therefore enhanced position/time synchronization, at

the locations where the controller switches between CCILC

and ILC.
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Fig. 7. Comparison of RMS contour errors for feedback, N.O.-CCILC and

TV N.O. control [Simulation]
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Figures 7-9 clearly indicate the performance improvements

obtained by implementing the modified N.O. controller with

a time-varying Q weighting matrix in simulation. The track-

ing improvements from experimental testing are given in the

next section.

C. Experimental Results

In order to validate the simulation results, N.O.-CCILC

and TV N.O. controllers were implemented on the exper-

imental testbed from Fig. 1. Analogous to the simulation

results, the TV N.O. controller results in the most improved

contour tracking performance as illustrated in Fig. 10 and

Fig. 11.
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Fig. 11. Trajectory tracking comparison of N.O.-CCILC and TV N.O. con-

trollers. Notice that the time-varying controller produces tighter tolerances
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[Experimental]

In Fig. 10, TV N.O. control produces the lowest nor-

malized RSM contour tracking errors as compared to N.O.-

CCILC and Feedback control with a 32% reduction from

N.O.-CCILC to TV N.O. control. The contour tracking

performance improvements resulting from this reduction in
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RMS contour error can be see in Fig. 11. These results

indicate how the addition of a time-varying Q weighting

matrix in the N.O. learning control design results in more

precise contour tracking for this particular trajectory.

VII. CONCLUSION

In this paper we discussed a time-varying norm optimal

controller (TV N.O.), which uses iterative learning to focus

on contour tracking for multi-axis systems. Time-varying

weighting matrices provide a means for improving both

performance and robustness of a given system.

After introducing the N.O. framework and presenting a

short description of tuning guidelines for weighting matrix

design, a detailed design approach for a time-varying Q

weighting matrix was provided. Time-varying S and R

weighting matrices, which focus on robustness issues, were

also presented briefly. Using the design approach detailed

in the paper, N.O.-CCILC and TV N.O. controllers were

designed for comparison on a multi-axis robotic testbed.

Simulation and experimental results showed that TV N.O. is

an alternative technique for improving the contour tracking of

multi-axis systems. Future work will focus on implementing

a TV N.O. controller which includes time-varying S and R

weighting matrices.

APPENDIX: COEFFICIENTS FOR THE PLANT AND

CONTROLLER MODELS





























Symbol Quantity
Num α1 α2 α3 α4 α5

Px 0.759 1.706 0.9596 0.0324 0.8968

Py 0.9963 1.768 0.9567 0.2238 0.7933

Den β1 β2 β3 β4 β5

Px 0.9972 1.676 0.9479 0.3736 0.4904

Py 0.9972 1.764 0.9562 0.1784 0.7898

Gain K
Px 0.0172

Py 0.0459





























(17)





























Symbol Quantity
Num α1 α2 α3

kpx 1.92 0.8881 0.8583

kpy 1.377 0.9147 0.776

Den β1 β2 β3

kpx 1.001 0.5182 0.1691

kpy 1.001 0.5182 0.1691

Gain K
kpx 3.5
kpy 1.5
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