
Multiresolution State-Space Discretization Method for Q-Learning

Amanda Lampton and John Valasek

Texas A&M University, College Station, Texas 77843-3141

Abstract— For large scale problems Q-Learning often suffers
from the Curse of Dimensionality due to large numbers of pos-
sible state-action pairs. This paper develops a multiresolution
state-space discretization method for the episodic unsupervised
learning method of Q-Learning, in which a state-space is
adaptively discretized by progressively finer grids around the
areas of interest within the state or learning space. Optimality of
the learning algorithm is addressed by a cost function. Applied
to a morphing airfoil with two morphing parameters (two state
variables), it is shown that by setting the multiresolution method
to define the area of interest by the goal the agent seeks, this
method can learn a specific goal within ±0.002, while reducing
the total number of state-action pairs need to achieve this level
of specificity by almost 90%.

I. INTRODUCTION

For the computational reinforcement learning problem, the

learned value or action-value function is generally a good

representation of an agent’s knowledge of the environment.

The problem becomes more complex as the number of state

variables needed to represent the environment increases, so

discretizing the state and action spaces is a common way to

cast a continuous state and action space problem as a rein-

forcement learning problem. Thus a simple learning problem

can be easily discretized into a relatively small number of

states. The number of states in the action-value function

depends on how a problem is discretized, but there is a trade

off. If the agent can only store knowledge in a small number

of states, important details of the environment may be lost.

If the agent can store knowledge in a very large number of

states, details of the environment are captured quite well.

The caveat is that the rate of convergence drops drastically

as the number of states increases. Examples of state-space

discretization include [1], which describes a space robot

problem in which the orientation and the action set of the

spacecraft has been discretized to facilitate learning, and

[2], which describes quad-Q-learning in which a state-space

is discretized and then sampled in a “divide and conquer”

technique.

Reinforcement learning has also been used for the problem

of shape changing or morphing. Reference [3] developed

a methodology that combines Structured Adaptive Model

Inversion (SAMI) with Reinforcement Learning to address

the optimal shape change of an entire vehicle. The method

Graduate Research Assistant, Vehicle Systems & Control Labora-
tory, Aerospace Engineering Department, Student Member AIAA, alamp-
ton@tamu.edu.

Associate Professor and Director, Vehicle Systems & Control Lab-
oratory, Aerospace Engineering Department, Associate Fellow AIAA,
valasek@tamu.edu.

learns the commands for two independent morphing pa-

rameters that produce the optimal shape, and the authors

demonstrate learning of the required shape and morphing into

it while accurately tracking a specified reference trajectory.

The methodology is further improved upon by applying Se-

quential Function Approximation to generalize the learning

from previously experienced quantized states and actions

to the continuous state-action space.[4] This approximation

scheme resulted in marked improvements in the learning

as opposed to the previously employed K-Nearest Neighbor

approach. All of these examples only have two independent

degrees-of-freedom that must be learned, and manipulating

more degrees-of-freedom creates a more complex problem

with increased dimensionality and significant convergence

issues.

This paper proposes and develops a multiresolution state-

space discretization method that incorporates the conver-

gence benefits of a coarse discretization of the state-space as

well as the learning of the finer details, such as goal location,

of a fine state-space discretization. The method mimics the

natural tendency of people and animals to learn the broader

goal before focusing in on more specific goals. This method

is applied to the morphing airfoil architecture developed

in References [5], [6], and [7]. Reinforcement learning is

used to learn the commands that produce the optimal shape

based on airfoil lift coefficient. The levels of discretization

of the state-space are tuned such that good convergence and

attention to detail is achieved. The contribution of this paper

is a new discretization method that allows the learning to

converge quickly while still maintaining a high level of detail

around areas of high information content in the environment.

II. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a method of learning from

interaction between an agent and its environment to achieve

a goal. The learner and decision-maker is called the agent.

The thing it interacts with, comprising everything outside the

agent, is called the environment. The agent interacts with

its environment at each instance of a sequence of discrete

time steps, t = 0, 1, 2, 3.... At each time step t, the agent

receives some representation of the environment’s state, st ∈
S, where S is a set of possible states, and on that basis

it selects an action, at ∈ A(st), where A(st) is a set of

actions available in state s(t). One time step later, partially as

a consequence of its action, the agent receives a numerical

reward, rt+1 = R, and finds itself in a new state, st+1.

The mapping from states to probabilities of selecting each

possible action at each time step, denoted by π is called

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC08.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1646

the agent’s policy, where πt(s, a) indicates the probability

that at = a given st = s at time t. Reinforcement learning

methods specify how the agent changes its policy as a result

of its experiences. The agent’s goal is to maximize the total

amount of reward it receives over the long run.

Q-Learning, a reinforcement learning algorithm, is a form

of the successive approximations technique of Dynamic

Programming, first proposed and developed by Watkins [8]

that learns the optimal value functions directly, as opposed

to fixing a policy and determining the corresponding value

functions, like Temporal-Differences. It is the first provably

convergent direct adaptive optimal control algorithm. Here

we use a 1-step Q-learning method, which is a common off-

policy Temporal Difference (TD) control algorithm. In its

simplest form it is defined by

Q (s, a)← Q (s, a) + α
{

r + γ max
a′

Q (s′, a′)−Q (s, a)
}
(1)

The Q-learning algorithm is illustrated as follows:[9]

Q-Learning()
• Initialize Q(s, a) arbitrarily

• Repeat (for each episode)

– Initialize s
– Repeat (for each step of the episode)

∗ Choose a from s using policy derived from

Q(s, a) (e.g. ε-Greedy Policy)

∗ Take action a, observe r, s′

∗ Q (s, a) ← Q (s, a) +
α
{

r + γ max
a′

Q (s′, a′)−Q (s, a)
}

∗ s← s′

– until s is terminal

• return Q(s, a)
The agent learns the greedy policy, and as the learning

episodes increase, the learned action-value function Q(s, a)
converges asymptotically to the optimal action-value function

Q∗(s, a). The method is an off-policy one as it evaluates

the target policy (the greedy policy) while following another

policy. The policy used in updating Q(s, a) can be a random

policy, for example, with each action having the same

probability of being selected.

If the number of the states and the actions of a RL problem

is a small value, its Q(s, a) can be represented using a table,

where the action-value for each state-action pair is stored

in one entity of the table. For RL problems with states on

continuous domains, it is impossible to enumerate the action-

value for each state-action pair because there are an infinite

number of state-action pairs. One commonly used solution

is to artificially quantize the states into discrete sets, thereby

reducing the number of state-action pairs the agent must visit

and learn. The goal in doing this is to reduce the number

of state-action pairs while maintaining the integrity of the

learned action-value function. This paper realizes this goal

with a multiresolution state-space discretization method that

keeps the number of state-action pairs manageable and the

details intact, even when more state variables are added.

III. LEARNING ON A 2- AND N-DIMENSIONAL

CONTINUOUS DOMAIN

Q-learning on a continuous domain quickly becomes in-

tractable when one considers that convergence of the algo-

rithm to the optimal action-value function is only guaranteed

if the agent visits every possible state an infinite number of

times.[8] An agent would therefore visit an infinite number of

states using an infinite number of actions an infinite number

of times. Add in the fact that the states can be defined by

anywhere from 1 to N continuous variables and the so-called

“Curse of Dimensionality” becomes a significant problem.

One way to cope with the inherent complexity of a

continuous domain learning problem is to discretize the state-

space by overlaying a pseudo-grid. The essential ideas of this

concept can be best introduced in terms of a 1-dimensional

problem. The notation can then be generalized for the 2-

and N-dimensional problems. For the 1-dimensional problem

the state-space can be represented by a line as seen in Fig.

1. An arbitrary set of vertices
{

1X, 2X, . . . , kX, . . .
}

are

introduced at a uniform distance h apart. Ideally, h is chosen

such that a vertex lies on both end points of the state-space.

In the learning algorithm the agent is only allowed to visit

the overlaying vertices and their corresponding states. This

technique effectively reduces the state-space from infinity to

a finite number of states, thus rendering the problem more

manageable.

I X1I X 1I X

hh h h

Fig. 1. 1-Dimensional State Space with Overlaying Pseudogrid

To further simplify the problem, we restrict what actions

the agent may take. When the agent is at the Ith vertex

X = IX , it may only move to I−1X or I+1X . Now the

problem only has two possible actions rather than an infinite

number, which further reduced the problem complexity.

Let L denote the length of the continuous domain. As per

our formulation there are

NV1 =
L

h
+ 1 (2)

vertices, where NV is the number of vertices, and 2 actions.

Therefore, there are only

N1 = 2
(

L

h
+ 1
)

(3)

state-action pairs, where N is the number of state-action

pairs. The 2-dimensional problem can be represented in a

similar manner. In this case the state-space is represented by

Fig. 2. An arbitrary set of vertices
{

11X, 12X, . . . , ijX, . . .
}

are again introduced at uniform distances hx1 or hx2 apart.

The actions available to the agent are again restricted as in

the 1-dimensional case. For the 2-dimensional case, when the

1647

agent is at the IJ th vertex X = IJX , it may only move to

vertices (I−1)JX , (I+1)JX , I(J−1)X , and I(J+1)X , a total

of 4, or 2 ∗ 2, actions.

IJ X 1I J X1I J X

1I J X

1I J X

1x

2x

1x
h

1x
h

1x
h

1x
h

2x
h

2x
h

2x
h

2x
h

Fig. 2. 2-Dimensional State Space with Overlaying Pseudogrid

This problem is more complex than the previous one,

yet it is still simpler than a 2-dimensional continuous state-

space problem. For this 2-dimensional discrete case, let Lx1

and Lx2 denote the length in the x1- and x2-direction,

respectively, of the continuous domain. This results in

NV2 =
(

Lx1

hx1

+ 1
)(

Lx2

hx2

+ 1
)

=
2∏

i=1

(
Lxi

hxi

+ 1
)

(4)

vertices. Therefore, there are

N2 = 2 ∗ 2
2∏

i=1

(
Lxi

hxi

+ 1
)

(5)

state-action pairs. This 2-dimensional development is what

will be used in the rest of this paper.

From here the formulation can be generalized

to the N-dimensional case. For an N-dimensional

continuous state-space, an arbitrary set of vertices{
11...1X, 11...2X, . . . , NN...NX

}
are introduced at uniform

distances hx1 , hx2 , . . ., hxN
apart. The actions are restricted

to the two nearest vertices in any direction from the current

vertex X = IJ...X , yielding a total of 2N actions available

to the agent from any given vertex.

Now let Lx1 , Lx2 , . . ., LxN
denote the length in the x1-,

x2-, . . ., and xN -directions, respectively. As a result there

are

NVN
=

N∏
i=1

(
Lxi

hxi

+ 1
)

(6)

vertices. Therefore, there are

NN = 2N
N∏

i=1

(
Lxi

hxi

+ 1
)

(7)

state-action pairs.

Discretizing the domain in this way can greatly simplify

a learning problem. Intuitively, the larger hxi
is, the fewer

the number of vertices, resulting in fewer visits by the agent

necessary to learn the policy correctly. Special care must be

taken, however, in the choice of hxi
and the definition of

the goal the agent attempts to attain. If the only goal state

lies between vertices, then the agent will be unable to learn

the actions necessary to reach the goal state. The “Curse

of Dimensionality” can still become a problem when using

this technique. As N increases, the number of state-action

pairs increases quickly. Manipulation of hxi
can alleviate

some problems, but can eventually become overwhelmed.

However, the number of state-action pairs remains finite. In

this paper a 2-dimensional problem is analyzed.

IV. MULTIRESOLUTION DISCRETIZATION FOR

N-DIMENSIONS

Discretizing a state-space for learning is beneficial in that

it creates a finite number of state-action pairs the agent must

visit. Generally, as the number of state-action pairs decreases,

the rate of convergence increases.[6] However, fewer state-

action pairs captures less detail of the environment. Also,

using the method described in Section III limits the agent to

the vertices. It is entirely possible that the goal the agent is

seeking, or any other area of interest, does not lie on a vertex.

This necessitates adding a range to the goal that encompasses

one or more of the vertices in the state-space. These vertices

within the goal range are pseudo-goals. (Fig. 3)

1x

2x

Goal

Goal Region

Pseudo Goal

Fig. 3. Multiresolution State Space Discretization – Phase 1: Coarse Grid,
Large Goal Range

As the agent explores the coarsely discretized state-

space and garners rewards, it also notes the location of the

pseudo-goals. Once learning on the current discretization

has converged, the area surrounding and encompassing the

psuedo-goals is re-discretized to a finer resolution such that

1648

hxi2
< hxi1

, where the subscript 1 denotes the initial dis-

cretization, and subscript 2 denotes the second discretization.

A new, smaller range is defined for the goal and learning

begins anew in the smaller state-space. Fig. 4 shows the re-

discretization of the state-space.

1x

2x

Goal

Goal Region

Pseudo Goal

Sub Grid

Fig. 4. Multiresolution State Space Discretization – Phase 2: Finer Grid,
Smaller Goal Range

This method can then be generalized for the N-

dimensional case. Let Lj
x1

, Lj
x2

, . . ., Lj
xN

denote the length

in the x1-, x2-, . . ., and xN -directions, respectively, and the

superscript j denote the resolution of the discretization in

which 1 is the coarsest and M is the finest. The vertices

for each resolution are then set at distances hj
x1

, hj
x2

, . . .,
hj

xN
apart. These terms effectively define the fineness of

resolution level j. Eqs. 6 and 7 can then be modified to

calculate the number of vertices and state action pairs for

this method, as shown in Eqs. 8 and 9.
When the multiresolution learning is complete, there are

NVN
=

M∑
j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1
))
−

M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1
))

(8)

vertices. Therefore, there are

NN = 2N

⎛
⎝ M∑

j=1

(
N∏

i=1

(
Lj

xi

hj
xi

+ 1
))
−

M−1∑
j=1

(
N∏

i=1

(
Lj+1

xi

hj
xi

+ 1
))⎞⎠

(9)

state-action pairs. Notice the second term of each equation

excises the duplicate vertices from one level of discretization

to the next. Also note that if the full state-space were simply

discretized by the finest level of hM
xi

, there would be

NVNfine
=

N∏
i=1

(
L1

xi

hM
xi

+ 1
)

(10)

vertices and

NNfine
= 2N

(
N∏

i=1

(
L1

xi

hM
xi

+ 1
))

(11)

state-action pairs. It can be shown that NVN
< NVNfine

and

NN < NNfine
by a significant amount, the magnitude of

which is determined by the factor by which each subsequent

descretization is reduced from the previous. It is known that

the time to convergence for Q-learning increases exponen-

tially as the complexity of the problem, i.e. state-action pairs,

increases. This method reduces a learning problem to a series

of smaller learning problems with relatively few state-action

pairs, on the order of several orders of magnitude less. Rather

than one large problem that will take a great deal of time

to converge, there are several quickly converging smaller

problems.

V. MORPHING AIRFOIL

For this problem the RL agent endeavors to learn, from

its interaction with the environment, the optimal policy that

commands the series of actions which change the morphing

airfoil’s shape toward an optimal one (Fig. 5). Optimality

is defined by the airfoil lift coefficient. The environment is

the resulting aerodynamics the airfoil is subjected to. It is

assumed here that the RL agent has no prior knowledge of

the relationship between actions and states, but the RL agent

does know all possible actions that can be applied, and has

accurate, real-time information of the morphing airfoil shape,

the present aerodynamics, and the current reward provided

by the environment.

Airfoil
Camber Line
Chord Line

Thickness

Fig. 5. Representative Airfoil

The airfoil aerodynamics are modeled with a constant

strength doublet panel method with four degrees-of-freedom:

Airfoil thickness, Camber, Location of maximum camber,

and Airfoil angle-of-attack. Only thickness and camber

degrees-of-freedom are used here. For simulation purposes,

the morphing dynamics are assumed to be simple nonlinear

differential equations. A full description of the airfoil model

development can be found in Reference [5]. Validation

and verification of the airfoil model can also be found in

Reference [5].

A. Implementation

The aerodynamic model and the reinforcement learning

agent interact significantly during both the learning stage,

when the optimal shape is learned, and the operational stage,

when the airfoil morphs from state to state. Initially, the

reinforcement learning agent commands a random action

from the set of admissible actions. As described in Section

III, the admissible actions are restricted to movement to the

two closest vertices in any given direction from the current

vertex. For example, the agent chooses to move in the x1-

direction from vertex IJX in the 2-dimensional problem.

For the initial discretization, the two possible actions in the

1649

TABLE I

DISTANCE BETWEEN ADJACENT VERTICES

Parameter Value

h1
x1

0.50

h1
x2

0.50

gf 0.20
M 3

TABLE II

AXIS DEFINITIONS

xi Definition
x1 Thickness (%)
x2 Camber (%)

x1-direction are defined as follows

A1
11 ≡ (I+1)JX − IJX = h1

x1

(12)

A1
12 ≡ (I−1)JX − IJX = −h1

x1

Eq. 12 can be summarized by saying the initial admissi-

ble actions in the x1-direction are A1 = ±h1
x1

. Similar

relationships can be found for the x2-direction. Admissible

actions in the other direction is A2 = ±h1
x2

. Each finer

discretization is a predetermined factor, gf , applied to the

coarser discretization, such that hj+1
xi

= gfhj
xi

. The number

of levels of discretization or resolution as defined earlier is

M . These parameters are listed in Table I, and the definitions

of the xi axes are defined in Table II.
To read these tables consider the x1-direction, for example.

The agent changes ±0.50% of the chord in thickness in this

direction when hx1 = 0.50%.
The agent implements an action by submitting it to the

plant, which produces a shape change. The reward associated

with the resultant shape is evaluated. The resulting state,

action, and reward set is then stored in a database. Then

a new action is chosen, and the sequence repeats itself

for some predefined number of episodes or until the agent

reaches a goal state. Shape changes in the airfoil due to

actions generated by the reinforcement learning agent cause

the aerodynamics associated with the airfoil to change. The

aerodynamic properties of the airfoil define the reward, as

stated, and the structural analysis offers a constraint on the

limits of the morphing degrees of freedom. Once the learning

converges or the predefined number of learning episodes

elapses, the state-space is reduced to the area around the area

of interest, i.e. the goal, the range and admissible actions are

redefined, and a new round of learning commences.

VI. NUMERICAL EXAMPLE

The numerical example demonstrates the multiresolution

state-space discretization method for learning and updating

the action-value function as the discretization becomes in-

creasingly finer. The agent is allowed 5000 episodes with

which to explore the state-space of thickness-camber combi-

nations for each level of discretization. The reward the agent

receives is calculated by

r = |g − cn−1| − |g − cn| (13)

TABLE III

INITIAL AIRFOIL THICKNESS AND CAMBER LIMITS

Initial Limit Lower Upper
Thickness (% chord) 10 18
Camber (% chord) 0 5

TABLE IV

STATES AND STATE-ACTION PAIRS

States State-Action Pairs
Multiresolution 8881 35524

Single-Resolution 100651 402604

where r is the reward, g is the goal, and c is the metric.

For this example, c is the lift coefficient, cl, of the airfoil

and g := cl = 0.2. The area of interest is the goal and the

associated initial range is ±0.05. The initial boundary limits

of the state-space are listed in Table III

Learning performance is measured in three ways. First the

dimensionality of the multiresolution action-value function

is compared with that of the full state-space discretized at

the finest level. Next Monte Carlo simulation results are

analyzed. Finally, the final value function and policy is

considered.

A. Dimensionality

The number of states and state-action pairs for both the

actual learned multiresolution problem and the hypothetical

single-resolution problem described by Eqs. 10 and 11 are

shown in Table IV.

The multiresolution method decreases the number of state-

action pairs the agent must visit by an entire order of

magnitude. This greatly simplifies the learning problem and

encourages faster convergence.

B. Monte Carlo Simulation

The action-value function is analyzed by conducting a

set of simulations using the learned function. The agent

is initialized in a random, non-goal state, i.e. outside the

target range, and allowed to exploit its knowledge to navigate

through the domain to find the goal. The agent retains a

5% probability of choosing a random action and exploring

the state-space. During the learning process the action-value

function is recorded every 200 episodes. The simulation

is run 500 times for each recorded action-value function

to accrue enough data to get an accurate measure of the

success or failure of the agent and the learning algorithm

as the learning is refined. A success occurs when the agent

navigates from the random initial state to a goal state without

encountering a boundary. A failure occurs when the agent

either encounters a boundary or gets “lost” and wanders

around the state-space.

Fig. 6 shows the results of the Monte Carlo Simulation.

Each set of 5000 episodes is for a different level of dis-

cretization, from coarsest to finest. The final star at 15000

episodes is for the simulation using the full power of the

multiresolution state-space discretization method. The final

range for the goal in this problem is 0.002. This figure shows

1650

Fig. 6. Monte Carlo Simulation Results

that the first and second levels of discretization converge

quickly. The third level takes several hundred episodes to

converge above a 98% success rate. The multiresolution

discretization converges within 15000 episodes. The final

simulation shows that the agent can use its final set of

information reach the goal with over a 99% success rate.

C. Value Function and Policy Analysis

It is helpful to consider a value function approximated

from the learned action-value function. The value function

can show how the learning differs when learning parameters

or discretization is modified. The value function is calculated

using the following equation.

V (s) ≈ max
a

Q (s, a) (14)

The policy can also be approximated by finding the action

with maximum preference or action-value for each state. The

policy is calculated using the following equation.

π (s) = max
a

Q (s, a) (15)

Fig. 7 shows the final value function and greedy policy.

Toward the upper and lower extremes of the camber axis, the

function is very blocky. This is due to the large discretization

during the initial learning. The sudden increase in value

function as the camber approaches 2.5% is a result of

learning on the second level of discretization. Notice the

function is less blocky in this region. The minimal ridge

in the middle of the function is effectively the goal of

cl = 0.2 and where the reward function approaches 0. This

minimal ridge is reflected in the graphic of the greedy policy.

This figure shows that change in camber has the greatest

influence in affecting airfoil lift coefficient, enough such that

thickness may not be a necessary morphing parameters in

future iterations of this problem.

VII. CONCLUSIONS

The results show that the learning for the multiresolution

method reaches a 98% success rate or greater within 200

episodes for the coarsest discretization and within 2500

episodes for the finest discretization. Conceptually, a problem

Fig. 7. Value Function (a) and Policy Representation (b)

with the full state-space discretized at the finest level would

take many thousands or tens of thousands of episodes more

to reach this level of convergence. This method is successful

in greatly reducing the time for convergence, increasing the

rate of convergence, and achieving a goal with the very small

range of 0.002. This method essentially reduced the larger

problem by almost 90%, making it a much more tractable

learning problem.

VIII. ACKNOWLEDGMENTS

This work was sponsored (in part) by the Air Force Office

of Scientific Research, USAF, under grant/contract number

FA9550-08-1-0038. The technical monitor is Dr. William

McEneaney. The views and conclusions contained herein

are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of the Air Force Office of

Scientific Research or the U.S. Government.

REFERENCES

[1] K. Senda, T. Matsumoto, Y. Okano, S. Mano, and S. Fujii, “Autonomous
task achievement by space robot based on q-learning with environment
recognition,” in AIAA Guidance, Navigation, and Control Conference
and Exhibit, no. AIAA-2003-5462, Austin, TX, 11-14 August 2003.

[2] C. Clausen and H. Wechsler, “Quad-q-learning,” IEEE Transactions on
Neural Networks, vol. 11, no. 2, pp. 279–294, February 2000.

[3] J. Valasek, M. Tandale, and J. Rong, “A reinforcement learning -
adaptive control architecture for morphing,” Journal of Aerospace
Computing, Information, and Communication, vol. 2, no. 4, pp. 174–
195, April 2005.

[4] J. Valasek, J. Doebbler, M. Tandale, and A. Meade, “Improved adaptive-
reinforcement learning control for morphing unmanned air vehicles,”
IEEE Transactions on Systems, Man, and Cybernetics: Part B, vol. 38,
no. 4, pp. 1014–1020, August 2008.

[5] A. Lampton, A. Niksch, and J. Valasek, “Reinforcement learning of
morphing airfoils with aerodynamic and structural effects,” Journal of
Aerospace Computing, Information, and Communication, vol. 6, no. 1,
pp. 30–50, January 2009.

[6] ——, “Reinforcement learning of a morphing airfoil-policy and discrete
learning analysis,” in Proceedings of the AIAA Guidance, Navigation,
and Control Conference, no. AIAA-2008-7281, Honolulu, HI, 18-21
August 2008.

[7] ——, “Morphing airfoil with reinforcement learning of four shape
changing parameters,” in Proceedings of the AIAA Guidance, Navi-
gation, and Control Conference, no. AIAA-2008-7282, Honolulu, HI,
18-21 August 2008.

[8] C. J. C. H. Watkins and P. Dayan, “Learning from delayed rewards,”
Ph.D. dissertation, University of Cambridge, Cambridge, UK, 1989.

[9] R. Sutton and A. Barto, Reinforcement Learning - An Introduction.
Cambridge, Massachusetts: The MIT Press, 1998.

1651

