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Abstract— Stabilization via feedback linearization of models
of competition between two species of microroganisms for
two essential resources based in the chemostat is considered,
extending previous work recently done by the authors; see [1],
[14] and references therein. We show that though the full four-
dimensional system is not stabilizable due to the dynamical
properties of the system, it is possible to achieve the goal in
modified form by pursuing a process of dimensional reduction
prior to feedback linearization that results in replacing the
four dimensional analysis with one in three dimensions. This
technique has appeared in the literature applied to a similar
system in the seminal papers of Hoo and Kantor [7]. However,
in that case it appears that the authors thought of the
method as a matter of convenience, and apparently did not
realize that their original (higher dimensional) system was not
stabilizable without utilizing the reduction procedure. (That is,
that the reduction process was necessary in order to achieve
the stabilization goal.) In this paper we show how the problem
and its solution are very similar for both our model and that of
Hoo and Kantor. This suggests that the dimensional reduction
method could be rather generally applicable.

I. INTRODUCTION

In this paper we apply the mathematical methods of

differential geometric nonlinear control theory, especially

techniques referred to as feedback linearization [10], [13],

[18], to a model of two-species competition for two resources

in a chemostat (also known as a continuously stirred tank

reactor). As in our previous work, we focus on using these

control techniques to stabilize the system, using simple

proportional derivative controllers on the resulting linear

system. Often, the goal is to stabilize to a state where both

species coexist at equilibrium. This can be interpreted as a

means of circumventing the competitive exclusion principle,

which in this context states that at most one species can win

the competition for resources, and which is regarded as a

fundamental tenet of ecological dynamics. For this reason

and others, the chemostat is an interesting system on which

to apply geometric control techniques. See, e.g. [3], [12]

and references therein, for other work investigating the use

of control theory to achieve multi-species coexistence in

chemostats.

With two resources available, it is important to consider

how the resources, once consumed, are combined to promote

growth. Such considerations have led to a spectrum of
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resource types [4], [11], [16], [17]. We confine our attention

to perfectly complementary (a.k.a. essential) resources [11],

[16]: those that fulfill different growth needs, and so must

be taken together by the consumer. The dilution rate and

the input concentration of one nutrient are taken as input

controls.

Hoo and Kantor apply differential geometric control to

a single input, single output (SISO) system with a single

species and substrate [6], and then extend to a multiple input,

multiple output (MIMO) system with two species competing

for a single growth-limiting resource where the growth of one

species is inhibited by the addition of an external agent [7].

(The latter work is also discussed in [13].) The dilution

rate is used as a control input for the SISO case, while a

combination of dilution rate and the introduction rate of the

inhibitor are needed to achieve their control objectives in the

MIMO case. Henson and Seborg [5] examine a model of the

growth of a single species on one growth-limiting resource,

and use the dilution and input resource concentration as

controls. The control goal is to optimize a metabolic product.

More recent work [1], [14] has focused on the effects of such

biological details as resource type or control signal choices

on the mathematical structure of the feedback-linearized

system.

The main observation of this work is that the full four-

dimensional system is not stabilizable due to the dynamical

properties of the system. The reason is that the accessibil-

ity condition is violated asymptotically in time regardless

of how the controls are chosen. We also show that the

four-dimensional system of Hoo and Kantor [7] cannot

be feedback linearized for similar reasons. However those

authors successfully stabilized the system using feedback

linearization by reducing the dimension of the system from

four to three. We stress that feedback linearization of the

four-dimensional system was not considered in Hoo and

Kantor. By reducing our model (with two essential resources)

to dimension three, we can also achieve stabilization, at least

locally and for an open set of values in the parameters. We

notice then that this state space dimension reduction is a

necessity in the stabilization process and not a convenience

as Hoo and Kantor’s presentation may suggest.
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II. THE MODEL

The chemostat is designed to provide a controlled en-

vironment in which to study the growth and interaction

of microorganisms under nutrient limitation [15]. It can

be thought to consist of three vessels: a feed vessel, a

culture vessel, and a collecting receptacle. The feed vessel

contains adequate quantities of all required nutrients with the

exception of those under investigation; these are assumed

to be growth limiting. The contents of the feed vessel

are supplied to the culture vessel at a rate D, while the

medium in the continuously-stirred culture vessel is removed

to the collecting receptacle at the same rate. Thus, constant

volume is maintained in the culture vessel, and nutrients,

microorganisms, and byproducts are removed in proportion

to their concentrations. To simplify notation, we will assume

that the flow rates have been scaled by the volume of the

culture vessel.

We consider a model of competition between two species

for two resources. As mentioned in the introduction, we

confine ourselves to the case of perfectly complementary

(essential) resources as defined by Léon and Tumpson [11] .

These fulfill different needs for growth, and so must be taken

together by the consumer. With S(t) and R(t) representing

the concentrations of resources S and R in the culture vessel

at time t, and xi(t) representing the biomass of the ith
population of microorganisms in the culture vessel at time t,
i = 1, 2, the dynamical system may be written

Ṡ(t) = (S0 − S(t))D −

2
∑

i=1

xi(t)

YSi

Gi(S(t), R(t)),

Ṙ(t) = (R0 − R(t))D −

2
∑

i=1

xi(t)

YRi

Gi(S(t), R(t)),

ẋ1(t) = x1(t)(−D + G1(S(t), R(t))), (II.1)

ẋ2(t) = x2(t)(−D + G2(S(t), R(t))),

S(0), R(0) ≥ 0, x1(0), x2(0) > 0.

Here,

Gi(S,R) = min{pi(S), qi(R)} (II.2)

is the rate of conversion of nutrient to biomass of population

i per unit of population i as a function of the concentrations

of resources S and R in the culture vessel. The function

pi(S) denotes the rate of conversion of nutrient S to biomass

of population i per unit of population i when resource S
alone is limiting. The function qi(R) is similarly defined. It

is generally assumed that pi, qi : R+ → R+ are C1 with

pi(0) = 0, p′i(S) > 0, S > 0,
qi(0) = 0, q′i(R) > 0, R > 0,

for i = 1, 2. We will also assume that

lim
S→∞

pi(S) = mSi
< ∞ and lim

R→∞
qi(R) = mRi

< ∞.

A prototype is the Michaelis-Menten functional response to

a single resource, given by

pi(S) =
mSi

S

KSi
+ S

and qi(R) =
mRi

R

KRi
+ R

. (II.3)

Details of the derivation of model (II.1) can be found in [1],

where the formulation of [2], [8], [9] is followed.

III. FEEDBACK LINEARIZATION: BACKGROUND

For completeness we present a brief discussion of the

generalities of feedback linearization. Feedback linearization

implements a combination of a coordinate transformation

and a nonlinear feedback control law to convert the system

under study into a linear system in Brunovsky normal form

[10], [13], [18]. We stress that this is an exact equivalence

of systems, not an approximation of a nonlinear system

by a linear system. The natural setting in which to apply

geometric control is that of an affine control system

ẋ = f(x) +
M
∑

j=1

ujgj(x), (III.4)

where M is the number of inputs and the uj are the controls.

Denote by

∆0 = span{g1, . . . ,gM}

∆1 = span{g1, . . . ,gM , adfg1, . . . , adfgM}

. . .

∆i = span{adk
f gj : 0 ≤ k ≤ i, 1 ≤ j ≤ M},

i = 0, 1, . . . , n − 1.

Here, ad∗(∗) denotes the adjoint action of the Lie algebra

of vector fields on itself, i.e., adfg is the Lie derivative of

the vector field g with respect to the vector field f .

A fundamental result that characterizes feedback lineariz-

ability for a given nonlinear system is the following.

Theorem 1: [10] Suppose the matrix g(x0) =
(

g1(x
0), . . . ,gM (x0)

)

has rank M . Then (III.4) is

feedback linearizable if and only if

1) for each 0 ≤ i ≤ n−1, the distribution ∆i has constant

dimension near x0;

2) the distribution ∆n−1 has dimension n;

3) for each 0 ≤ i ≤ n−2, the distribution ∆i is involutive.

In Section IV condition (2) is shown to fail asymptotically

for the full four-dimensional system (II.1). (It is also shown

to fail for the original four-dimensional system considered by

Hoo and Kantor [7].) We then use the asymptotic behavior

of system (II.1) to reduce the dimension, and construct the

linearizing controllers using the idea of relative degree as

described and used in [14] to successfully feedback linearize

the resultant three-dimensional system.

IV. FEEDBACK LINEARIZATION: IMPLEMENTATION

System (II.1) can be written as an affine control system:

ẋ = f(x) +
2

∑

i=1

uigi(x) (IV.5)

where x = (S,R, x1, x2)
⊤, the control vector fields

are g1(x) = (−S,−(R − R0),−x1,−x2)
⊤, g2(x) =
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(1, 0, 0, 0)⊤, and the drift is given by

f(x) =











−
∑2

i=1
xi

YSi

Gi

−
∑2

i=1
xi

YRi

Gi

x1G1

x2G2











.

Standard calculations provide the following result:

Lemma 2: System (II.1) is feedback linearizable if

det(g1,g2, adfg1, adfg2)

= (R − R0)2x1x2(
∂G1

∂S

∂G2

∂R
−

∂G1

∂R

∂G2

∂S
)

+ (R − R0)x1x2

[

(

2
∑

i=1

xi

YRi

∂Gi

∂S
)(

∂G2

∂R
−

∂G1

∂R
)

+ (

2
∑

i=1

xi

YRi

∂Gi

∂R
)(

∂G1

∂S
−

∂G2

∂S
)

]

6= 0.

(IV.6)

The curves pi(S) = qi(R), i = 1, 2 divide the SR-plane

into three regions given by region 1: pi(S) > qi(R), i =
1, 2; region 2: p1(S) > q1(R), p2(S) < q2(R); and region

3: pi(S) < qi(R), i = 1, 2. Note that region two can be

unbounded or bounded, as depicted in figure 1, depending

on the type of uptake functions and the parameters therein.

Lemma 3: In regions 1 and 3, system (II.1) is not feedback

linearizable.

Proof: In region 1, min{pi(S), qi(R)} = qi(R),
so that ∂Gi

∂S
= 0, for i = 1, 2. Similarly in region 3,

min{pi(S), qi(R)} = pi(S), so that ∂Gi

∂R
= 0, for i = 1, 2.

In both cases it follows from (IV.6) that

det(g1,g2, adfg1, adfg2) = 0

and thus the system is not feedback linearizable.

We now consider region 2. There the determinant in condi-

tion (IV.6) reduces to:

det(g1,g2, adfg1, adfg2)

= −(R − R0)x1x2
∂G1

∂R

∂G2

∂S

(

R − R0 +
x1

YR1

+
x2

YR2

)

.

Feedback linearization holds in region 2 provided that R does

not take on either value R0 or R0 − x1

YR1

− x2

YR2

.

Remark 1: The previous results motivate the following

observation, which while easy to see, may be underappreci-

ated. In particular, these results show that the controllers ob-

tained via feedback linearization are, in general, not global,

c.f., the title of [7]. This fact is true independent of the

dimensional reduction analysis that is the main topic of this

paper. In fact, there can be reasons other than those seen

above for the controllers obtained to fail to be global; namely,

the coordinate transformation generated by the procedure

may not be a global diffeomorphism. It is appropriate to

mention this here because one of the implicit points we

make is that the task of the implementation of controllers to

achieve specific control goals using geometric methods is by

no means complete when the standard feedback linearization

procedure has been carried out. Moreover, it is interesting

to note that the failure of the controller to be global as

shown above is due to properties of the model that have

real biological significance. Finally we note that since the

system is not feedback linearizable in regions 1 and 3, some

additional control apparatus would be needed to control the

system to region 2 where feedback linearization can be

implemented in order to achieve global results. This question

will be considered in future work.

Having determined regions where feedback linearization

can be done in both the unbounded and the bounded config-

uration, we examine conditions under which the system can

be stabilized there.
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Fig. 1. Top: unbounded region configuration; Bottom: bounded
region configuration

Lemma 4: In the case of essential resources, the system

in dimension four cannot be stabilized using feedback lin-

earization when the dilution rate D and the input nutrient

concentration S0 are taken as controls.

Lemma 5: For any solution (S(t), R(t), x1(t), x2(t)) of

system (II.1), we have

lim
t→∞

(

R(t) − R0 +
x1(t)

YR1

+
x2(t)

YR2

)

= 0.

Proof: Setting θ = R − R0 + x1

YR1

+ x2

YR2

, it follows

from system (II.1) that

dθ

dt
= −Dθ.

Since the dilution rate D is regarded as a control, we may

assume it is a function of time and that it satisfies ǫ ≤ D(t)
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for some ǫ > 0. This simply amounts to assuming that

the circulation pump is never turned off, nor run in reverse

during operation of the chemostat. This seems a natural and

not overly restictive assumption; indeed, allowing D(t) ≤ 0
would be unrealistic. Furthermore, the nonegativity of the di-

lution rate is something that can be arranged by the operator.

If the dilution rate and an input nutrient concentration are to

be used as controls, it’s clear that the ability to implement

the controller requires that D > 0, and in fact the dynamical

system (II.1) is not valid unless D is strictly positive.

Using the fact that θ̇ ≤ −D(t)θ and Gronwall’s lemma

we get

θ(t) ≤ θ(0) exp
(

−

∫ t

0

D(s)ds
)

.

Since ǫ ≤ D(t), it is then clear that

θ(t) ≤ θ(0) e−ǫt,

hence

lim
t→∞

θ(t) = 0.

Thus R−R0 + x1

YR1

+ x2

YR2

= 0 asymptotically, as stated.

We next provide a proof of lemma 4.

Proof: It follows from lemma 3 that system (II.1) is

not feedback linearizable in either region 1 nor 3. On the

other hand, since R − R0 + x1

YR1

+ x2

YR2

= 0 asymptotically,

it is readily seen that

det(g1,g2, adfg1, adfg2) = 0

asymptotically along any solution of (II.1). Thus, the acces-

sibility condition must fail as t gets large.

The implication here is that feedback linearization-based

controllers applied to system (II.1) will ultimately fail. It

is important to note that this failure occurs despite the

fact that the conditions for feedback linearization (i.e., the

accessibility conditions and the determination of functions

with appropriate relative degree) are formally met. Indeed,

our analysis has shown that under general assumptions,

feedback linearization of the four-dimensional chemostat

with essential resources must fail due to the dynamics of

the system. A solution to this problem can be found in the

early paper of Hoo and Kantor [7]. The system analyzed

there is

ẋ1(t) = [µ1(S) − D]x1,

ẋ2(t) = [µ2(S, I) − D]x2,

İ(t) = −px1I + D(If − I), (IV.7)

Ṡ(t) = −µ1(S)
x1

Y1
− µ2(S, I)

x2

Y2
+ D(Sf − S).

We next consider implementation of feedback linearization

on (IV.7), and stress that the following analysis was not done

in [7]. On one hand we obtain that

Lemma 6: System (IV.7) is feedback linearizable if

x1x2(Sf −S)
∂µ1

∂S

∂µ2

∂I

(

Sf − S −
x1

Y1
−

x2

Y2

)

6= 0. (IV.8)

On the other hand, similarly to the case in system (II.1), we

have

Lemma 7: In system (IV.7),

lim
t→∞

(

S(t) − Sf +
x1(t)

YR1

+
x2(t)

YR2

)

= 0.

This fact was used in [7] to implement the dimensional

reduction. However, the authors of that work did not state,

and seemed not to realize, that this condition implies system

(IV.7) fails to be feedback linearizable for dynamical reasons.

We illustrate the failure of feedback linearization on the

system (IV.7) numerically in Figure 2. It is easy to see

that system (IV.7) has a relative degree vector (2, 2) for the

functions h1 = ln x1

x2

and h2 = ln
(S−Sf )2

x1x2

, and we use

these functions to generate the linearizing transformation. We

show results for arbitrarily chosen values of the parameters

and stabilization goals; the behavior shown in Figure 2 is

insensitive to the choices. We note that the controller seems

to work initially, but eventually (when the determinant of the

accessibility matrix becomes sufficiently small), the signals

begin to diverge. This is precisely the manner in which

feedback linearization fails for system (II.1).
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Fig. 2. The figure shows the results of attempting to stabilize Hoo
and Kantor’s four dimensional model.

Without noting this behavior or condition (IV.8), Hoo and

Kantor reduced the dimension of their system (from four

to three) using Lemma 7 and successfully stabilized the

resultant three-dimensional system. It would appear that this

computation was done for convenience rather than out of

necessity. Nontheless, since Hoo and Kantor were successful

in stabilizing the system using state space dimension reduc-

tion, and since the failure of the four-dimensional system

with essential resources occurs for very similar reasons,

this suggests that we might try to work with the three-

dimensional system resulting from reducing the state space

dimension of our system. That is, we are led to investigate

the system

Ṡ(t) = (S0 − S(t))D −

2
∑

i=1

xi(t)

YSi

Gi(S(t), R(t)),

ẋ1(t) = x1(t)(−D + G1(S(t), R(t))), (IV.9)

ẋ2(t) = x2(t)(−D + G2(S(t), R(t))),

S(0), R(0), x1(0), x2(0) ≥ 0,
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where Gi(S,R) is as in (II.2) and it is understood that

R = R0 +
x1

YR1

+
x2

YR2

.

We begin with an accessibility analysis of (IV.9).

Lemma 8: System (IV.9) is accessible if xi 6= 0, i = 1, 2,
and

∂

∂S
(G1(S,R) − G2(S,R)) 6= 0.

Proof: The model can be written as an affine control

system ẋ = f + u1g1 + u2g2 where the control inputs are

chosen to be u1 = S0D and u2 = D, the control vector

fields are g1 = (1, 0, 0)⊤ and g2 = (−S,−x1,−x2)
⊤, and

the drift is given by

f(x) =





f1
f2
f3



 =





−
∑2

i=1
xi

YSi

Gi(S,R)

x1G1(S,R)
x2G2(S,R)



 .

The accessibility matrix, made up of column vectors g1, g2

and adfg1, is

A =







1 −S −
∑2

i=1
xi

YSi

∂
∂S

Gi(S,R)

0 −x1 −x1
∂

∂S
G1(S,R)

0 −x2 −x2
∂

∂S
G2(S,R)






.

And the system is accessible if detA 6= 0, i.e.

x1x2
∂

∂S
(G1(S,R) − G2(S,R)) 6= 0.

We next implement feedback linearization. We seek a

function ϕ that satisfies dϕ 6= 0 and dϕ · g1 = dϕ · g2 = 0.

A possible solution to the above equations is

ϕ(S, x1, x2) = ϕ(x1, x2)

= ln(x1/x2)

=: z1,1.

and the time derivative of ϕ is

ż1,1 = Lfz1,1

= G1(S,R) − G2(S,R)

=: z1,2.

The problem is solvable if the system has a relative degree

vector (r1, r2) satisfying r1 + r2 = 3, the dimension of the

state space. Since the relative degree component with respect

to ϕ is r1 = 2, we must then have r2 = 1 which means that

the only requirement for z2,1 is that it be independent of

z1,1 and z1,2. For instance we can choose z2,1 = x1. In the

(z1,1, z1,2, z2,1)-coordinate system, our model may then be

expressed in the form

ż1,1 = z1,2,

ż1,2 = Lf+u1g1+u2g2
z1,2 ≡ v1, (IV.10)

ż2,1 = Lf+u1g1+u2g2
z2,1 ≡ v2,

where v1 and v2 are new control inputs. The system

Lfz1,2 + u1Lg1
z1,2 + u2Lg2

z1,2 = v1,

Lfz2,1 + u1Lg1
z2,1 + u2Lg2

z2,1 = v2,

can be written as

A

(

u1

u2

)

=

(

v1 − Lfz1,2

v2 − Lfz2,1

)

,

where A is the matrix

A =

(

Lg1
z1,2 Lg2

z1,2

Lg1
z2,1 Lg2

z2,1

)

.

Solving for u1 and u2 gives

u1 =
1

detA
(Lg2

z2,1(v1 − Lfz1,2) − Lg2
z1,2(v2 − Lfz2,1))

and

u2 =
1

detA
(Lg1

z1,2(v2 − Lfz2,1) − Lg1
z2,1(v1 − Lfz1,2))

Since

detA = −x1

(

∂G1

∂S
−

∂G2

∂S

)

,

the feedback linearization procedure will fail if
(

∂G1

∂S
−

∂G2

∂S

)

|S=Ŝ = 0,

or

p′1(Ŝ) − p′2(Ŝ) = 0.

Note that this is the same condition encountered in the three-

dimensional model of [14]. If we choose the uptake functions

(II.3), there is a point Ŝ where the feedback linearization

equations are singular and the singular locus is a good ap-

proximation to the basin boundary between the physical and

unphysical equilibria. Stabilization of the reduced system (in

dimension 3) is illustrated in Figure 3. The parameters used

are: mS1
= mR2

= 5, mS2
= mR1

= 6, kS1
= kR2

= 0.25,

kS2
= kR1

= 0.5. With these parameters, the singular value

for S is Ŝ = 0.20521309.... For the initial condition S =
0.2053, x1 = x2 = 0.1, the system stabilizes to a coexistence

equilibrium S = 0.05, x1 = 0.5 and x2 = 0.45, as is shown

in Figure 3 (Top). However, for the slightly different set of

initial conditions S = 0.2052, x1 = x2 = 0.1 we notice that

stabilization fails since the substrate concentration takes on

unphysical values, as is shown in Figure 3 (Bottom). Thus,

as in [14], we find that initial conditions on either side of

the singular value are asymptotic to different equilibria, with

trajectories asymptotic to the trivial equilibrium taking on

negative values of some state variables.

V. DISCUSSION

In this work we have considered stabilization via feedback

linearization of two-species competition models based in the

chemostat. Competition is for two resources, and the dilution

rate and input concentration of one nutrient are taken as

input controls. We confine our attention to essential resources

(those that fulfill different requisite needs for growth, and so

must be taken together by the consumer) [11], [16].

This case shares some similarities with the model provided

in [7]. The main observation is that feedback linearization

fails. The reason for that lies in the fact that due to the dy-

namics of the system, the accessibility condition is violated
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Fig. 3. Top: Stabilization is achieved for the initial conditions S =

0.2053, x1 = x2 = 0.1. The value of S = 0.2053 is slightly

greater than the singular value Ŝ = 0.20521309.... Resource S

is stabilized at the value 0.05 as anticipated by the goal setting
computations.
Bottom: Stabilization fails for the initial conditions S = 0.2052,
x1 = x2 = 0.1. The value of S = 0.2052 is slightly less than

the singular value Ŝ = 0.20521309.... The system is not properly
stabilized since resource S takes on negative (nonphysical) values.

asymptotically in time regardless of how the controls are

chosen. It was also shown that the four-dimensional system

of Hoo and Kantor cannot be feedback linearized for similar

reasons. However those authors successfully stabilized the

system using feedback linearization by reducing the dimen-

sion of the system from four to three as suggested by the

vanishing of the quantity S − Sf + x1

Y1

+ x2

Y2

. We stress that

feedback linearization of the four-dimensional system was

not considered in Hoo and Kantor. By reducing our model

with two essential resources to dimension three, we can also

achieve stabilization, at least locally and for an open set of

values of the parameters. We notice then that this state space

dimension reduction is a necessity in the stabilization process

and not a convenience as Hoo and Kantor’s presentation may

suggest.
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