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Abstract— This paper presents a novel class of self-organizing
sensing agents that learn an anisotropic, spatio-temporal Gaus-
sian process using noisy measurements and move in order
to improve the quality of the estimated covariance function.
This approach is based on a class of anisotropic covariance
functions of Gaussian processes developed to model a broad
range of anisotropic, spatio-temporal physical phenomena. The
covariance function is assumed to be unknown a priori. Hence,
it is estimated by the maximum likelihood (ML) estimator. The
prediction of the field of interest is then obtained based on
a non-parametric approach. An optimal navigation strategy is
proposed to minimize the Cramér-Rao lower bound (CRLB)
of the estimation error covariance matrix. Simulation results
demonstrate the effectiveness of the proposed scheme.

I. INTRODUCTION

In recent years, due to drastic global climate changes, it

is necessary to monitor the changing ecosystems over vast

regions in lands, oceans, and lakes. For instance, for certain

environmental conditions, rapidly reproducing harmful algal

blooms in the Great Lakes can produce cyanotoxins [1].

Wildland fires in dry seasons have been one of the devas-

tating natural disasters destroying valuable natural resources

[2]. Besides such natural disasters, there exist growing ubiq-

uitous possibilities of the release of toxic chemicals and

contaminants in the air, lakes, and public water systems.

Hence, there are strong motivations to develop autonomous

robotic systems that can perform a series of tasks such as

estimation, prediction, monitoring, tracing and removal of a

scalar field undergoing often complex transport phenomena1

in a region of interest.

Significant enhancements have been made in the areas of

mobile sensor networks and mobile sensing vehicles such as

unmanned ground vehicles, autonomous underwater vehicles,

and unmanned aerial vehicles. Emerging technologies have

been reported on the coordination of mobile sensing agents

[3], [4], [5], [6], [7], [8]. Mobile sensing agents form an ad-

hoc wireless communication network in which each agent

usually operates under a short communication range, with

limited memory and computational power. Mobile sensing

agents are often spatially distributed in an uncertain surveil-

lance environment.

The mobility of the mobile agents can be designed in order

to perform the optimal sampling of the field of interest. Re-

cently distributed interpolation schemes for field estimation

by mobile sensor networks are developed by [9]. Swarming

agents with a gradient climbing strategy for tracking peaks of
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1Common examples are diffusion, convection, and advection.

a field of interest using kernel regression were proposed by

[8], [10]. In general, we design the mobility of sensing agents

to find the most informative locations to make observations

for a spatio-temporal phenomenon.

To find these locations that predict the phenomena best,

one needs a model of the spatio-temporal phenomenon

itself. In our approach, we focus on Gaussian processes to

model fields undergoing transport phenomena. A Gaussian

process (or Kriging in geostatistics) has been widely used

as a nonlinear regression technique to estimate and predict

geostatistical data [11], [12], [13], [14], [15]. A Gaussian

process is a natural generalization of the Gaussian proba-

bility distribution. It generalizes the Gaussian distribution

with a finite number of random variables to a Gaussian

process with an infinite number of random variables in the

surveillance region. Gaussian process modeling enables us

to predict physical values, such as temperature and plume

concentration, at any of spatial points with a predicted

uncertainty level efficiently. For instance, near-optimal static

sensor placements with a mutual information criterion in

Gaussian processes were proposed by [16], [17]. Distributed

Kriged Kalman filter for spatial estimation based on mobile

sensor networks are developed by [18]. Asymptotic optimal-

ity of multicenter Voronoi configurations for random field

estimation is reported by [19]. Multi-agent systems that are

versatile for various tasks by exploiting predictive posterior

statistics of Gaussian processes were developed by [20], [21].

The motivation of our work is as follows. Even though,

there have been efforts to utilize Gaussian processes to model

and predict the spatio-temporal field of interest, most of

recent papers assume that Gaussian processes are isotropic

implying that the covariance function only depends on the

distance between locations. Many studies also assume that

the corresponding covariance functions are known a priori

for simplicity. However, this is not the case in general as

pointed out in literature [22], [16], [17], in which they treat

the non-stationary process by fusing a collection of isotropic

spatial Gaussian processes associated with a set of local

regions. Hence our motivation is to develop theoretically-

sound algorithms for mobile sensor networks to learn the

anisotropic covariance function of a spatio-temporal Gaus-

sian process. Mobile sensing agents can then predict the

Gaussian process based on the estimated covariance function

in a non-parametric manner.

The contribution of this paper is to develop covariance

function learning algorithms for the sensing agents to per-

form non-parametric prediction based on a properly adapted

Gaussian process for a given spatio-temporal phenomenon.

By introducing a generalized covariance function, we expand
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the class of Gaussian processes to include the anisotropic

spatio-temporal phenomena. Maximum likelihood optimiza-

tion is used to estimate hyperparameters for the associated

covariance function. The proposed optimal navigation strat-

egy for autonomous vehicles will maximize the determinant

of the Fisher Information Matrix [23], improving the quality

of the estimated covariance function.

This paper is organized as follows. In Section II, we

briefly review the mobile sensing network model and the

notation related to a graph. A non-parametric approach to

predict a field of interest based on measurements is presented

in Section III. Section IV introduces a covariance function

learning algorithm for an anisotropic, spatio-temporal Gaus-

sian process. An optimal navigation strategy is described

in Section V. In section VI, we summarize our scheme

by a protocol for mobile sensor networks. In section VII,

simulation results illustrate the usefulness of our approach.

The standard notation will be used in the paper. Let

R,R≥0,Z denote, respectively, the set of real, non-negative

real, and integer numbers. The positive semi-definiteness of

a matrix A is denoted by A � 0. E denotes the expectation

operator.

II. MOBILE SENSOR NETWORKS

First, we explain the mobile sensing network and sensor

models used in this paper. Let Ns be the number of sensing

agents distributed over the surveillance region M ∈ R
2.

Assume that M is a compact set. The identity of each agent

is indexed by I := {1, 2, · · · , Ns}. Let qi(t) ∈ M be the

location of the i-th sensing agent at time t ∈ R≥0. We

assume that the measurement y(qi(t), t) of agent i is the

sum of the scalar value of the Gaussian process z(qi(t), t)
and sensor noise wi(t), at its position qi(t) and some

measurement time t,

y(qi(t), t) := z(qi(t), t) + wi(t).

The communication network of mobile agents can be

represented by a graph with edges. Let G(t) := (I, E(t))
be an undirected communication graph such that an edge

(i, j) ∈ E(t) if and only if agent i can communicate with

agent j 6= i. We define the neighborhood of agent i at time

t by N(i, t) := {j : (i, j) ∈ E(t), i ∈ I}. We also define the

closed neighborhood of agent i at time t by the union of its

index and its neighbors, i.e., N [i, t] := {i} ∪N(i, t).

III. THE NON-PARAMETRIC APPROACH

With the spatially distributed sampling capability, agents

need to estimate and predict the field of interest by fusing the

collective samples from different space and time coordinates.

We introduce recursively learning algorithms for each mobile

sensing agent to update its own prediction of the field

integrating the current noisy cooperative observations along

with the previous prediction (based on past measurements)

in an optimal fashion. We assume that a field undergoing a

physical transport phenomenon can be modeled by a spatio-

temporal Gaussian process, which can be used for non-

parametric prediction.

Consider a spatio-temporal Gaussian process with a

nonzero mean:

z(s, t) ∼ GP(µ(s, t), κ(s, t; s∗, t∗)), (1)

where s, s∗ ∈ M, t, t∗ ∈ R≥0 and µ(s, t) denotes a mean

at location s and time t. We then propose the following

generalized covariance function κ(si, ti; sj , tj ; Ψ) with a

parameter vector Ψ = [ψ1 ψ
x
2 ψ

y
2 σt]

T :

κ(si, ti; sj , tj ; Ψ) = ψ2
1 exp



−
1

2

∑

l∈{x,y}

(sl
i − sl

j)
2

(ψl
2)

2





exp

(

−
1

2

(ti − tj)
2

σ2
t

)

,

(2)

where sl
i is the l-th entry of si. {ψx

2 , ψ
y
2} and σt are kernel

bandwidths for space and time, respectively. (2) shows that

points close in the measurement space and time space are

strongly correlated and produce similar values. In reality, the

larger temporal distance two measurements are taken with,

the less correlated they become, which strongly supports

our generalized covariance function in (2). This may also

justify the truncation (or windowing) of the observed time

series data to limit the size of covariance matrix for less

computational cost.

In this paper, we only consider the case that the global

coordinates are the same as the local model coordinates.

In the case that the global coordinates are different from

the local model coordinates, a similarity transformation can

be used to address this issue. For instance, a rotational

relationship between the model basis {~ex, ~ey} and the global

basis { ~Ex, ~Ey} is:
[

~ex

~ey

]

=

[

cos θ sin θ
− sin θ cos θ

] [

~Ex

~Ey

]

,

where θ represents the angle of rotation. We then can use

the following relationship to change the coordinates:
{

x = X cos θ + Y sin θ

y = −X sin θ + Y cos θ
,

where x and y indicate the position in local coordinates and

X and Y indicate their counterparts in global coordinates.

(2) can then be rewritten in terms of global coordinates.

From (1), the collection of z(s, t) is denoted by Z with a

distribution

p(Z|Ψ) :=
exp

(

− 1
2 (Z − µZ)T Σ−1

Z (Z − µZ)
)

(2π)
n
2 |ΣZ |

1
2

, (3)

where n is the total number of data, µZ := E(Z) is the mean

of Z , ΣZ := E
(

(Z − µZ)(Z − µZ)T
)

is the covariance

matrix of Z obtained by [ΣZ ]ij = κ(si, ti; sj , tj ; Ψ), and

|ΣZ | is the determinant of ΣZ .

Up to time tk, agent i has noisy collective data

{y(sj(tm), tm) |m ∈ Z, j ∈ N [i, tm], 1 ≤ m ≤ k}, where

N [i, tm] denotes the closed neighborhood of agent

i at time tm. The measurements y(sj(tm), tm) =
z(sj(tm), tm) + wj(tm) are taken at different positions
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sj(tm) ∈ M and different times tm ∈ R≥0.

The measurements are corrupted by the sensor and

communication noises represented by Gaussian white noise

wj ∼ N (0, σ2
wj

). The column vectorized measurements

collected by agent i is denoted by

Y := col (y(sj(tm), tm) |m ∈ Z, j ∈ N [i, tm], 1 ≤ m ≤ k)

with a joint distribution

p(Y |Ψ) :=
exp

(

− 1
2 (Y − µY )T Σ−1

Y (Y − µY )
)

(2π)
n
2 |ΣY |

1
2

,

where µY , ΣY , and |ΣY | are defined accordingly as in (3).

Notice that the covariance matrix of Y is obtained by

ΣY := ΣZ + diag(· · · , σ2
wj
, · · · ),

where j is the agent index associated with the corresponding

measurement. If the covariance function is known a priori,

the prediction of the random field z(s, t) at location s and

time t is then obtained by

z(s, t|tk) := z(s, t) |Y ∼ N
(

ẑ(s, t|tk), σ2(s, t|tk)
)

, (4)

where ẑ(s, t|tk) := E (z(s, t|tk)) is

ẑ(s, t|tk) := µ(s, t) + ΣzY Σ−1
Y (Y − µY ),

and the prediction error variance is

σ2(s, t|tk) := Σz − ΣzY Σ−1
Y ΣY z,

where Σz is the covariance of z, obtained by κ(s, t; s, t; Ψ),
ΣzY = ΣT

Y z is the covariance matrix between z and Y ,

obtained by [ΣzY ]j = κ(s, t; sj , tj ; Ψ). Each agent can then

predict the field of interest at any location and time with

the associated uncertainty in a non-parametric way. In the

next section, we present a learning approach for unknown

covariance function.

IV. GAUSSIAN PROCESS LEARNING

Without loss of generality, we use a zero mean Gaussian

process z(s, t) ∼ GP(0, κ(s, t; s∗, t∗)), i.e., µZ = 0 for mod-

eling the field undergoing a physical transport phenomenon.

If the covariance function of a Gaussian process is not

known a priori, mobile agents need to estimate parameters of

the covariance function (Ψ) based on the observed samples.

Using Bayes’ rule, the posterior has the form of

p(Ψ|Y ) =
p(Y |Ψ)p(Ψ)

p(Y )
.

The maximum likelihood (ML) estimate ΨML of the hyper-

parameter vector is obtained by

ΨML = arg max
Ψ

p(Y |Ψ). (5)

Maximizing the likelihood function is equivalent to max-

imizing the log likelihood function:

ln p(Y |Ψ) = −
1

2
Y T Σ−1

Y Y −
1

2
ln |ΣY | −

n

2
ln 2π,

where n is the size of Y . A gradient-based algorithm is used

to find a ML estimate of Ψ:

Ψt+1 = Ψt + ǫ∇x ln p(Y |x)|x=Ψt
,

where ǫ is a small positive constant and ∇xf(x) is the partial

derivative of f(x) with respect to x. The partial derivative of

the log likelihood function with respect to a hyperparameter

ψj is given by

∂ ln p(Y |Ψ)

∂ψj

=
1

2
Y T Σ−1

Y

∂ΣY

∂ψj

Σ−1
Y Y −

1

2
tr

(

Σ−1
Y

∂ΣY

∂ψj

)

.

Let Ψ(k) be an estimate of Ψ from (5) based on measure-

ments up to time tk.

Alternatively, a simplex search method [24] can be used

to find a ML estimate of Ψ. This is a direct search method

that does not use numerical or analytic gradients.

After finding a ML estimate of Ψ, agents can proceed the

prediction of the field of interest using (4).

V. OPTIMAL NAVIGATION STRATEGIES

Agents should find new sampling positions to improve

the quality of the estimated covariance function in the next

iteration at time tk+1. For instance, to precisely estimate the

anisotropic phenomenon, i.e., processes with different co-

variances along x-axis and y-axis directions, sensing agents

need to explore and sample measurements along different

directions. In this section, we consider a centralized scheme

for this purpose. Suppose that a leader agent (or a central

station) knows the communication graph at the next iteration

time tk+1 and also has access to all measurements collected

by agents. Let Yk+1 and Y≤k be the measurements at

time tk+1 and the collective measurements up to time tk,

respectively, i.e.,

Yk+1 :=col (y(si(tk+1), tk+1) | i ∈ I) ,

Y≤k :=col (y(si(tm), tm) |m ∈ Z, i ∈ I, 1 ≤ m ≤ k) .

To derive the optimal navigation strategy, we compute the

log likelihood function of observations in Y≤k+1:

L(Y≤k+1,Ψ) := ln p(Y≤k+1|Ψ)

= −
1

2
Y T
≤k+1Σ

−1
Y≤k+1

Y≤k+1

−
1

2
ln |ΣY≤k+1

| −
n≤k+1

2
ln 2π,

(6)

where n≤k+1 is the size of Y≤k+1.

Since the locations of observations in Y≤k were already

fixed, we represent the log likelihood function in terms of a

vector of future sampling points s̃ := s(tk+1) at time tk+1

only and the hyperparameter vector Ψ:

L(s̃,Ψ) := ln p(Y≤k+1(s̃)|Ψ).

Now consider the Fisher Information Matrix (FIM) that

measures the information produced by measurements Y≤k+1

for estimating the hyperparameter vector at time tk+1. The

Cramér-Rao lower bound (CRLB) theorem states that the
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inverse of the FIM is a lower bound of the estimation error

covariance matrix [23], [25]:

E

(

(Ψ(k+1) − Ψ)(Ψ(k+1) − Ψ)T
)

� FIM−1,

where Ψ(k+1) represents the estimation of Ψ at time tk+1.

The FIM [23] is given by

[FIM(s̃,Ψ)]ij = −E

(

∂2L(s̃,Ψ)

∂ψi∂ψj

)

=
1

2
tr

(

Σ−1
Y≤k+1

∂ΣY≤k+1

∂ψi

Σ−1
Y≤k+1

∂ΣY≤k+1

∂ψj

)

,

(7)

where the expectation is taken with respect to p(Y≤k+1|Ψ).
Since the true value of Ψ is not available, we will evaluate

the FIM in (7) at the currently available best estimate Ψ(k)

[26].

We can expect that minimizing the CRLB results in

a decrease of uncertainty in estimating Ψ. Using the D-

optimality criterion [27], [28], the objective function J is

given by

J(s̃,Ψ(k)) := det(FIM(s̃,Ψ(k))). (8)

A gradient ascent strategy can be obtained by for the

objective function J(s̃) in (8).

Alternatively, a control law for the mobile sensor network

can be formulated as follows:

q(tk+1) = arg max
s̃∈

∏Ns
i=1 Qi

J(s̃,Ψ(k)), (9)

where

Qi =

nd
∏

j=1

[−δj δj ] + qi(tk),

where nd = 2 denotes the dimension of the surveillance

region M and δj is the maximum step size for each agent

to move in x and y directions.

However, optimization on ln p(Y≤k+1|Ψ) in (6) and J(s̃)
in (8) can be numerically costly due to the increasing size of

ΣY≤k
used in (6) and (8). A way to deal with this problem

is to use a truncated date set

Yk−δ≤,≤k := col (y(si(tm), tm) |m ∈ Z, i ∈ I,

k − δ ≤ m ≤ k)

instead of using Y≤k.

On the other hand, this approach can be viewed as a

strategy to deal with a slowly time varying parameter vector

Ψ.

VI. A PROTOCOL FOR MOBILE SENSOR NETWORKS

The overall protocol for the sensor network is summarized

as follows.

A. Prediction

A time tk, the sensor network updates Ψ(k) using maxi-

mum likelihood optimization for a data set Y≤k. Start this

optimization with the initial point Ψ(k−1). For given Y≤k

and Ψ(k), agent can compute prediction at any point and

time using (4), i.e.,

p(z(s, t)|Y≤k,Ψ
(k)).
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Fig. 1. The blue solid line represents simulation results without truncation;
the red dotted line represents simulation results with truncation. (a) Nor-
malized Root Mean Square (RMS) value of the spatially sampled prediction
errors vs. iteration; (b) Maximum log likelihood value vs. iteration; (c) Cost
function value vs. iteration.
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Fig. 2. The blue solid line represents simulation results without truncation;
the red dotted line represents simulation results with truncation. (a) ψ1 vs.
iteration; (b) ψx

2
vs. iteration; (c) ψy

2
vs. iteration.

B. Sampling

Based on {Ψ(k), Y≤k}, the sensor network computes the

control (9) in order to maximize J(s̃,Ψ(k)). Update the

positions of agents accordingly and collect measurements at

time tk+1. Repeat the prediction and sampling steps.

VII. SIMULATION RESULTS

In this section, we apply our approach to a spatio-temporal

field generated by physical phenomena (advection and dif-

fusion). To generate the experimental data numerically, the

advection-diffusion model developed in [29] was used. We

used the simulated process in order to compare the predicted

Fig. 3. Simulation results at step k = 1. (a) True field and agents’
trajectories; (b) Predicted field; (c) Prediction error variance.

Fig. 4. Simulation results at step k = 10. (a) True field and agents’
trajectories; (b) Predicted field; (c) Prediction error variance.
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Fig. 5. Simulation results at step k = 20. (a) True field and trajectories
of agents; (b) Predicted field; (c) Prediction error variance.

Fig. 6. Simulation results at step k = 20 using truncated data. (a) True field
and trajectories of agents; (b) Predicted field; (c) Prediction error variance.

values with respect to the true values. For the model co-

ordinates, a global Cartesian coordinate system was used.

An instantaneous release of Qkg of gas occurs at a location

(x0, y0, z0). Assuming that all measurements are recorded at

z = 0, and the release occurs at a ground level (i.e. z0 = 0),

the concentration C at an arbitrary location (x, y, 0) and time

t is described by the following analytical solution [30]:

C(x, y, 0, t) =
Q

4π
3
2 (KxKyKz)

1
2 (∆t)

3
2

× e
− ∆x2

4Kx∆t
− ∆y2

4Ky∆t

(10)

where ∆x = x − x0, ∆y = y − y0 and ∆t = t.
The parameters used in the simulation study are shown in

Table I. In particular, this process generates an anisotropic

concentration field with parameters Kx = 10m2/s and

Ky = 20m2/s as in Table I.

For simplicity, we have pre-selected the kernel bandwidth

for time σt, which specifies the temporal part of the pro-

cess. Moreover, we assume all agents have same level of

measurement noises so that σwi
= σw .

As discussed in Section V, we consider a situation where

at each time, measurements of agents are transmitted to a

leader (or a central station) that uses our Gaussian learning

TABLE I

PARAMETERS USED IN SIMULATION.

Parameter Notation Unit Value

Number of agents Ns - 4

Sampling time ts s 4

Initial time t0 s 100

Gas release mass Q kg 106

Eddy diffusivity in x axis Kx m2/s 10

Eddy diffusivity in y axis Ky m2/s 20

Eddy diffusivity in z axis Kz m2/s 0.2
Location of explosion x0 m 20

Location of explosion y0 m 20

Location of explosion z0 m 0

Time kernel bandwidth σt s 20

Sensor noise level σw g 0.01

algorithm and sends optimal control back to individual agents

for next iteration to improve the quality of the estimated

covariance function. In our simulation study, agents start

sampling at t0 = 100s and take measurements at time tk
with a sampling time of ts = 4s as in Table I.

After converging to a good estimate of Ψ, agents can

switch to a decentralized configuration and collect samples

for other goals such as peak tracking and prediction of the

process [8], [21], [20].

Fig. 1 illustrates that (a) the Root Mean Square (RMS)

value of spatially sampled normalized prediction errors (eval-

uated at 41× 41 grid points) vs. iteration; (b) the maximum

log likelihood value vs. iteration; and (c) the cost function

at each iteration in blue solid lines. Since the concentration

field diffuses, the normalized error by the maximum value

of the true field at each iteration was used. As shown

in Fig. 1-(a), the normalized RMS prediction error value

decreases as iteration time increases. Fig. 1-(b) shows that the

value of the maximum log likelihood function increases as

iteration increases. Also our control cost function increases

as iteration increases as shown in Fig. 1-(c).

Fig. 2 shows that (a) ψ1, (b) ψx
2 , and (c) ψy

2 converge to

some values that estimate the proposed covariance function

in (2). As can be seen in Fig. 2-(b) and Fig. 2-(c), ψx
2 ,

and ψy
2 converge to different values, and, more importantly,

ψx
2 < ψy

2 validate that our approach can effectively cope

with anisotropic field produced by (10) with Kx < Ky as

in Table I. All ML estimates of hyperparameters seem to

converge quickly after about 5 iterations as depicted in Fig. 2.

Figs. 3, 4 and 5 show that (a) the true field along with

trajectories of mobile agents, (b) the predicted field and

(c) the prediction error variance at different times {tk | k ∈
{1, 10, 20}}. Fairly good predictions are obtained after about

5 iterations. The error variance tends to decrease as time in-

creases. Notice that the mobility of agents was not optimized

for minimizing the prediction error variance as in [8], [21],

[20].

Applying our scheme using only a finite number of

truncated (or windowed) measurement data can significantly

reduce the computational cost and still provide a reasonable

quality of the estimate of Ψ. This way we can obtain a

tradeoff between a precise estimation and computational

efficiency. To make a fair comparison, we have used the

same initial points and the same sensor noise sequences. The

size of truncation was 20. This “truncated data scheme” is

illustrated in red dotted lines in Figs. 1 and 2. Fig. 1 shows (a)

the normalized RMS value of prediction errors vs. iteration;

(b) the maximum log likelihood value vs. iteration; and (c)

the cost function vs. iteration obtained from the truncated

data scheme in red dotted lines.

The estimated hyperparameters from the truncated data

scheme vs. iteration are depicted in red dotted lines in Fig. 2.

This figure illustrates that ML estimates of ψ1, ψx
2 , and ψy

2

only using the truncated data (in red dotted lines) are quite

close to those using all 80 measurements (in solid blue lines).

Fig. 6 shows the prediction and corresponding error vari-

ance at iteration 20. By comparing Fig. 5 and Fig. 6, we can
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see that the quality of prediction based on the truncated data

is comparable to that of prediction based on all data.

VIII. SUMMARY

In this paper, we presented a novel class of self-organizing

sensing agents that learn an anisotropic, spatio-temporal

Gaussian process using noisy measurements and move in

order to improve the quality of the estimated covariance

function. The maximum likelihood approach was used to

estimate the hyperparameters in the unknown covariance

function. The prediction of the field of interest was obtained

based on a non-parametric approach. An optimal navigation

strategy was proposed to minimize the Cramér-Rao lower

bound of the estimation error covariance matrix. Simulation

study indicated the effectiveness of the proposed scheme.

In particular, our scheme was also implemented based on

a finite number of truncated observations as compared to

the one using all the measurements. The tradeoff between

a precise estimation and computational efficiency will be

studied in the future work.
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