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Abstract— Here we present a new approach to optimal con-
troller design which bridges the gap between system data and
its complementary optimal controller. Starting with empirical,
open-loop frequency response function (FRF) data, it is shown
that the optimal controller can be derived directly without
performing system identification. The primary benefit is that
we are able to work directly with the measured data and
the uncertainties inherent in it. This approach is viewed as
advantageous because it has the ability to capture features in the
model that a structured uncertainty model could not. Further,
we go on to show a method of incorporating the empirical
FRF uncertainty into the cost for robustness against plant
uncertainty. This method leads to a more precise calculation
of H2 and LQG controllers since it avoids the residual errors
associated with performing the traditional intermediary step
of system identification, while concurrently accounting for
measured system uncertainty.

I. INTRODUCTION

In recent years, computation of the optimal controller

for a given state space model has been relegated to an

afterthought. There is still an abundance of research in

system identification, but given a perfect state space model,

tools at our disposal such as Matlab make it quick and simple

to calculate the optimal controller. Therefore, given the ease

of model-based control design [4], the current approach

may appear unwarranted or unnecessary. However, the major

shortcoming of model-based controllers is that they are

limited in performance and robustness by the errors present

in the nominal plant model. Here, we sidestep this issue

by working with empirical data instead of a parameterized

system model. Thus the argument at present quintessentially

concerns where the borders of optimal control theory should

begin, whether it be at the time-domain stage, the frequency

response function stage, or the parameterized system model

stage. Here we advocate the frequency response function

stage and proceed to develop an extension to optimal control

theory to handle this perspective, as in [1].

Why are state-space models so ubiquitous in control

theory? Is it their convenience? Their conciseness? Have past

results led us to believe that they are innately amenable and

predisposed toward controller design? Kalman’s insights [2]

have heretofore fueled nearly a half-century of control theory,

but at the expense of its successes, have we lost insight

into the physical system by focusing on the error-prone

state-space model? After all, when we’re doing diagnostics

on a controller or a system, isn’t the frequency response

function (FRF) one of the first things we look at [4],[5]?
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In fact, it seems transparent on inspection that FRFs are the

most fundamental description of a plant when we consider

all of the diagnostics we have that revolve around FRFs:

Bode plots, Nichols plots, and Nyquist plots. And how many

people could look at a 50th order state-space model and have

any idea of the system’s dynamics? Amidst all of this, it

seems hard to imagine why we have relegated the FRF to

a diagnostic tool when it appears to be the most intuitive,

complete way to represent a linear system.

In the end, even a FRF is an approximation, but in our

view, it is the most fundamental model we have to work

with. It presents a clear picture of the uncertainties at each

frequency, which would be difficult if not impossible to

capture in a finite-dimensional state-space model, especially

in the presence of the typical nonlinear disturbances that

pervade measured data. Thus if we design a controller around

a state-space model, we have not only uncertainty in the

model but even uncertainty in the uncertainty model, which

would seem preposterous to anyone first being introduced to

optimal control theory. Therefore dealing directly with the

FRF, instead of an intermediate dynamic model, we have a

more accurate understanding of the system and its associated

uncertainty.

In this paper, we develop a method of tuning an existing

controller to more accurately fit the measured FRF, not just

the ROM of the system.

II. H2 CONTROLLER DERIVATION

A. H2 Cost Setup

Fig. 1. Block diagram of the control architecture to be considered
throughout the paper.
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Consider the the control architecture in Figure 1 with

a m-input, p-output plant and consider the following cost,

Jp ∈ R+, as a weighted combination of the measurement

and performance cost:

Jp , αyJpy + αzJpz (1)

where Jpy ∈ R+ is the H2 norm of the closed-loop transfer

function from the input to the measurement, and Jpz ∈ R+

is the H2 norm of the closed-loop transfer function from

the input to the performance variable. Also, let Gyu ∈ Cp,m

represent the open-loop plant transfer function, Gzu ∈ C
p,m

the transfer function to the performance variable, and K ∈
Cm,p the controller transfer function. Then

Jpy ,
1

π

len(w)
∑

k=1

tr
[

Hy(jwk)HH
y (jwk)

]

∆w (2)

Jpz ,
1

π

len(w)
∑

k=1

tr
[

Hz(jwk)HH
z (jwk)

]

∆w (3)

Hy(jwk) , S(jwk)Gyu(jwk) , SkGyk , Hyk (4)

Hz(jwk) , S(jwk)Gzu(jwk) , SkGzk , Hzk (5)

S(jwk) , [I − Gyu(jwk)K(jwk)]
−1

, Sk, (6)

where Hy ∈ C
p,m, Hz ∈ C

p,m, and S ∈ C
p,p.

If the frequency response function (FRF) of the plant and

performance variable are experimentally determined, then

Gyk and Gzk are known for all relevant wk ∈ R+. Although

H2 controllers minimize the transfer function between input

and output, they do not deal with model uncertainty. Thus

a stability (or robustness) cost is introduced which accounts

for nominal FRF estimation uncertainty. Notice the inverse of

the distance in the cost which penalizes the Nyquist curve’s

proximity to the critical point.

Js ,
1

π

len(w)
∑

k=1

W (wk)
1

d2(jwk)
∆w (7)

d(jwk) , dk = det (I − GykKk) , d2
k =‖ dk ‖2 (8)

W (jwk) , Wk , tr
(

σnyq,kσH
nyq,k

)

, (9)

where Wk ∈ R
+ is a weighting function which accounts for

uncertainty in the Nyquist Domain. Here we use the standard

deviation as a metric to account for uncertainty in the closed-

loop system, although a different value may be used to obtain

a different confidence level in the stability of the closed-loop

system and the margins thereby obtained. By uncertainty in

the Nyquist domain, it is meant the uncertainty in d. Since

this distance is also a function of the controller (8), it can not

be measured directly, as in the case of the FRFs. Therefore

we approximate the Nyquist uncertainty as:

σnyq,k(i, j) ≈

(

∂dk

∂Gyk(i, j)

)

σGyk
(i, j) (10)

where σGyk
(i, j) ∈ R represents the standard deviation of

the FRF at every wk for the channel between the jth input

and the ith output with σnyq,k(i, j) ∈ R.

∂dk

∂Gyk(i, j)
= dktr

(

−Sk

[

∂Gyk

∂Gyk(i, j)

]

Kk

)

(11)

∂dk

∂Gyk

= −dkKkSk (12)

Here we are presented with a problem in the interpreta-

tion of σnyq,k because above what was really meant was

uncertainty with respect to each channel at each frequency.

However, using the matrix definition of ∂dk

∂Gyk
and σGyk

,

we gather unintended terms. Therefore, we appeal to the

Hadamard product (.*):

σnyq,k ≈ −dk

(

ST
k KT

k

)

. ∗ σGyk
, (13)

with σnyq,k, σGyk
∈ Rp,m. Plugging back into the stability

cost, (7)-(9):

η =
(

ST
k KT

k

)

. ∗ σGyk
(14)

Wk = d2
ktr

(

ηηH
)

(15)

Js =
1

π

len(w)
∑

k=1

tr
(

ηηH
)

∆w (16)

Defining a total cost, similar to [1], we now have:

J = αJp + βJs (17)

α̂y = ααy, α̂z = ααz (18)

J = α̂yJpy + α̂zJpz + βJs (19)

B. H2 Optimization

Now that we have formulated the problem, we address

the identification of the optimal controller. Notice that the

primary difference between the current approach and typical

approaches is that nowhere have we assumed a model for the

plant. We work strictly with empirical FRF data and its inher-

ent uncertainty. However, the shortcoming of this avenue of

controller design is that traditional approaches cannot be used

to determine the optimal controller (i.e. Riccati equation)

since we are dealing solely with FRF data. Therefore we

appeal to the natural solution of deriving gradients of the

cost with respect to the controller and optimize using these.

The gradients of the measurement, performance, and stability

cost with respect to the controller, ∂Jpy ∈ RK , ∂Jpz ∈ RK ,

and ∂Js ∈ RK (where K denotes the number of elements in

the parameterization of the controller), are:

∂Jp = αy∂Jpy + αz∂Jpz (20)

∂Jp =
2

π

len(w)
∑

k=1

Re

[

tr

(

Sk{αyGykGH
yk + αzGzkGH

zk}

SH
k SkGyk∂Kk

)]

∆w (21)

∂Js =
2

π

len(w)
∑

k=1

Re

[

tr

(

Sk

[

(KkSk)
H

. ∗ σGyk
. ∗ σH

Gyk

]

[I + KkSkGyu] ∂Kk

)]

∆w.

(22)
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Where the total gradient can now be written as:

Γ ={α̂ySkGykGH
yk + α̂zSkGzkGH

zk}S
H
k SkGyk+

βSk

[

(KkSk)H . ∗ σGyk
. ∗ σH

Gyk

]

[I + KkSkGyu]

(23)

∂J =
2

π

len(w)
∑

k=1

Re [tr (Γ∂Kk)] ∆w (24)

with Γ ∈ Cp,m and ∂J ∈ RK .

III. LQG CONTROLLER DERIVATION

A. LQG Cost Setup

Usually, LQG controllers, and their associated cost are de-

fined in the time-domain. Here we work with the frequency-

domain definition, as presented in [3] with Q ∈ Rp,p the

measurement weighting, R ∈ Rm,m the control weighting,

V ∈ Rm,m the covariance of the input noise (noise on top

of the input signal), and W ∈ Rp,p the covariance of the

measurement noise:

Jp ,
1

π

len(w)
∑

k=1

tr
(

SH
k {Q + KH

k RKk}SkGykV GH
yk+

W{KH
k GH

ykSH
k QSkGykKk + SH

k KH
k RKkSk}

)

∆w.
(25)

B. LQG Optimization

With the frequency-domain definition of the LQG cost in

place, we derive the gradients:

ΓP ={SkGykV + (SkGykKk + I)WKH
k }GH

ykSH
k QSkGyk

+ Sk{GykV GH
yk + W}SH

k KH
k R (I + KkSkGyk)

(26)

∂Jp =
2

π

len(w)
∑

k=1

Re [tr (ΓP ∂Kk)] ∆w (27)

where ΓP ∈ Cp,m and ∂Jp ∈ RK . The only assumption is

that the weighting and covariance matrices are symmetric.

Defining the performance variable as a linear combination

of outputs, we can also incorporate a performance variable

into the cost (as in the H2 controller) by modification of the

Q weighting matrix:

z , Czy (28)

Q̂ , α̂yQ + α̂zC
H
z QzCz (29)

where Qz weights the performance variables. The modified

cost and gradient incorporating the stability cost as defined

previously in (16) and (22) are now:

η =
(

ST
k KT

k

)

. ∗ σGyk
(30)

J ,
1

π

len(w)
∑

k=1

tr
(

SH
k {Q̂ + KH

k RKk}SkGykV GH
yk

+ W{KH
k GH

ykSH
k Q̂SkGykKk + SH

k KH
k RKkSk}

+ βηηH
)

∆w (31)

Γ ={SkGykV + (SkGykKk + I)WKH
k }GH

ykSH
k Q̂SkGyk

+ Sk{GykV GH
yk + W}SH

k KH
k R (I + KkSkGyk)

+ βSk

[

(KkSk)H . ∗ σGyk
. ∗ σH

Gyk

]

[I + KkSkGyu]

(32)

∂J =
2

π

len(w)
∑

k=1

Re [tr (Γ∂Kk)] ∆w (33)

IV. PARAMETERIZATION

Up to now, we have not selected a parametrization for the

controller. Here we choose the general state-space form:

Kk = Cc (jwkI − Ac)
−1

Bc + Dc, (34)

where it is at the discretion of the designer whether or not

to allow direct feed-through terms (Dc 6= 0).

Then defining the gradients for the costs presented previ-

ously with respect to the controller:

φk = (jwkI − Ac)
−1

(35)

∂Kk = Ccφk∂AcφkBc + Ccφk∂Bc + ∂CcφkBc + ∂Dc

(36)

∂J

∂Ac(i, j)
=

2

π

len(w)
∑

k=1

Re

[

tr

(

φkBcΓCcφk

∂Ac

∂Ac(i, j)

)]

∆w

(37)

∂J

∂Bc(i, j)
=

2

π

len(w)
∑

k=1

Re

[

tr

(

ΓCcφk

∂Bc

∂Bc(i, j)

)]

∆w

(38)

∂J

∂Cc(i, j)
=

2

π

len(w)
∑

k=1

Re

[

tr

(

φkBcΓ
∂Cc

∂Cc(i, j)

)]

∆w

(39)

∂J

∂Dc(i, j)
=

2

π

len(w)
∑

k=1

Re

[

tr

(

Γ
∂Dc

∂Dc(i, j)

)]

∆w (40)

where φk ∈ Cn,n, [∂J/∂Ac(i, j)] ∈ R, [∂J/∂Bc(i, j)] ∈ R,

[∂J/∂Cc(i, j)] ∈ R, [∂J/∂Dc(i, j)] ∈ R, and Γ is given in

either (23) or (32).

V. EXAMPLES

A. Example 1

We consider a randomly generated 20th order unstable

linear plant. First, an ideal 20th order LQG controller is

designed for the nominal plant. Then the FRF for that plant

is perturbed by at most 10%, see Figure 2. We then use

the nominal controller to initialize the optimization of (25)
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using the gradients as defined in (26)-(27), all with respect

to the perturbed FRF (Figure 2). We use α̂y = 1, α̂z = 0,

and β = 0 (the general LQG problem) to obtain a 20th

controller with a lower cost, J = 465.7446, than the cost

evaluated using the nominal LQG controller, J = 576.0398.

From Figure 3, we can see that the optimized controller

suppressed low frequency peaks, especially along the first

input, better than the LQG controller.

B. Example 2

For a second example, we incorporate the uncertainty

robustness (β 6= 0 in (31)). Again we start with a completely

arbitrary, randomly generated 20th order stable linear plant.

This time we do not perturb the baseline FRF, but instead

incorporate a frequency by frequency uncertainty model. We

then obtain a controller by optimizing (31) with α̂y = 1,

α̂z = 0, and β = 1. Of course the cost is lower this

time for the optimized controller, J = 0.95094, since the

LQG controller, with a cost, J = 1.8872, does not have

the same robustness considerations.In Figure 4, we see that

the optimized controller has pushed the MIMO Nyquist plot

away from the critical point, while maintaining comparable

performance, see Figure 5. Note that the reason the closed

loop FRFs appear high is that the system turned out to

be very lightly damped (all of the poles had a real part

between -1 and 0), yet the costs remained relatively low since

the modes of the system were nearly DC and thus did not

encompass a large bandwidth.

VI. CONCLUSIONS

A. Conclusions

We presented a new method for optimal controller deriva-

tion which allows one to forgo the system identification

process and thus to work directly with empirical FRF data.

We have shown that this approach is more optimal than

traditional approaches since the residual errors accrued in

the system identification process are not passed on to the

final closed-loop system. Several variations were developed

and demonstrated with two examples. Also, we have shown

the effect of incorporating plant uncertainty. The primary

advantage offered is that we deal directly with the empirical

FRF and the uncertainty inherent in it.

B. Future Work

As of yet unexplored are parameterizations and opti-

mization routines complementary to the current approach.

Although several were incorporated into the current scheme,

there is still research to be done in this arena. With research

devoted to these areas, the authors believe the strengths of

the proposed approach will lead to improved methods for

optimal controller design and tuning.
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Fig. 2. Example 1. Open-Loop Bode magnitude plot of the plant overlayed with up to 10% noise.
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Fig. 3. Example 1. Closed-loop Bode magnitude plot associated with Figures 2.In it, we can see that the LQG controller has a few FRF points of high
amplitude at low frequency, especially in the 1

st input channel. However, the optimized controller was able to suppress these points more effectively.
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Fig. 4. Example 2. MIMO Nyquist Plot of the nominal system. It shows that incorporating the stability cost in the optimization pushes the curve away
from the origin, thus giving us greater robustness against plant uncertainty.
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Fig. 5. Example 2. Closed-loop Bode magnitude plot associated with Figure 4. This figure shows that the optimized controller gives comparable
performance while improving robustness to plant uncertainty
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