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Abstract— This work considers the problem of plant-wide
fault-tolerant control. We develop a safe-parking framework
to handle actuator faults that preclude nominal unit operation.
We consider the cases where the effect of the actuator fault can
be contained to the faulty unit, as well as where appropriate
action needs to be taken in downstream units to preserve
nominal plant operation. The implementation of the safe-
parking framework is illustrated using a multi-unit chemical
reactor system.
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I. INTRODUCTION

The operation of chemical processes often encounters
faults in process equipments such as actuators and sensors.
Equipment failure can have a serious impact on the product
quality, can lead to undesirable pollutant emissions and can
impact the overall plant productivity and economy neg-
atively. To overcome these problems, significant research
efforts have focussed on devising automated methods for
online diagnosis and isolation of faults and in developing
online strategies for preventing and minimizing perfor-
mance degradation and smooth repair to nominal operation.

Fault tolerant control (FTC) methods can be catego-
rized within the robust/reliable, and reconfiguration-based
fault-tolerant control approaches. Robust/reliable control
approaches (e.g., see [1]) essentially rely on the robustness
of the active control configuration to handle faults as dis-
turbances while reconfiguration-based fault tolerant control
approaches (e.g., [2], [3], [4]) rely on existence of backup,
redundant control configuration. Most of the results in fault-
tolerant control (FTC) (see, e.g., [5], [2], [4], [6]) have
been developed based on the assumption of availability of
sufficient control effort or redundant control configurations
to preserve operation at the nominal equilibrium point in the
presence of faults. In contrast, the problem of faults that do
not allow continuation of operation at the nominal operating
point has not received sufficient attention. Specifically, the
scenario where a fault results in temporary loss of stability
that cannot be handled by redundant control loops has not
been explicitly addressed within reconfiguration-based or
reliable control approaches. In the absence of a framework
to handle such faults, ad-hoc approaches could result in
temporarily shutting down the process which can have
negative economic ramifications.
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In [7], a safe-parking framework was developed to ad-
dress the problem of determining how to run an isolated
unit during fault-rectification to prevent onset of hazardous
situations and enable smooth transition to nominal operation
upon fault repair. In [8], the safe-parking framework is
extended to handle uncertainty and limited availability of
measurements. The results in [7], [8], however, consider
safe-parking in the context of an isolated unit. The oppor-
tunities and challenges that arise in a plant-wide setting due
to the connected nature of chemical processes via material,
energy or communication lines simply do not exist in an
isolated unit. The results in [7], [8] therefore cannot be
applied to a plant-wide setting. Infact, a simple application
of the results in [7], [8] to a multi-unit setting can result
in missed opportunities as well as inadequate safe-parking.
In particular, a change in operating condition of one unit
naturally acts as a disturbance to the downstream units and
hence large changes in operating conditions of one unit,
while possibly enabling safe-parking of the unit in question,
can jeopardize the operation of the downstream units, and
therefore of the whole plant. This necessitates that the safe-
park point for a unit in multi-unit processes be chosen with
adequate consideration of its effect on downstream units.

Motivated by above considerations, this work addresses
the problem of handling actuator faults in the context of
multi-unit processes. We consider a multi-unit nonlinear
process system subject to input constraints and faults in
one unit that preclude the possibility of operating the unit
at its nominal equilibrium point. We first consider in Section
III-B the case where there exists a safe-park point for the
faulty unit such that its effect can be completely rejected
in the downstream unit. Steady-state as well as dynamic
considerations (including the presence of input constraints)
are used in determining the necessary conditions for safe-
parking the multi-unit system. We next consider in Section
III-C the problem where no viable safe-park point for the
faulty unit exists such that its effect can be completely
rejected in the subsequent unit. A methodology is developed
that allows simultaneous safe-parking of the consecutive
units. The details of the framework are illustrated using a
chemical process with two chemical reactors in Section IV.

II. PRELIMINARIES

In this section, we describe the class of processes con-
sidered and review Lyapunov-based predictive controller
designs and safe-parking framework for an isolated unit.
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A. Process description
Consider a plant comprising M units described by the

following equations:
ẋ1 = f1(x1) +G1(x1)(u1 + h1)
ẋ2 = f2(x2) +G2(x2)(u2 + h2) +W2,1(x2)x1

... (1)

ẋM = fM (xM )+GM (xM )(uM+hM )+WM,M−1(xM )xM−1

where xi := [x1
i x

2
i · · ·x

ni
i ]′ ∈ IRni i ∈ [1, M ] denotes

the vector of state variables for the ith unit and ui(t) :=
[u1
i u

2
i · · ·u

mi
i ] ∈ IRmi denotes the vector of constrained

manipulated variables for the ith unit, taking values in a
nonempty convex subset Ui of IRmi , where Ui = {ui ∈
IRmi : ui,min ≤ ui ≤ ui,max}, where ui,min, ui,max ∈
IRmi denote the constraints on the manipulated variables
of the ith unit. hi(t) := [h1

i h
2
i · · ·h

mi
i ] ∈ IRmi is a vector

that captures the effect of the actuator faults on the process
states. hji = 0 for t < tji,f and t > tji,r; h

j
i = −uji+u

j
i,failed

for tji,f ≥ t ≥ tji,r, where tji,f and tji,r denote the fault
occurrence and recovery times and uji,failed denotes the
fail-safe value for the jth actuator in the ith unit. The
vector function fi(xi) and the matrix functions Gi(xi) =
[g1
i (xi) · · · gmi

i (xi)] where gji (xi) ∈ IRni , j = 1 · · ·mi and
Wi,j(xi) = [w1

i,j(xi) · · ·w
nj

i,j(xi)] where wki,j(xi) ∈ IRni ,
k = 1 · · ·nj constitute the process model for the ith unit.
Wi,j captures the effect of the jth unit on the ith unit.
It is assumed that the origin, xi = 0, i = 1 · · ·M is the
nominal equilibrium point for each unit. Functions fi(xi),
Gi(xi) and Wi,i−1(xi), i = 1 · · ·M are assumed to be
sufficiently smooth on their domain of definition. The units
are connected in series via material or energy streams. The
results in the paper are applicable to system of the form of
Eq.1, where evolution of the states in the ith unit depends
only on local states, local inputs and state variables of
the preceding unit (through the interconnection Wi,i−1(xi)
term). The notation ‖ · ‖Q refers to the weighted norm,
defined by ‖x‖2Q = x′Qx for all x ∈ IRn, where Q is
a positive definite symmetric matrix and x′ denotes the
transpose of x. The notation Lfh denotes the standard
Lie derivative of a scalar function h(·) with respect to
the vector function f(·). V (x) is a Lyapunov function and
LGV = [Lg1V · · · LgmV ], LWV = [Lw1V · · · LwpV ].
The notation B\A, where A and B are sets, refers to the
relative complement, defined by B\A = {x ∈ B : x /∈ A}.
Throughout the manuscript, we assume that for any ui ∈ Ui

the solution of the each subsystem of Eq.1 exists and is
continuous for all t, and we focus on the state feedback
problem where xi(t), i = 1 · · ·M is assumed to be
available for all t.
B. Lyapunov-based predictive controller

In this section, we review a Lyapunov-based predictive
controller that handles non-linearity, uncertainty, input con-
straints and provides explicit characterization of stability
region. We consider the kth unit of the system in Eq.1 in

fault-free scenario, i.e. hk(t) = 0, (and drop the subscript
k for simplicity) described by:

ẋ = f(x) +G(x)u+W (x)θ (2)

where x denotes process states of the process unit under
consideration, u denotes the manipulated variables and θ is
the vector of vanishing disturbances (in the sense that the
nominal equilibrium point continues to be an equilibrium
point in presence of disturbances; in context of multi-unit
processes, θ denotes process state of upstream unit). In the
predictive control formulation of [8], the control action is
computed by solving an optimization problem of the form:

uMPC(x, xeq, umin, umax, θmin,θmax) =
argmin{J(x,t, u(·))|u(·) ∈ S} (3)

s.t. ẋ = f(x) +G(x)u (4)
sup
θ∈Θ

inf
u∈U

LfV (x) + LWV (x)θ + LGV (x)u+ ρV (x) ≤ 0

x(τ) ∈ Π ∀ τ ∈ [t, t+ ∆) (5)

uMPC(x, xeq, umin, umax, θmin, θmax) is Lyapunov
based model predictive controller designed to stabilize
the process at xeq with constraints on the inputs as
umin < u(t) < umax (defined by the set U ) in the
presence of uncertainty that is bounded between θmin
and θmax i.e. θmin < θ(t) < θmax (defined by the set
Θ). S = S(t, T ) is the family of piecewise continuous
functions (functions continuous from the right), with
period ∆, mapping [t, t+ T ] into U . Eq.4 is the ‘nominal’
nonlinear model (without the uncertainty term) describing
the time evolution of the state x. A control u(·) in S is
characterized by the sequence {u[j]} where u[j] := u(j∆)
and satisfies u(t) = u[j] for all t ∈ [j∆, (j + 1)∆). The
performance index is given by

J(x, t, u(·)) =
∫ t+T

t

[
‖xu(s;x, t)‖2Q + ‖u(s)‖2R

]
ds (6)

where Q and R are positive semi-definite, and strictly
positive definite, symmetric matrices, respectively, and
xu(s;x, t) denotes the solution of Eq.4, due to control u,
with initial state x at time t and T is the specified horizon.
The minimizing control u0

MPC(·) ∈ S is then applied to
the plant over the interval [t, t + ∆) and the procedure is
repeated indefinitely.

To characterize the stability region for the Lyapunov-
based robust MPC, a set Π is defined as,

Π = {x ∈ IRn : sup
θ∈Θ

inf
u∈U

LfV (x) + LWV (x)θ

+ LGV (x)u+ ρV (x) ≤ 0} (7)

An estimate of the stability region can be constructed using
a level set of V , i.e

Ω := {x ∈ IRn : V (x) ≤ cmax} (8)

where cmax > 0 is the largest number for which Ω ⊆ Π.
Stability and feasibility properties of the closed–loop system
under the Lyapunov–based robust predictive controller are
formalized in Theorem 1 below (for a proof, see [8]).
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Theorem 1. [8] Consider the constrained system of Eq.2
under the MPC law of Eqs.3–6. Then, given any positive
real number ε, there exists a positive real number ∆∗

such that if ∆ ∈ (0,∆∗] and x(0) := x0 ∈ Ω, then
the optimization problem of Eqs.3-6 is guaranteed to be
initially and successively feasible, x(t) ∈ Ω ∀ t ≥ 0
and lim sup

t→∞
‖x(t)‖ ≤ ε. Furthermore, if x0 ∈ Π\Ω, then

if the optimization problem is successively feasible, then
x(t) ∈ Π ∀ t ≥ 0 and lim sup

t→∞
‖x(t)‖ ≤ ε.

C. Safe-parking of an isolated unit
In this section, we briefly review the safe-parking frame-

work for an isolated unit proposed in [7]. Assume that a
fault occurs in the first actuator u1(t) of the kth unit at
time T fault and reverts to fail-safe position u1

failed with
u1
min ≤ u1

failed ≤ u1
max, and subsequently the fault is

rectified at a time T repair. This implies that t1f = T fault

and t1r = T repair. This leaves only ui, i = 2 . . .m available
during T fault < t ≤ T repair for feedback control of the
unit. Examples of fail-safe positions include fully open for
a valve controlling a coolant flow rate and fully closed
for a valve controlling a steam flow etc. In this failure
scenario, there exists a set of equilibrium points where the
unit can be stabilized, which we denote as the candidate
safe-park set: Xc := {xc ∈ IRn : f(xc) + g1(xc)u1

failed +∑m
i=2 g

i(xc)ui = 0, uimin ≤ ui ≤ uimax, i = 2, . . . ,m}.
The safe-park candidates therefore represent equilibrium
points that the unit can be stabilized at, subject to the failed
actuator, and with the other manipulated variables within
the allowable ranges. Note that if u1

failed 6= 0, then it may
happen that 0 /∈ Xc, i.e., if one of the actuators fails and
reverts to a fail-safe position with non-nominal value, it
may happen that no admissible combination of the func-
tioning manipulated variables exists for which the nominal
equilibrium point continues to be an equilibrium point. If
the controller attempts to use the functioning actuators to
preserve nominal operation, it will not succeed since there
does not exist an allowable value of the functioning inputs
for which the nominal equilibrium point is still an equi-
librium point. The states, in such an event, could possibly
stabilize at an equilibrium point outside the stability region
of the nominal equilibrium, thus making it impossible to
resume nominal operation upon fault rectification. Even if
it may be possible to resume nominal operation, it might
not be the optimal way of resuming nominal operation.
Thus choice of the temporary operating point is crucial for
safety and performance of process operation. In [7], the
safe-parking problem is defined as the one of identifying
safe-park points xs ∈ Xc that allow efficient resumption of
nominal operation upon fault-repair.

The safe-parking framework of [7] imposes the following
criteria on the safe-park point: 1) the unit state at the time
of failure resides in the stability region of the safe-park
candidate (subject to depleted control action), so the process
can be driven to the candidate safe-park point and 2) the
safe-park candidate resides within the stability region of the

nominal control configuration so the unit can be returned to
nominal operation after fault repair. These requirements are
formalized in Theorem 2 below. To this end, consider the
unit of Eq.2 for which the first control actuator fails at a
time T fault and is reactivated at time T repair, and for which
the stability region under nominal operation, denoted by
Ωn, has been characterized for the robust model predictive
controller of Eqs.3–6. Similarly, for a candidate safe-park
point xc, we denote Ωc as the stability region (computed
a priori) and un = uMPC(x, xn, uxn

min, u
xn
max, θmin, θmax)

and uxc
= uMPC(x, xc, uxc

min, u
xc
max, θmin, θmax), where

uxn
min, uxn

max and uxc
min, uxc

max denote the constraints on
the manipulated variables for stabilizing the process at the
nominal and safe-parking point respectively.

Theorem 2. [7] Consider the constrained system of Eq.2
under the robust model predictive controller of Eqs.3–6
designed to achieve (using Theorem 1) lim sup

t→∞
‖x(t)‖ ≤ ε

where ε is a given positive real number. If x(0) ∈ Ωn,
x(T fault) ∈ Ωc and Ωc ⊂ Ωn, then the switching rule

u(t) =


un , 0 ≤ t < T fault

uxc , T fault ≤ t < T repair

un , T repair ≤ t

 (9)

guarantees that x(t) ∈ Ωn ∀ t ≥ 0 and lim sup
t→∞

‖x(t)‖ ≤ ε.

Note that in a plant-wide setting, a change in operation of
a unit naturally enters as a ‘disturbance’ in the downstream
unit. Preparatory to the presentation of our results on a safe-
parking framework for plant-wide fault-tolerant control,
we characterize the maximum disturbance caused by safe-
parking of unit k in Proposition 1 below.
Proposition 1. Consider operation of the kth unit under
the safe-parking framework of Theorem 2. If x(0) ∈ Ωn,
then ∃ αi, i = 1 · · ·nk such that |xi(t)| ≤ αi, i =
1 · · ·nk, ∀t ≥ 0

III. SAFE-PARKING OF MULTI-UNIT PROCESSES

In multi-unit processes, due to fault in one unit, if that
unit is safe-parked using the framework presented in Section
II-C, without considering its interaction with the other units
in the plant, then it may happen that even though the faulty
unit is safely operated at safe-park point, the change in
operation of the faulty unit may cause a significantly large
disturbance that can not be rejected in the downstream units
or may even result in instability. This necessitates that the
safe-park point for the faulty unit be chosen with proper
consideration to its effect on downstream processes. In other
words, a safe-park point should be chosen such that it has
minimal adverse effect on the ability of downstream unit
to continue nominal operation. In this section, we present a
framework to account for the interaction of faulty units with
downstream operation while choosing a safe-park point for
the faulty unit.
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A. Problem definition
We consider the scenario where one of the control

actuators in unit k (k ∈ [1 M ]) fails and reverts to the
fail-safe value. Specifically, we consider a fault occurring,
without loss of generality, in the first control actuator of the
kth unit at a time T fault, subsequently rectified at a time
T repair i.e. t1k,f = T fault and t1k,r = T repair. This leaves
only ujk, j = 2 . . .mk available for feedback control of the
kth unit. As explained in Section II-C, if u1

k,failed 6= 0,
then the origin (the nominal operating point of kth unit)
may no longer be an equilibrium point and hence, the kth

unit can no longer be operated at the nominal equilibrium
point necessitating safe-parking of the kth unit.

The change in operating condition of the faulty unit
due to safe-parking, however, enters the downstream unit
as a disturbance. We first consider the case when this
disturbance is ‘small enough’, i.e., it can be rejected in
the k + 1th unit (i.e., in spite of change in inlet condition
of k + 1th unit, the k + 1th unit can be maintained
at nominal operation by changing the nominal values of
the manipulated variables), and the rest of the plant can,
therefore, be operated nominally. We next consider the
possibility that, if the disturbance caused by safe-parking
of kth unit is very large then it may not be rejected in
the k + 1th unit, then the downstream k + 1th unit cannot
continue operation at the nominal operating point. In other
words, operation of the faulty unit at the safe-park point
does not allow nominal operation of the downstream unit.
This then necessitates safe-parking of the k + 1th unit to
avoid any undesirable incident requiring the simultaneous
safe-parking of two units.
B. Safe-parking of a single unit in a multi-unit process

Consider the fault scenario described in Section III-A
where the kth unit needs to be safe-parked. In the multi-
unit setup, an additional criterion needs to be added to the
choice of safe-park point which is that if possible, it should
allow continued nominal operation in the downstream units.
In this section, we provide a systematic procedure to choose
safe-park point that allows continued nominal operation in
the downstream units. Preparatory to the presentation of the
results, we define the set:
Dk = {xk ∈ IRnk : fk+1(xk+1,ss) +Gk+1(xk+1,ss)uk+1+
Wk+1,k(xk+1,ss)xk = 0, uk+1 ∈ Uk+1 ∈ IRmk+1} (10)

where xk+1,ss is the nominal operating points in the k+1th

unit. Therefore, Dk is the set of values of process variables
(xk) in the kth unit such that if the kth unit is stabilized at
xk, nominal operation in the k+1th unit can be maintained
using allowable, although possibly different from nominal,
values of the manipulated variables in the k + 1th unit.
In other words, the non-vanishing disturbance caused by
change in operation of the kth unit can be rejected in the
k + 1th unit at steady state via using non-nominal values
of the manipulated variables. Note that hk+1 = 0 is used
for calculation of the set Dk because there is no fault
in the k + 1th unit. We denote uk+1,n = uMPC(xk+1,

xssk+1,n, u
xn

k+1,min, u
xn

k+1,max, θk+1,min, θk+1,max) as
the controller designed to control the k + 1th unit at
the nominal operating point with nominal values of
manipulated variables. As mentioned earlier, when the
kth unit is safe-parked, the controller in k + 1th unit can
maintain the nominal operation in the unit using non-
nominal values of the manipulated variables. We denote
this controller as u′k+1,n = uMPC(xk+1, x

ss
k+1,n, u

′
k+1,min,

u′k+1,max, θk+1,min, θk+1,max) where u′k+1,min and
u′k+1,max are modified constraints on manipulated
variables. Both uk+1,n and u′k+1,n are designed to stabilize
the k+ 1th unit at the nominal equilibrium point but as the
nominal values of the manipulated variables (and therefore
of the constraints) are different for these controllers, they
may have different stability regions which we denote by
Ωk+1,n and Ω′k+1,n respectively. As before, we denote Ωk,n
and Ωk,c as the stability region for nominal equilibrium
point and the safe-park point for the kth unit respectively.
For a choice of safe-park point of the kth unit, the
maximum disturbance caused to the k+1th unit is denoted
by dk,max (characterized using Proposition 1). Theorem
3 below provides the key requirements for choice of the
safe-park point for the faulty unit so that the downstream
units can continue nominal operation (see [9] for a proof).
Theorem 3. Consider the constrained system of Eq.1 sub-
ject to failure in the first control actuator of the kth unit at
a time T fault, subsequently rectified at a time T repair. If
xk(0) ∈ Ωk,n and xk+1(0) ∈ Ωk+1,n, xk,sf is the safe-park
point for the kth unit satisfying xk(T fault) ∈ Ωk,c, xk,sf ∈
Dk and Ωk,c ⊂ Ωk,n and if xk+1(T fault) ∈ Ω

′

k+1,n then
the switching rule

uk(t) = uk,n, uk+1(t) = uk+1,n 0 ≤ t < T fault

uk(t) = uk,xc
, uk+1(t) = u′k+1,n T fault ≤ t < T repair

uk(t) = uk,n, uk+1(t) = uk+1,n T repair ≤ t

under the robust model predictive controller of Eqs.3-6 with
θk+1,min = −dk,max and θk+1,max = dk,max, guarantees
that xk(t) ∈ Ωk,n, xk+1(t) ∈ Ωk+1,n for ∀t ≥ 0 and
lim sup
t→∞

‖xk(t)‖ ≤ εk and lim sup
t→∞

‖xk+1(t)‖ ≤ εk+1 where

εk and εk+1 are given positive real numbers.

C. Simultaneous safe-parking of multiple units
In the last section, we presented the framework to select

a safe-park point so that nominal operation in downstream
units can be continued. However, it may happen that in
case of fault, none of the candidate safe-park points satisfy
the requirements presented in Theorem 3, i.e. Ωk,n ∩Dk ∩
Xk,c = 0. In other words, there exist no safe-park point
such that nominal operation of the downstream unit can be
continued. This necessitates that the downstream unit also
be safe-parked. However, due to the interconnected nature
of the process, the procedure for safe-parking of isolated
units cannot be duplicated to safe-park multiple units, and
one needs a framework to simultaneously safe-park multiple
units to continue the safe-operation of the entire plant. In
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this section, we provide details of framework to carry out
simultaneous safe-parking.

Consider the plant of Eq.1 with Ωk,n ∩Dk ∩Xk,c = 0.
We recall the control laws uk,n, uk,xc

and uk+1,n as
defined in Section III-B. Further, we define, uk+1,xc =
uMPC(xk+1, x

ss
k+1,c, u

xk+1,c

k+1,min, u
xk+1,xc

k+1,max, θk+1,min,

θk+1,max) as control law to stabilize the k + 1th unit
at a candidate safe-park point xssk+1,c. Also, we define
Ωk+1,n and Ωk+1,c as the stability regions for the nominal
equilibrium point and safe-park point in the downstream
unit, for the robust predictive controller of Eqs.3–5 designed
using θk+1,min = −dk,max and θk+1,max = dk,max where
dk,min and dk,max are maximum possible disturbance that
can be caused by safe-parking of kth unit (characterized
using Proposition 1 ). The key idea in simultaneous safe-
parking is to ensure that for a choice of safe-park point of
the faulty processing unit, there exists a safe-park point for
the downstream unit (for which the ‘disturbance’ caused
by the safe-parking of the faulty unit can be rejected)
and such that it can resume nominal operation when the
faulty processing unit reverts to nominal operation. This
requirement is formalized in Theorem 4 (see [9] for a
proof).
Theorem 4. Consider the constrained system of Eq.1
subject to failure in the first control actuator of the kth

unit at a time T fault, subsequently rectified at a time
T repair, and xk,sf and xk+1,sf are chosen as safe-park
points for the kth and k + 1th unit, respectively, such that
xk(T fault) ∈ Ωk,c, xk+1(T fault) ∈ Ωk+1,c, Ωk,c ⊂ Ωk,n
and Ωk+1,c ⊂ Ωk+1,n, then the switching rule
uk(t) = uk,n, uk+1(t) = uk+1,n 0 ≤ t < T fault

uk(t) = uk,xc , uk+1(t) = uk+1,xc T fault ≤ t < T repair

uk(t) = uk,n, uk+1(t) = uk+1,n T repair ≤ t

under the robust model predictive controller
of Eqs.3-6, guarantees that xk(t) ∈ Ωk,n and
xk+1(t) ∈ Ωk+1,n for ∀t ≥ 0, lim sup

t→∞
‖xk(t)‖ ≤ εk

and lim sup
t→∞

‖xk+1(t)‖ ≤ εk+1.

IV. APPLICATION TO A TWO-UNIT CHEMICAL PROCESS

Consider a process composed of two well-mixed, non-
isothermal continuous stirred-tank reactors (CSTRs) with
interconnections, where three parallel irreversible elemen-
tary exothermic reactions of the form A

k1→ B, A k2→ U

and A
k3→ R take place, where A is the reactant species,

B the desired product, and U and R are the undesired
byproducts. The feed to CSTR-1 consists of pure A at
flow rate F0, molar concentration CA0, and temperature T0,
and the feed to CSTR-2 consists of the output of CSTR-1,
and an additional fresh stream feeding pure A at flow rate
F3, molar concentration CA03, and temperature T03. Under
standard modeling assumptions, a mathematical model of
the plant can be derived and takes the following form:

dT1

dt
=
F0

V1
(T0 − T1) +

3∑
i=1

∆Hi

ρcp

Ri(CA1, T1) +
Q1

ρcpV1

dCA1

dt
=
F0

V1
(CA0 − CA1)−

3∑
i=1

Ri(CA1, T1)

dT2

dt
=
F1

V2
(T1 − T2) +

F3

V2
(T03 − T2) +

3∑
i=1

∆Hi

ρcp

Ri(CA2, T2) +
Q2

ρcpV2

dCA2

dt
=
F1

V2
(CA1 − CA2) +

F3

V2
(CA03 − CA2)−

3∑
i=1

Ri(CA2, T2)

where Ri(CAj , Tj) = ki0exp(Ei/RTj)CAj , for j = 1, 2.
The symbols T , CA, Q, and V denote the temperature
of the reactor, the concentration of species A, the rate
of heat input/removal from the reactor, and the volume
of reactor, respectively, with subscript 1 denoting CSTR
1, and subscript 2 denoting CSTR 2. ∆Hi, ki, Ei, i =
1, 2, 3, denote the enthalpies, pre-exponential constants and
activation energies of the three reactions, respectively, cp
and ρ denote the heat capacity and density of fluid in
the reactor. Q1 and Q2 are net heat added/removed from
CSTR-1 and CSTR-2, respectively. The Q1 term consists
of heat removed Q1,c and heat added Q1,h1 and Q1,h2 (i.e.
Q1 = Q1,c +Q1,h1 +Q1,h2) in CSTR-1 while Q2 consists
of heat removed Q2,c and heat added Q2,h1 and Q2,h2 (i.e.
Q2 = Q2,c +Q2,h1 +Q2,h2) in CSTR-2. The values for all
the parameters is given in [9].

The control objective is to stabilize CSTR-1 at the
unstable equilibrium point (CA1 = 1.69 kmol/m3, T1 =
424.4 K) and CSTR-2 at the unstable equilibrium point
(CA2 = 0.89 kmol/m3, T2 = 444.5 K). The manipulated
variables for the CSTR-1 are CA0 and (Q1 while manip-
ulated variables for the CSTR-2 are CA30) and Q2. For
constraints on the manipulated inputs, and details of the
controller design, see [9].

To this end, consider a fault where one of the heating
coils in CSTR-1 fails to its fail-safe position (resulting in
Q1,h2 = 0) at time t = 1 hr and so the constraints on net
heat added/removed from CSTR-1 becomes −2 × 106 ≤
Q1 ≤ 0.5×106 KJ/hr. This makes it impossible to operate
CSTR-1 at the nominal equilibrium point because there
exist no admissible inputs which can maintain CSTR-1 at
the nominal equilibrium point and, therefore, CSTR-1 needs
to be safe-parked at a safe-park point. We first consider

Fig. 1. Stability region for nominal equilibrium point (Ω1,n), the set
D1 and candidate safe-park points (2) for fail-safe value of Q1,h1 for
CSTR-1. Dashed lines (- -) indicate the case when x1,sf1 is chosen as
the safe-park point for CSTR-1 while the solid lines (—) show the case
when x1,sf2 is chosen as the safe-park point for CSTR-1.

the case where a fault occurs in CSTR-1 and it is safe-
parked utilizing the safe-parking framework for isolated
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Fig. 2. Evolution of the closed–loop state profiles for CSTR-2. Dashed
lines (- -) indicate the case when x1,sf1 is chosen as the safe-park point
for CSTR-1 while the solid lines (—) show the case when x1,sf2 is chosen
as the safe-park point for CSTR-1.

unit described in Section II-C. Therefore a safe-park point
x1,sf1 : (CA1 = 2.58 kmol/m3, T1 = 452.6 K is chosen.
Note that x1,sf1 ∈ Ωk,n and N ∈ Ωk,x1,sf1

. It is therefore
possible to stabilize CSTR-1 at the safe-park point x1,sf1 .
However, as can be seen from the dashed line in Fig.2, safe-
parking CSTR-1 at x1,sf1 does not permit operating CSTR-
2 at the nominal equilibrium point. To explain this, we su-
perimpose set D on the candidate safe-park points in Fig.1
and it can be seen that the safe-park point x1,sf1 is outside
the set D. This explains the inability of operating CSTR-2
at the nominal equilibrium point. In contrast, if the proposed
safe-parking framework outlined in Theorem 3 is utilized,
it dictates picking x1,sf2 : (CA1 = 1.90 kmol/m3, T1 =
471.6 K) as the safe-park point, since x1,sf2 is inside the
stability region of nominal equilibrium point and inside the
set D (i.e x1,sf2 ∈ Ω∩D) as well. Choice of x1,sf2 ensures
that nominal operation in CSTR-1 can be resumed upon
fault repair, as demonstrated by the solid line in Fig.2. Next,

Fig. 3. Stability region for nominal equilibrium point (Ω1,n), the set D1

and candidate safe-park points (2) for failure value of CA0 for CSTR-
1. Dashed lines (- -) shows the closed loop state profiles of CSTR-1 for
simultaneous safe-parking.

consider a case where a fault occurs in upstream of CSTR-1
restricting the concentration of inlet stream to 6 ≤ CA0 ≤
8 Kmol/m3 instead of 0 ≤ CA0 ≤ 8 Kmol/m3. This
fault makes it impossible to continue nominal operation
in CSTR-1 because nominal equilibrium point is not an
equilibrium point in the faulty scenario. For the simulations
we design the robust predictive controller for CSTR-2 using
θmax = (0.2 kmol/m3, 20 K). The stability region for
nominal operating point and the set Dk as well as the set
of equilibrium points in faulty scenario are shown in Fig.3.
From Fig.3, it can be seen that there exist no candidate
safe-park point such that x1,sf ∈ Ω ∩Dk and hence, there
exists no safe-park point for CSTR-1 such that nominal

operation in CSTR-2 can be continued. This requires that
both CSTR-1 and CSTR-2 be safe-parked simultaneously.
Out of the safe-park candidates, we choose x1,sf : (CA1 =
3.59 kmol/m3, T1 = 445.0 K) as the safe-park point
for CSTR-1, and x2,sf : (CA2 = 1.30 kmol/m3, T2 =
437.3 K) as safe-park point for CSTR-2. As can be seen
from the solid lines in Fig.3 for CSTR-1 (the corresponding
state profiles for CSTR-2 are shown as solid lines in Fig.4)
safe-parking of both CSTR’s and subsequent resumption of
nominal operation (at time t = 9 hrs) is achieved.

Fig. 4. Evolution of the closed–loop state profiles for CSTR-2. Simulta-
neous safe-parking of both CSTR’s and subsequent resumption of nominal
operation is successfully achieved.

In summary, a safe-parking framework for plant-wide
fault-tolerant control was developed to handle faults that
preclude the possibility of continued operating at the nom-
inal equilibrium point. First a framework was developed to
select the safe-park point in faulty unit such that nominal
operation in downstream unit can be continued during fault
rectification. Next we considered the scenario where no
viable safe-park point for the faulty unit exists such that its
effect can be completely rejected in the subsequent unit. A
methodology was developed that allows simultaneous safe-
parking of the consecutive units. The efficacy of the pro-
posed framework was illustrated using a process comprising
two chemical reactors in series.
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