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Abstract— Probabilistic Boolean Networks (PBNs) have been
recently introduced as a paradigm for modeling genetic regu-
latory networks. One of the objectives of PBN modeling is to
use the network for the design and analysis of intervention
strategies aimed at moving the network out of undesirable
states, such as those associated with disease, and into desir-
able ones. To date, a number of intervention strategies have
been proposed in the context of PBNs. However, most of
these techniques assume perfect knowledge of the transition
probability matrix of the PBN. Such an assumption cannot
be satisfied in practice, and may lead to degraded, if not
completely unacceptable, performance. To remedy the situation,
one can adopt one of two main approaches:(i) design an
intervention strategy that is “robust” or somewhat insensitive to
the presence of a class of modeling errors, such as uncertainties
in the transition probability matrix; or (ii) introduce on-line
adaptation or learning into the intervention strategy to ensure
satisfactory performance provided the modeling error belongs
to a particular class. The first approach has already been
developed in an earlier paper. The main goal of this paper
is to demonstrate the feasibility of the second approach. Using
simulation studies, it is shown that adaptive intervention works
well in two different scenarios: first, when we have a family
of PBNs whose individual transition probability matrices are
reasonably well modeled and the predominant uncertainty is
about which member of that family represents the underlying
genetic regulatory network; and second, when we have a context
sensitive PBN with a low probability of a context change so that
there is sufficient time between context changes for the adaptive
algorithm to learn the context and exploit it in the intervention
design. These results agree quite well with intuitive expectations.

I. INTRODUCTION

The sequencing of various genomes over the last decade
has given a remarkable boost to genomic studies. The im-
proved understanding of the genomes of various organisms,
along with advances in microarray technology, have provided
us with enormous opportunities for the mathematical mod-
eling of biological networks. There are two major objectives
for modeling of genetic regulatory networks: (i) first, to
better understand the intergene interactions and relationships
on a holistic level, thereby facilitating the diagnosis of
disease; and (ii) second, to design and analyze therapeutic
intervention strategies for shifting the state of a diseased net-
work from an undesirable location to a desirable one. Many
different approaches have been proposed in the literature
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for modeling the behaviour of genetic regulatory networks.
These include linear models, Bayesian networks, neural
networks, differential equations, Boolean networks (BNs),
and their stochastic generalizations, the Probabilstic Boolean
networks (PBNs). Of these, the model which has received
the most attention, at least in the context of therapeutic
intervention, is the Probabilistic Boolean network model.

To date, a number of approaches have been proposed in
the literature for carrying out interventions in Probabilistic
Boolean networks [1]. Most of these approaches are based
on stochastic optimal control theory for Markov chains
and, therefore, assume perfect knowledge of the underlying
PBN. Such an assumption cannot be satisfied in practice,
and may lead to degraded, if not completely unacceptable,
performance. To remedy the situation, one could design
a fixed intervention strategy that is “robust” or somewhat
insensitive to the presence of a class of modeling errors.
Such a design has been considered in [2] where the effect
of uncertainties in the transition probability matrix of a PBN
on the final intervention outcome was analyzed, and a robust
intervention scheme, optimal for the worst-case uncertainty,
was developed. In this approach, the intervention strategy
is a fixed one and not “tuned” to the actual PBN and
consequently, one can expect to get better performance if
learning or “on-line” adaptation can be introduced into the
intervention design. The aim of this paper is to demonstrate
the feasibility of such an adaptive approach. At the very
outset, it is important to point out that such a scheme will be
feasible only if the uncertainty belongs to a certain class, and
prior knowledge about this class can be incorporated into the
design. In other words, improved performance results from
exploiting prior structural knowledge about the uncertainty.

The paper is organized as follows. In Section II, we
formally define Boolean networks and Probabilistic Boolean
Networks and derive transition probability expressions for
the latter under two different scenarios. In Section III, we
introduce notation and quickly recall some earlier results on
infinite horizon optimal control for PBNs for the case when
the transition probabilities are exactly known. In Section IV,
we present an adaptive intervention algorithm which can
be used to improve performance when there is structured
uncertainty about the transition probabilities of the under-
lying PBN. Section V presents simulations to demonstrate
the performance of the adaptive scheme when applied to a
toy example. Finally, Section VI contains some concluding
remarks.
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II. BNS AND PBNS

In this section, we briefly define Boolean Networks and
Probabilistic Boolean networks. For a more detailed and
motivated development, the reader is referred to [1].

A Boolean Network (BN) B = (V, F ) on n genes is
defined by a set of nodes/genes V = {x1, ..., xn}, xi ∈
{0, 1}, i = 1, ..., n, and a list F = (f1, ..., fn), of Boolean
functions, fi : {0, 1}n → {0, 1}, i = 1, ..., n. Each node xi

represents the state/expression of the gene xi, where xi = 0
means that gene i is OFF and xi = 1 means that gene i is
ON. The function fi is called the predictor function for gene
i. Updating the states of all genes in B is done synchronously
at every time step according to their predictor functions.
A Probabilistic Boolean Network (PBN) consists of a set
of nodes/genes V = {x1, ..., xn}, xi ∈ {0, 1, ..., Y }, i =
1, ..., n, Y ∈ N and a set of vector valued network functions,
f1, f2, ..., fk, governing the state transitions of the genes, each
network function being of the form fj = (fj1, fj2, ..., fjn),
where fji : {0, 1, ..., Y }n → {0, 1, ..., Y }, i = 1, ..., n.
In most applications, the discretization is either binary or
ternary and in this paper we will use binary, i.e. Y = 1. The
choice of which network function fj to apply is governed
by a selection procedure. Specifically, at each time point a
random decision is made as to whether to switch the network
function for the next transition, with the probability q of a
switch being a system parameter. If a decision is made to
switch the network function, then a new function is chosen
from among f1, f2, ..., fk, with the probability of choosing
fj being the selection probability cj . In other words, each
network function fj determines a BN and the PBN behaves
as a fixed BN until a random decision (with probability q) is
made to change the network function according to the prob-
abilities c1, c2, ..., ck from among f1, f2, ..., fk. The PBN just
described is called a context-sensitive PBN. In the special
case when q = 1, the network function is switched at every
time point and the PBN is called an instantaneously random
PBN. We consider context-sensitive PBNs with perturbation,
meaning that at each time point there is a probability p
of any gene flipping its value uniformly randomly. Since
there are n genes, the probability of there being a random
perturbation at any time point is 1 − (1 − p)n. The state
space S of the network together with the set of network
functions, in conjunction with transitions between the states
and network functions, determines a Markov chain. The
random perturbation makes the Markov chain irreducible,
meaning that it has the possibility of reaching any state
from any other state and that it possesses a steady-state
distribution.

The state vector x(t) at any time step t is essentially an n-
digit binary number [x1x2 · · ·xn] whose decimal equivalent
is given by

z(t) =
n∑

j=1

2n−jxj(t). (1)

As x(t) ranges from 000 · · · 0 to 111 · · · 1, z(t) takes on
all values from 0 to 2n − 1. Instead of the vector x(t),

one could equivalently consider z(t) to be the state of the
network at time t so that the new state space becomes S =
{0, 1, 2, · · · , 2n−1}. We next proceed to derive the transition
probability expressions for a context sensitive PBN.

A. Computation of Transition Probabilities for a Context-
sensitive PBN

Consider a context-sensitive PBN that is assumed to be
completely known. In other words, we know the perturbation
probability p, switching probability q, the truth tables of
the constituent Boolean Networks and the network selection
probabilities ci, i = 1, 2, · · · , k. We will assume that the
following mutually exclusive sequence of events can occur at
any time point t: (1)The current network function is applied,
the PBN transitions accordingly, and the network function
remains the same for the next transition; (2)The current
network function is applied, the PBN transitions accordingly,
and a new network function (which can be the same as the
original one) is selected for the next transition; (3)There is
at least one random perturbation and the network function
remains the same for the next transition; (4) There is a
random perturbation and a new network function (which
can be the same as the original one) is selected for the
next transition. In (2) and (4) above, we are allowing the
possibility that the same network can be selected after a
network switch. Thus, if the PBN is currently in Boolean
network r (r ∈ {1, 2, · · · , k}), then it will stay in Boolean
network r with a probability 1− q(1− cr) and transition to
some other Boolean network s with probability qcs. Because
of this, the transition probability expressions derived here
will be a little different than those obtained in [1] where
the underlying assumption was that a network switch would
necessarily mean that the BN would have to change. This
subtle difference, however, does not affect the qualitative
nature of the results in this paper or, for that matter, in the
earlier literature.

Clearly, each Boolean Network will have 2n states 00 · · · 0
to 11 · · · 1 and the collection of k BNs can be considered to
have a set of 2nk states. Let w(t) ∈ {0, 1, 2, · · · , 2nk −
1} be the state that is occupied by the network at time t.
This means that at time t, the [w(t)/2n]th BN is used and
the current state or gene activity profile in that network is
mod(w(t), 2n). Let a, b ∈ {0, 1, 2, · · · , 2nk−1} be any two
states and define r1 = [a/2n], r2 = [b/2n], a

′
=mod(a, 2n)

and b
′
= mod(b, 2n). Then it is straight forward to show that

the one-step transition probability from a to b is given by:

Pr(w(t + 1) = b|w(t) = a) =
[g(a, b) {1− q + qcr1}+ {1− g(a, b)} qcr2 ]
× [

(1− p)nfr1,a,b + (1− p)n−hphs(h)
]

(2)

where, h is the Hamming distance between a
′

and b
′

repre-
sented in binary digits, i.e., the number of genes that differ
between the two states,

fr,a,b =
{

1 if a
′

transitions to b
′

in 1 step in network r,
0 otherwise,
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g(a, b) =
{

1 if r1 = r2 = r (say)
0 otherwise

and
s(h) =

{
0 if h = 0
1 otherwise.

The transition probability expression (2) can be used to
track the time evolution of the extended state which contains
both context as well as gene activity profile information.
However, in practice it will be almost impossible to detect
the BN from which the current gene activity profile is being
emitted. In most cases, we will have knowledge only of
the expression status of the genes and not of the context.
This motivates the development of an expression for the
transition probabilities between the different gene activity
profiles by taking the expectation of the extended state
transition probabilities over the networks. To do so, let z(t)
be the decimal equivalent of the binary gene activity profile
at time t. Then for any s1, s2 ∈ S, the averaged out transition
probability is given by

Pr[z(t + 1) = s1|z(t) = s2] =
k∑

i=1

k∑

j=1

ci.P r[w(t + 1) =

s1 + 2n(j − 1)|w(t) = s2 + 2n(i− 1)]. (3)

Using the above equations we can compute the entire tran-
sition probability matrix of size 2n × 2n corresponding to
the averaged context sensitive PBN. As shown in [2], the
transition probability matrix for an averaged context sensitive
PBN is the same as that of an instantaneously random PBN
that makes use of the same constituent Boolean networks.

It is possible that some of the transition probabilities com-
puted using (3) may evaluate out to zero. The corresponding
transitions are referred to as forbidden transitions and the
adaptive algorithms to be presented in this paper require that
the set F of such forbidden transitions be known.

The transition probability expressions derived in this
subsection allow for the possibility of different selection
probabilities for the different constituent boolean networks of
a PBN. However, in the absence of any prior knowledge, we
will henceforth assume a uniform distribution of the selection
probabilities, i.e. ci = 1

k , i = 1, 2, · · · , k.

III. INFINITE HORIZON CONTROL ASSUMING
PERFECT MODELING

In this section, we briefly summarize some results on the
infinite horizon control of PBNs, assuming that the modeling
is perfect. These results serve as a stepping stone for deriving
adaptive intervention strategies when perfect modeling is not
possible and the modeling error belongs to an appropriate
class. We begin by recalling some facts and notation from
[1]. As shown in [1], a PBN with control can be modeled as
a stationary discrete-time dynamic system1

zt+1 = f(zt, ut, wt), t = 0, 1, ...., (4)

1In the rest of this paper, we will be denoting the time dependence of z,
u and w by the subscript t. In all other situations, the context will make
it clear whether a subscript denotes time dependence or reference to the
particular component of a vector.

where for all t, the state zt is an element of a space S , the
control input ut is an element of a space C, the disturbance
wt, which captures the randomness due to different sources,
is an element of a space D and f : S ×C ×D 7→ S. In the
particular case of PBNs of n genes composed of k Boolean
networks with perturbation probability p and network transi-
tion probability q, S = [0, 1, 2, ......, 2n − 1] and the control
input ut is constrained to take values in the space C =
[0, 1, ....., 2m− 1], where m is the number of control inputs.
We next explain the basis for defining C as above. Suppose
the PBN has m control inputs v1, v2, · · · , vm, each of which
can take on only the binary values 0 or 1. Then at any given
time step t, the row vector v(t) ∆= [v1(t), v2(t), · · · , vm(t)]
describes the complete status of all the control inputs. v(t)
can take on all binary-vector values from [0, 0, · · · , 0] to
[1, 1, · · · , 1]. One can equivalently represent the control input
status using the decimal number

ut =
m∑

i=1

2m−ivi(t). (5)

As v(t) takes on binary values from [0, 0 · · · , 0] to
[1, 1, · · · , 1], the variable ut ranges from 0 to 2m−1. We can
equivalently use ut as an indicator of the complete control
input status of the probabilistic Boolean network at time step
t. Therefore, C = [0, 1, 2, 3.......2m − 1].

The disturbance wt is manifested in terms of change of
network based on the network switching probability q or
change of state due to perturbation probability p. The random
disturbances wt, t = 0, 1, ... have identical statistics and
are characterized by probabilities P (.|xt, ut) defined on D,
where P (.|xt, ut) is the probability of occurrence of wt,
when the current state and control are xt and ut, respectively.
wt is independent of prior disturbances w0, w1....wt−1.

Another equivalent way to represent the dynamical system
(4) is as a finite state Markov Chain described by the control-
dependent one-step transition probability pij(u) where for
any t = 0, 1, 2, · · · ; i, j ∈ S and u ∈ C,

pij(u) := P (zt+1 = j|zt = i, ut = u). (6)

The infinite horizon optimal control problem for a PBN is
formulated as the limit of the following finite horizon optimal
control problem. Given an initial state z0:

min
µ0,µ1,··· ,µM−1

E

[
M−1∑
t=0

gt(zt, µt(zt)) + gM (zM )

]
(7)

subject to Pr(zt+1 = j|zt = i, ut = u) = pij(u), where
• M represents the treatment/intervention window;
• µt : S → C, t = 0, 1, 2, · · · ,M − 1 are functions

mapping the state space into the control space, i.e. the
controls considered are state feedbacks;

• gt(zt, ut) is the one step cost of applying the control ut

at state zt;
• and gM (zM ) is the terminal cost associated with the

state zM .
As discussed in [1], the consideration of such an optimization
problem can be naturally motivated in the context of cancer
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treatment applications where one must choose between a
number of alternative treatments to be applied over a finite
horizon of time. Once input from biologists/clinicians has
been used to select an appropriate cost function and an appro-
priate treatment window, the control problem is essentially
reduced to that of controlling a Markov Chain over a finite
horizon.

By taking the limit of the cost function in (7) as M →∞,
we obtain the average cost per stage:

Jπ(z0) = lim
M→∞

1
M

E{
M−1∑
t=0

g̃(zt, µt(zt), wt)} (8)

where g̃(i, u, j) denotes the cost of going from state i to
state j under control u, and π = {µ0, µ1, · · · } is the control
policy. Let Π denote the set of all admissible policies. Then
the optimal cost function J∗,which is independent of the
initial state [3], is defined by

J∗ = min
π∈Π

Jπ(z), z ∈ S is arbitrary. (9)

As discussed in [3], once the model is perfectly known, the
optimal cost function J∗ and the stationary policy ut = φ(zt)
attaining it can be determined by using the policy iteration
algorithm.

IV. ADAPTIVE INFINITE HORIZON CONTROL

In this section we develop an adaptive intervention strategy
that can be used in the absence of perfect information
about the PBN. We will assume that the underlying genetic
regulatory network is modeled by a member of a known finite
family of PBNs, and we have no apriori knowledge about
which member of that family models the actual network. In
such a situation, the most natural thing to do is to try and
estimate the model number on-line, and then use the method
discussed in the last section to determine the corresponding
controller. This is the underlying philosophy of adaptive
control and a considerable amount of theoretical research
effort has been dedicated towards showing that such certainty
equivalence schemes can guarantee the required performance
[4]. Our focus in this paper will be to demonstrate via
simulations the feasibility of adaptive intervention in the
context of genetic regulatory networks. We will use a vari-
ation of an adaptive control algorithm developed in [5] for
unknown Markov Chains and the interested reader is referred
to that paper for a motivated development of the scheme,
along with the associated technical proofs of convergence.
While the scheme in [5] attempts to estimate all entries
of the transition probability matrix, our adaptive algorithm
will estimate only the model number since our underlying
assumption is that the transition probabilities of the PBN are
completely determined, once we know the model number.

Suppose that the family of controlled PBNs is

parametrized by the parameter α ∈ A where2

A :=



α :

∑

j∈S

p(i, j, u, α) = 1 ∀ (i, u) ∈ S × C



 . (10)

Notice that the only constraint placed on A is that every
element of A results in a set of bonafide transition prob-
abilities. Furthermore, the cardinality |A| of A determines
the total number of possible PBNs. For each α ∈ A, we
can compute the uncontrolled transition probability matrix by
using (3). In addition, for a given control gene, the rows of
the controlled transition probability matrix can be determined
quite easily as a linear transformation of the rows of the
uncontrolled transition probability matrix. As shown in [2],
this is a consequence of restricting the class of allowable
interventions to the flipping of a chosen control gene.

We next present the adaptive control algorithm originally
derived in [5] by maximizing a modified maximum likeli-
hood criterion. For each α ∈ A, let J∗(α) be the optimal long
term average cost obtained for model α using the methods
mentioned in the last section, and let φ(., α) : S → C be
the corresponding control law attaining it. We next define
some functions and constants which will be useful in the
description of the adaptive controller. Let the functions f :
R → R, o : Z → R and a constant m be defined as follows
[5]:
f is a strictly monotonically increasing continuous function
such that

f(inf
α∈A

(J∗(α)) > 0;

o is any function such that

lim
t→∞

o(t)
tθ

is a positive finite number for some θ ∈ (0, 1);

and M is any integer such that

M > |S|+ 1. (11)

For our implementation purposes we may take f as the
logarithmic function and o(t) as the function o(t) = 2

√
(t)

for which θ = 0.5. The value of m can be chosen to satisfy
(11) depending on the cardinality of the state space.

The adaptive controller consists of two operations, esti-
mation and control. The two operations are separate and the
estimation is carried out only once every m time steps. We
next separately describe the estimator and the controller.
• Estimator: At each time step 0, M, 2M, 3M, ..kM, (k+

1)M.. make the estimate of the parameter vector α
using the following equations.

α̂t := argmax
α∈A

D̄t(α) (12)

where

D̄t(α) := K
∏

(i,j,u)∈F c

p(i, j, u, α)nt(i,j,u) (13)

2In this section, p(i, j, u, α) denotes pij(u) when the model α has been
selected.
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,

K =
[

1
f {J∗(α)}

]o(t)

(14)

and F c is the complement of the set of forbidden tran-
sitions F which is assumed to be known apriori. These
transitions correspond to zero values for p(i, j, u, α). In
(13), nt(i, j, u) is defined as

nt(i, j, u) = 1 +
t−1∑
s=0

1(zs = i, zs+1 = j, us = u) (15)

and can be interpreted as measuring the number of times
a transition occurs from i to j under control u. Here
1(.) denotes the indicator function. Now, at time kM ,
knowing the parameter estimate α̂kM , we can find the
optimal cost function J∗(α̂kM ) and the optimal control
law φ(zt, α̂kM ) which will be used for the next M time
steps. The parameter estimate is kept constant at α̂kM

between time steps kM and (k + 1)M − 1.
• Controller: At each time t, the control applied is

ut := φ(zt, α̂t). (16)

The optimal cost function and the optimal control law are
determined using the techniques of the last section applied
to the estimated model.

The adaptive algorithm presented here is based on the
transition probability expression (3). Since this expression
accurately models an instantaneously random PBN, it is only
to be expected that performance degradation will occur as the
value of q is reduced from 1 to 0. This will be borne out by
our simulations in the next section.

From a practical point of view, the expectation is that
the constituent Boolean networks of a PBN switch very
infrequently. In other words, the value of q can be reasonably
assumed to be very small. In such a scenario, one could
consider each constituent Boolean network to be a possible
model to be identified by the estimation algorithm. Although
this increases the cardinality of the set of possible models,
it is expected to result in improved performance especially
since a small value of q means that the constituent networks
will change very infrequently so that the estimation algo-
rithm will have enough time to identify the current Boolean
network. This will also be borne out by the simulation results
in the next section.

V. SIMULATION RESULTS

In this section, we present simulations to demonstrate the
efficacy of the adaptive intervention strategies that we have
proposed. Such simulation studies are especially important
since the theoretical results in [5] guarantee only almost
sure convergence and, that too, in a Cesaro sense. We will
consider a toy example and carry out simulation studies using
two different adaptive intervention algorithms. In the first
scheme, henceforth referred to as Algorithm 1 (or algo 1),
the model space for the estimation algorithm is composed of

all of the possible PBNs. In the second scheme, henceforth
referred to as Algorithm 2 (or algo 2), the model space for
the estimation algorithm is made up of all the constituent
Boolean networks for all the possible PBNs.

We consider a 4-gene genetic regulatory network that is
modeled by an unknown member of a known family of
context-sensitive PBNs. We assume that the cardinality of
this family is 7, and for each member in this family we have
4 constituent Boolean networks and p = q = 0.01. Since
the gene expressions are binary, the cardinality of the state
space becomes 16. Without any loss of generality, we assume
that the first gene, i.e. the gene corresponding to the most
significant bit (MSB) in the gene activity profile, is the gene
that needs to be down-regulated, i.e. zeroed. In addition, we
assume that the second gene is the control gene that can
be flipped with u = 1 and u = 0 denoting the “flipping”
and “no flipping” actions respectively. In order to adaptively
intervene in such a network, we choose M = 32. In addition,
the cost of control is assumed to be 0.5 and the states are
assigned penalties as follows:

g̃(u, j) =





5 if u = 0 and MSB is 1 for state j
5.5 if u = 1 and MSB is 1 for state j
0.5 if u = 1 and MSB is 0 for state j
0 if u = 0 and MSB is 0 for state j

The penalty assignment is based on the fact that for infinite-
horizon problems, there is no terminal penalty; instead, the
cost g̃(u, j), of transitioning to state j under control u,
contains the penalties of each state. Since our objective is to
down-regulate the MSB gene, a higher penalty is assigned for
destination states having the MSB gene up-regulated. Also
for a given MSB gene status for the destination state, a higher
penalty is assigned when the control is active versus when
it is not.

Figure 1 shows the convergence results obtained using
algorithm 1. In each of the figures showing convergence, the
top plot shows the estimated model and the actual model
as functions of the estimation time steps. The x-axis is
calibrated in terms of the number of estimation windows with
each window being 32 time steps long. Similarly, the bottom
plot in each of the convergence figures shows the cumulative
average adaptive and non-adaptive costs (assuming perfect
knowledge about the true model). From Figure 1, it is clear
that the estimated model converges to the true model and the
cumulative adaptive average cost converges to the cumulative
non-adaptive average cost.

We next wish to examine how algorithm 1 performs when
the true model is deterministically switched. Accordingly,
we repeated the simulations with the actual model being
switched from PBN2 (model number 2) to PBN6 (model
number 6) at the 10th estimation window (time=320). The
results are shown in Figure 2. From Figure 2, it is clear that
the model estimate tracks the actual model quite well and
the cumulative average cost also converges.

Figure 3 shows the simulation results obtained using al-
gorithm 2 on the same network. Here, once again, the actual
network switches from PBN1 to PBN4 at the 10th estimation
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Fig. 1. Toy Example: Algorithm 1

Fig. 2. Toy Example 2: Algorithm 1

window (time=320). Clearly, the estimated model converges
to the true model and the cumulative adaptive average cost
converges to the cumulative non-adaptive average cost for the
true model. We notice that the estimated model convergence
in this case is a lot faster than that obtained using algorithm
1. This is only to be expected since with q = 0.01, the
underlying assumptions for algorithm 2 are a better fit to the
real scenario.

VI. CONCLUDING REMARKS

In this paper, we have demonstrated the feasibility of
applying adaptive intervention to improve performance in
controlled genetic regulatory networks modeled by PBNs.
Specifically we showed via simulations that when the ge-
netic regulatory network is modeled by a member of a
known family of PBNs, one can use adaptation and carry
out a certainty equivalence design that leads to improved
performance in terms of the cumulative average cost. These
simulation studies are important since the theoretical results
in the literature guarantee only almost sure convergence and,
that too, in the Cesaro sense. We presented two different
algorithms for model estimation, and argued that while one
of the algorithms is well suited for instantaneously random
PBNs, the other is much better for context-sensitive PBNs,

Fig. 3. Toy Example 2: Algorithm 2

with low switching probability between the constituent BNs.
Our simulation results seem to confirm these intuitive expec-
tations.
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