
  

  

Abstract— This paper presents a new neural network-based 

approach for self-tuning control of nonlinear MIMO dynamic 

systems. According to the approach, a neural network ARMAX 

(NN-ARMAX) model of the system is identified and 

continuously updated, using an online training algorithm. 

Control design is accomplished by solving an optimal discrete-

time linear quadratic tracking problem using an observable 

block companion form Kalman innovation model, which is built 

from the parameters of a local linear version of the NN-

ARMAX model. The state-feedback control law is implemented 

using the Kalman estimated state, which is calculated without 

estimating the noise covariance properties. The effectiveness of 

the proposed control approach is illustrated using a simulation 

example. 

I. INTRODUCTION 

ELF-TUNING control refers to approaches in which the 

design of the control law is based on a model which is 

identified and continuously updated, using measured input-

output data. Hence, self-tuning control strategies are well 

suited for systems whose model is unknown and/or time-

varying systems. 

In general, a self-tuning control approach includes three 

main steps [1]-[4]: (i) modeling, in which a mathematical 

model of the system is identified, using measured input-

output data, (ii) design, in which a control design approach is 

used to synthesize the control law, based on the identified 

model, and (iii) implementation, which comprises the digital 

implementation of the control law. These steps are 

sequentially repeated at each control iteration. 

In the 1970s, the increasingly available computing power 
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boosted the research activity on self-tuning control. Several 

key papers were published, using different control design 

criteria (for a list of references, see [1]-[4]). Subsequent 

research focused on the theoretical convergence and stability 

properties of the algorithms, complemented with a 

significant number of engineering applications [1] on both 

single-input single-output (SISO) and multi-input multi-

output (MIMO) systems. 

In most of the reported work, the modeling task is 

accomplished with a linear model, which is updated using 

recursive least squares. This is mainly due, on one hand, to 

the great variety of available linear control design techniques 

and, on the other hand, to the convergence properties of 

recursive least squares. A detailed description of self-tuning 

control methods based on linear models can be found in [1]-

[4]. In particular, Shieh et al. published various papers ([5]-

[7], among others) related to their research work on self-

tuning control of SISO and MIMO systems. For MIMO 

systems with integer observability index [6], their approach 

includes the execution of the following steps in each control 

iteration: (i) recursive identification of a linear 

autoregressive moving average with exogenous inputs 

(ARMAX) model of the system dynamics, (ii) construction 

of a linear Kalman innovation model, in observable block 

companion form, using the parameters of the ARMAX 

model, (iii) design, based on the linear state-space model, of 

a suboptimal state-feedback control law by approximately 

solving the steady-state Riccati equation, (iv) implementation 

of the control law using the state estimated by the Kalman 

innovation model. However, self-tuning approaches based on 

linear models may not show good performance in 

applications on highly nonlinear systems. 

Since it was shown that neural networks are nonlinear 

models that can approximate any function with arbitrary 

degree of accuracy [8], there has been a growing number of 

applications reported in the literature that employ neural 

networks to control complex nonlinear processes. An 

extensive review of neural networks-based control 

approaches can be found in the surveys by Hunt et al. [9] and 

Agarwal [10]. Also based upon the modeling capabilities of 

neural networks, there has been research work on neural 

network-based self tuning control.  

Rubaai et al. [11] proposed a scheme consisting of a 

model reference adaptive controller and a state estimation 

mechanism. The estimation mechanism involves five 
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feedforward neural networks, trained online using the 

Levenberg-Marquardt algorithm. Each neural network 

estimates one state of the system at time instant k, based on 

previous measurements of all states and the control inputs. 

Zhu et al. [12] present a self tuning approach to regulate 

the rotor speed and rotor flux in an induction motor. A linear 

model, identified with recursive least recursive least squares, 

is used to obtain a local approximation of the dynamics of 

the motor, around an operating point. Then, a neural network 

model is trained, using backpropagation with momentum, to 

represent the residuals of the linear model. The parameters of 

these models are used to implement a generalized minimum 

variance controller. 

Some other self-tuning approaches propose the use of 

neural network models for tuning a PID controller. Ohnishi 

et al. [13] tune a PID controller based upon a first order plus 

time delay (FOPD) linear model, whose parameters are 

estimated from an autoregressive with external inputs neural 

network model (NN-ARX). 

Cheng and Huang [14] propose an algorithm which uses 

the parameters of a linear model to tune a PID controller. 

Those parameters are determined by employing Taylor’s 

approach for instantaneous linearization of a neural network 

model of the process. The neural network is trained off-line, 

to reduce the computational load of training. Off-line 

training may not show good performance because of its 

limitations to handle noise, and to rapidly capture changes in 

the dynamics of the process. In addition, Taylor’s approach 

will yield an affine rather than a linear model. 

The speed of training is the most important issue when 

implementing a neural network-based self-tuning control 

scheme. The standard backpropagation [15], or some of its 

variations [16], have been used as training algorithms in 

most of the reported work. However, these gradient-based 

algorithms may converge slowly because they generally 

require several iterations, and rely rather critically on 

training parameters that must be specified by the user, 

without well-established rules for selecting the values of such 

parameters for a given training task. 

In this paper we extend the self-tuning control approach 

proposed by Canelon et al. [17] for SISO discrete-time 

nonlinear systems, to the case of nonlinear MIMO systems. 

This extension is based on [6]. The modeling task is 

accomplished by a neural-network ARMAX (NN-ARMAX) 

model, which is trained using the online sequential extreme 

learning algorithm (OS-ELM) [18]. Control design involves 

the solution of an optimal discrete-time linear quadratic 

tracking problem, using a linear equivalent of the NN-

ARMAX model. A Kalman innovation filter is used to 

estimate the state of the system, for implementation of the 

state-feedback control law. The proposed control approach is 

tested on a simulation example. The rest of the paper 

presents a description of the proposed control approach. 

II. ONLINE EXTREME SEQUENTIAL LEARNING ALGORITHM 

In this work, a NN_ARMAX model of the MIMO system 

is identified and recursively updated. The neural network is 

trained using the online sequential extreme learning 

algorithm (OS-ELM), proposed by Liang et al. [18] as a 

recursive version of the extreme learning machine (ELM), 

developed by Huang et al. [19]. The universal approximation 

capability of ELM has been analyzed in [20]. While Liang et 

al. [18] used recursive least squares, we use extended least-

squares [21] (also called approximate maximum-likelihood 

method) to implement OS-ELM. 

Consider a feedforward neural network with I input units, 

one layer of J hidden units, and O output units. For a given 

input vector [ ]T1 I, ,δ δ=δ … , the response of the jth hidden 

unit is given by 

( )T
j j

ˆh , j 1, ,Jρ= =v δ …    (1) 

where ( )( ) tanhρ ⋅ = ⋅  is the activation function for the 

hidden units, [ ]T1 I
ˆ 1, , ,δ δ=δ …  and 

T

j j0 j1 jIv ,v , ,v =  v …  

is the weight vector for the jth hidden unit, where j0v  is the 

bias of such hidden unit, and jiv  is the weight that connects 

the ith input unit to the jth hidden unit. The response of the 

oth output unit is given by 
T

o o
ˆ , o 1, ,Oζ = =h w …  (2) 

where [ ]T1 J1,h , ,h=h …  and [ ]To o0 o1 oJw ,w , ,w=w …  is the 

weight vector for the oth output unit, with o0w  the bias of 

this output unit, and ojw  the weight connecting the jth 

hidden unit to the oth output unit. 

 After the number J of hidden units has been chosen, the 

on-line training algorithm involves two phases: 

A. Initialization 

An initial chunk of 0S  training vectors is used to initialize 

the learning according to the following procedure: 

(i) Randomly assign the weights between the input and 

hidden layers. Random assignment (with any distribution) of 

these weights guarantees that the approximation error can be 

made arbitrarily small ([18] and [19]). 

(ii) Compute the matrix 

( )

o o

11 1J

S 1 S J

h h

0

h h

 
 

=  
 
 

H

⋯

⋮ ⋮

⋯

 (3) 

of size 0S J× , containing the responses of the J hidden units 

for the training vectors in the initial chunk. 

(iii) For each output unit, estimate the initial vector of 

weights connecting such unit and the hidden units as 

( ) ( ) ( ) ( )T
o o0 0 0 0=w P H ζ , (4) 

where  
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( ) ( ) ( )
1

T0 0 0
−

 =  P H H  (5) 

and ( )o 0ζ  is the vector containing the target values for the 

oth output in the initial chunk. 

(iv) Set k 1= . 

B. Sequential learning 

While there are more chunks of data 

(i) Pick the kth chunk with kS  training vectors. 

(ii) Calculate the partial hidden layer output matrix 

( )kH , of size kS J× , containing the responses of the J 

hidden units for the training vectors in kth chunk. 

 (iii) For each output unit, update the vector of weights 

connecting such unit and all hidden units using the equation 

( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

T

o o T

o o

k 1 k
k k 1

k k k 1 k

            k k k 1

α

−
= − + ×

+ −

− −  

P H
w w

H P H

ζ H w

, (6) 

where ( )o kζ  is the vector containing the target values for 

the oth output in the kth chunk, 

( )
( )

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

T

T

k 1 k k k 1
k

k k k k 1 kα α

 − −
= + 

+ −  

P H H P
P I

H P H
, (7) 

and ( )kα  is a forgetting factor given by the difference 

equation 

( ) ( ) ( )o ok k 1 1α α α α= − + −  (8) 

with initial condition ( )0.9 0 1α< < , and an updating factor 

o0 1α< < . The use of a forgetting factor will give a better 

performance for time-varying systems. In addition, extended 

least squares is computationally more efficient since the 

update of ( )kP  requires no matrix inversion. 

(iv) Set k k 1= + . 

Prior to the training, all entries of the input and target 

vectors in the training set are linearly normalized to span the 

interval [ ]1,1− , using the formula 

min
1 2

max min

Θ Θ
θ

Θ Θ

−
= − +

−
 (9) 

where Θ and θ represent the original and normalized values, 

respectively, while Θmin and Θmax are the corresponding 

lower and upper bounds, respectively. 

From (9) we obtain the normalization function 

2 max min
nor( )

max min max min

Θ Θ
θ Θ Θ

Θ Θ Θ Θ

+
= = −

− −
. (10) 

and the denormalization function 

max min max min
dnor( )

2 2

Θ Θ Θ Θ
Θ θ θ

− +
= = + . (11) 

If the normalization function is considered, δ̂  in (1) can 

be expressed as ( ) ( ) ( )1 1 2 2 I I
ˆ 1,nor ,nor , ,nor∆ ∆ ∆=   δ … , 

where i∆  and inor  ( )i 1, ,I= …  represent the original value 

and the normalization function, respectively, corresponding 

to the ith input. On the other hand, the denormalized value of 

the oth output of the network is given by 

( )T
o o oẐ dnor , o 1, ,O= =h w …  (12) 

where odnor  represent the denormalization function for the 

oth output. Following this normalization procedure, the 

neural network showed good learning performance with the 

random weights adjusted using a Gaussian distribution with 

zero mean and standard deviation one. 

III. OPTIMAL LINEARIZATION OF A NEURAL NETWORK 

MODEL 

The neural network nonlinear model defined by (1) and 

(12) can be written in a simplified form as 

( )o oẐ = f ∆  (13) 

where [ ]T1 I, ,∆ ∆=∆ … , and I
o : →f ℝ ℝ  is the nonlinear 

vector function corresponding to the oth output. Given a 

particular operating point =∆ ∆ , it is desired to find a linear 

model of the form 
T

oẐ = F ∆  (14) 

with [ ]T1 2 Iφ φ φ=F ⋯ , locally equivalent to (13) 

around ∆ . Taylor’s linearization approach has been the 

most commonly used local linearization technique. However, 

this technique is not applicable in the vicinity of any 

operating point of the system. Even if that operating point is 

an equilibrium point, this approach will yield an affine rather 

than a linear model if such equilibrium is not the origin. Here 

we use the optimal linearization approach proposed by 

Teixeira and śak [22] for local linearization of the neural 

network model. According to this approach, TF  is given by 

[17] 

( )
( ) ( )T

T

o oT T
o T

− ∇
= ∇ +

∆

∆

f ∆ f ∆ ∆
F f ∆ ∆

∆ ∆
. (15) 

where  

( ) ( ) ( ) ( )T
o o o

o

1 2 I

f f f

∆ ∆ ∆

 ∂ ∂ ∂
∇ =  

∂ ∂ ∂ 
∆

f ∆ ∆ ∆ ∆⋯  (16) 

where (according to (1), (12) and (13)) 

( )

( )

o
o

i

J

oj ji i

j 1

f d
dnor

d

d d
       w ( ) v nor

d d
γ γ

θ
∆ θ

ρ γ Θ
γ Θ

= =

∂
= ×

∂

   
⋅ ⋅ ⋅  
   

∑
, (17) 

( )
I

ji i i

i 0

v norγ ∆
=

= ⋅∑ , (18) 

and (from (10) and (11)) 

( )i

i i

d 2
nor

d max min
Θ

Θ Θ Θ
=

−
 (19) 

and 
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( )o

o o

d 2
dnor

d max min
θ

θ Θ Θ
=

−
. (20) 

In (19) and (20), imaxΘ  and iminΘ  represent the upper 

and lower bounds, respectively, for the ith input, and 

omaxΘ  and ominΘ  represent the upper and lower bounds, 

respectively, for the oth output. The optimal linear model 

will have exactly the same dynamics of the original nonlinear 

model at the operating point, and minimum modeling error in 

the neighborhood of such operating point. 

IV. DESCRIPTION OF THE PROPOSED SELF-TUNING CONTROL 

APPROACH 

The proposed control approach involves the execution of 

the following steps, at each operating point: (i) recursive 

identification of a discrete-time neural-network based 

nonlinear ARMAX (NN-ARMAX) model of the MIMO 

system, (ii) calculation of a linear ARMAX model, locally 

equivalent to the NN-ARMAX model, (iii) construction of 

an observable block companion form linear state-space 

Kalman innovation model, from the parameters of the linear 

ARMAX model, (iv) calculation of the control gains by 

solving an optimal control problem, based on the Kalman 

innovation model and (v) implementation of a state-feedback 

control law using the observed state. 

A. Identification of the discrete-time neural network- 

based nonlinear ARMAX model 

Consider a MIMO nonlinear dynamic system with m 

inputs and p outputs. The proposed approach includes the 

identification and continuous update of a discrete-time neural 

network-based nonlinear ARMAX model (NN_NARMAX) 

of the form 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

[

                ]

kˆ k 1 k , , k n 1 , k , ,

k n 1 , k , , k n 1

+ = − +

− + − +

y F y y u

u e e

… …

…
 (21) 

where ( ) ( ) ( )
T

1 pk y k y k =  y ⋯  represents the measured 

output vector, ( ) ( ) ( )
T

1 mk u k u k=   u ⋯  is the input vector 

and ( ) ( ) ( )
T

1 pk e k e k =  e ⋯  is the innovation error vector, 

all at time instant k, 
( )k

F represents the neural network 

model updated using k data vectors, ( )ˆ k 1+y  is the estimate 

of the output measured at time instant k 1+  and n is the 

number of previous values of the output, input and 

innovation error vectors being considered in the model. The 

innovation error vector is defined as 

( )
( ) ( )

( ) ( )

1 1

p p

ˆy k y k

k

ˆy k y k

 −
 

=  
 − 

e ⋮ . (22) 

Note that the neural network model has p outputs and 

2 pn mn+  inputs, and it is updated after a new output value 

is measured. 

B. Calculation of the linear ARMAX model and 

construction of the observable block companion form 

linear Kalman innovation model 

Following the measurement of the output vector at time 

instant k, the optimal linearization approach is used to 

linearize the NN_NARMAX model at the operating point  

( ) ( ) ( ) ( )

( ) ( )

[

]

k , , k n 1 , k , , k n 1 ,

k , , k n 1

− + − +

− +

y y u u

e e

… …

…
 (23) 

to yield a linear ARMAX model of the form 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

               

               

k k
n1

k k
n1

k k
n1

ˆ k 1 k k n 1

k k n 1

k k n 1 .

+ = − − − − + +

+ + − + +

+ + − +

y A y A y

B u B u

D e D e

⋯

⋯

⋯

 (24) 

Then, we construct the following observable block 

companion form linear Kalman innovation model of the 

MIMO nonlinear system 

( ) ( ) ( ) ( ) ( ) ( ) ( )k k k
o o o o ok 1 k u k e k+ = + +x A x B K  (25a) 

( ) ( ) ( )k
o o

ˆ k k=y C x  (25b) 

where ( ) pn 1
o k ×∈x R , ( ) mk ∈u R , ( ) pk ∈e R  and 

( ) pˆ k ∈y ℝ  are the observed state vector, the input vector, 

the innovation error vector and the estimated output vector, 

respectively, at time instant k, 

( )

( )

( )

( )

k

p p p1

k
k pn pnp p p2

o

k
n p p p

×

 −
 
 −
 = ∈
 
 
 − 

A I 0 0

A 0 I 0
A

A 0 0 0

⋯

⋯
ℝ

⋮ ⋮ ⋮ ⋮

⋯

, (26) 

with 
p p

p
×∈I ℝ  the identity matrix and 

p p
p

×∈0 ℝ  a matrix 

of zeros, 

( )

( )

( )

( )

k

1

k
k pn m2

o

k
n

×

 
 
 

= ∈ 
 
 
  

B

B
B

B

ℝ
⋮

, (27) 

( )

( ) ( )

( ) ( )

( ) ( )

k k

1 1

k k
k pn p2 2

o

k k
n n

×

 −
 
 −

= ∈ 
 
 

−  

D A

D A
K

D A

ℝ
⋮

 (28) 

and oC , which is fixed, is given by 

p pn
o p p p

× = ∈ C I 0 0⋯ ℝ . (29) 

Note that the observability index is always an integer, 

equal to pn p n= . Hence, the observable block companion 

form always can be constructed. Also note that knowledge of 

the exact order of the system is not required. 

When calculating ( )o k 1+x , ( )ku  is the control input at 
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time instant k, and 

( ) ( ) ( ) ( ) ( )o o
ˆk k k k k= − = −e y y y C x  (30) 

C. Calculation of the control gains and implementation of 

the control law 

The control design approach used here is the optimal 

discrete-time linear quadratic tracker described in [23], 

extended for the case of MIMO systems. Given the linear 

Kalman innovation model of (25), it is desired to design and 

implement a control law of the form 

( ) ( )kk
c o I( k ) ( k ) ( k )= − +u K x K v  (31) 

where the feedback gain 
( )k m pn
c

×∈K ℝ  and the integral gain 

( )k m p
I

×∈K ℝ  are the design parameters, ( )o kx  is the 

observed-state and 

( ) ( ) ( ) ( )k k 1 k k= − + −v v r y  (32) 

where ( )kr  is the reference signal. Observe that this control 

design approach includes a state-feedback loop and an 

integrator in the feedforward path. 

 If we define 

( ) ( ) ( )kk k
c I

ˆ  = −  
K K K , (33) 

it can be shown [23] that K̂  can be calculated as 

( ) ( )( ) ( ) ( )( ) ( )
1

T T
k k k k kˆˆ ˆ ˆ ˆ

−
 

= + 
 

K R B PB B SA  (34) 

where R is a positive definite matrix,  

( )
( )

( )

k
ok

k
o o p

ˆ
 
 =
 − 

A 0
A

C A I
, (35) 

where pn p×∈0 ℝ  is a matrix of zeros, 

( )
( )

( )

k
k o

k
o o

ˆ
 
 =
 − 

B
B

C B
 (36) 

and S  is the solution of the Ricatti equation 

( )
1

T T T Tˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
−

− − + + =A SA S A SB R B SB B SA Q 0  (37) 

with Q a positive definite or positive semidefinite matrix. 

Following the computation of 
( )k

K̂ , 
( )k
cK  and 

( )k

IK  can 

be easily extracted and the control law can be readily 

implemented, according to (31). 

V. SIMULATION RESULTS 

The proposed approach was used on the direct digital 

control of a permanent-magnet synchronous motor (PMSM), 

a nonlinear system described by the continuous-time state-

space model 

d d p q d

r
q q p d q

r
q

d R
i i i v

dt L

d R
i i i v

dt L L

d
i

dt L J

η ω

ψ
η ω ω

ψ β
ω ω

= − + +

= − − − +

= −

 (38) 

where the state variables di , qi  and ω are the direct and 

quadrature current components and the motor angular 

frequency, respectively, the input variables dv  and qv  are 

the direct and quadrature voltage components, R 19.1388=  

is the stator winding resistance, L 0.04=  is the direct and 

quadrature-axis stator inductors, 4J 4.1295 10−= ×  is the 

polar moment of inertia, 0.0013β =  the viscous damping 

coefficient, r 0.1349ψ =  the permanent-magnet flux and 

pn 50=  the number of pole-pairs [24]. Under certain 

operating conditions, the PMSM can exhibit chaotic 

behavior [24]. 

 The controlled outputs are the states di  and qi , i.e. the 

output equation is 

d

1 q

i
1    0    0

( t ) i
0    1    0

ω

 
   

=    
   

 

y . (39) 

Zero mean Gaussian noise, with variance 41 10−⋅ , was added 

to each of the states and the outputs. 

The sampling time was chosen as T 0.05=  sec. The 

system has m 2=  inputs and p 2=  outputs, and n 2=  

previous values of the outputs, inputs and innovation errors 

were considered. Hence, the neural network model has 2 

outputs and 2 pn mn 12+ =  inputs. In addition, 20 hidden 

units were chosen. The extended least-squares training 

parameters were o 0.95α = , ( )0 0.95α =  and ( )0 =P I . 

The upper and lower bounds were 20  and 20− , 

respectively, for the outputs and innovation errors, and 1000  

and 1000− , respectively, for the inputs. Regarding the 

optimal discrete-time linear quadratic tracker, 3
610=Q I  

and 22=R I . The reference signal for both outputs was a 

unit step. 

Fig. 1(a) is a plot of the output di  (solid line) and the 

corresponding reference signal r (dotted line), while Fig. 

1(b) shows the output qi  (solid line) and the corresponding 

reference signal r (dotted line). On the other hand, Fig. 2 

shows the control inputs, dv  (dotted line) and qv  (solid 

line). It can be seen that, after approximately 5 sec, both 

outputs closely follow the reference signals. 

VI. CONCLUSIONS 

This paper presented a new approach for self-tuning 

control of nonlinear MIMO dynamic systems. Some 

advantages of the proposed approach are: (i) the training 
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algorithm requires small computational effort and shows the 

convergence properties of recursive least squares, (ii) since 

control design is based on a linear model, the great variety of 

available linear design techniques may be used, (iii) full-state 

measurement is not required due to the use of the Kalman 

filter, and (iv) it is not necessary to know or estimate the 

noise covariance properties. 

 The proposed control approach showed to be very 

effective in a simulation example using a permanent magnet 

synchronous motor, a two-input two-output continuous-time 

nonlinear systems that, under certain operating conditions 

may exhibit chaotic behavior. Further research topics are 

using more efficient digital control approaches, and real-time 

implementation of the proposed self-tuning approach. 
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Figure 1. Outputs of the systems and reference signals during the control 

task: (a) id (solid line) and reference (dotted line), (b) iq (solid line) and 

reference (dotted line). 
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Figure 2. Control inputs during the control task: vd (dotted line) and vq 

(solid line). 
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