
  

  

Abstract—This paper develops a rigorous and practical 
method for estimating the reliability—with confidence 
regions—of a complex system based on a combination of 
full system and subsystem (and/or component or other) 
tests. It is assumed that the system is composed of multiple 
processes (e.g., the subsystems and/or components within 
subsystems), where the subsystems may be arranged in 
series, parallel (i.e., redundant), combination 
series/parallel, or other mode. Maximum likelihood 
estimation (MLE) is used to estimate the overall system 
reliability. Interestingly, for a given number of subsystems 
and/or components, the likelihood function does not 
change with the system configuration; rather, only the 
optimization constraints change, leading to an appropriate 
MLE. The MLE approach is well suited to providing 
asymptotic or finite-sample confidence bounds through the 
use of Fisher information or bootstrap Monte Carlo-based 
sampling.  

Keywords: System identification, system reliability, 
parameter estimation, optimization, bootstrap, maximum 
likelihood, Fisher information matrix, data fusion.  
 

1. INTRODUCTION 
This paper considers the problem of estimating the 

reliability for a complex system based on a combination of 
information from tests on the subsystems, components, or 
other processes within the system, and, if available, tests on 
the full system. A key motivation for this setting comes 
from the fact that it is often difficult or infeasible to 
directly evaluate the reliability of complex systems through 
a large number of full system tests alone. Such a difficulty 
may arise, for example, when the full system is very costly 
or dangerous to operate and/or when each full system test 
requires the destruction of the system itself. Nevertheless, it 
is also often the case that there are at least a few tests of the 
full system available; it is obviously desirable to include 
such information in the overall reliability assessment. Such 
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full systems tests are often critical to help guard against 
possible mismodeling of the relationship between the 
subsystems and full system in calculating overall 
reliability. This paper develops a method based on 
principles of maximum likelihood for estimating the overall 
system reliability from a combination of full system and 
subsystem or other tests.1 

Certainly, other approaches exist for estimating system 
reliability when the subsystems are independent (see, e.g., 
Hwang et al., 1981; and Ramírez-Márquez and Jiang, 
2006). However, these approaches do not allow for easy 
inclusion of limited full system tests when available, and 
do not generalize to include systems where the subsystems 
may be statistically dependent. (Note that the inequality-
based reliability method of Hill and Spall, 2007, does allow 
for such dependence in producing a bound to the full 
system reliability, but this method requires certain pairwise 
subsystem tests that may not be feasible in practice.)  

A key part of the approach here is the calculation of 
uncertainty (confidence) bounds on the estimates. We 
discuss the Fisher information matrix as a basis for 
asymptotic bounds and also discuss a bootstrap-based 
method for computing confidence regions when the 
asymptotic bounds are inappropriate. This bootstrap 
approach deals with the inadequacies of traditional 
methods based on the asymptotic normality of the MLE.  

Several other approaches have been proposed to deal 
with the inadequacy of asymptotic normality in the context 
of using subsystem tests to estimate full system reliability. 
For example, Myhre and Saunders (1968) use the 
asymptotic chi-squared distribution of the log-likelihood 
ratio to deal with the problem of having confidence 
intervals outside the unit interval [0, 1]. Easterling (1972) 
treats the system reliability derived from subsystem 
estimates as an estimate from data having a binomial 
distribution. Then it is possible to use standard results on 
the exact distribution of the binomial estimate to get the 
confidence interval, yielding an exact solution in the 
special case where the system is composed of one 
subsystem (i.e., system = subsystem) and an intuitively 
appealing approximation when there are two or more 

 
1To avoid the cumbersome need to repeatedly refer to tests on 
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context should be considered a proxy for all possible test 
information short of full system tests.  
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subsystems. Coit (1997) considers the case where there are 
a “large” number of subsystems in either a series or parallel 
configuration; in the series configuration, the logarithm of 
the system reliability is approximately normally distributed 
by central limit theorem effects. Hence, a log-normal 
distribution is assumed for the system reliability, providing 
the basis for the confidence interval. Ramírez-Márquez and 
Jiang (2006) focus on methods for estimating the variance 
of the reliability estimates, and then use these variance 
estimates together with normal or binomial approximations 
to the distribution of the estimates to form confidence 
intervals.  

 
2. THE LIKELIHOOD FUNCTION AND MLE FORMULATION 

2.1 General Formulation 
Consider a system composed of p processes, typically 

subsystems and/or components of subsystems. The 
subsystems may be arranged in series, parallel (i.e., 
redundant), combination series/parallel, or other form (e.g., 
standby systems), subject to being able to write down a 
probabilistic characterization of the system that leads to a 
likelihood function (Leemis, 1995, Chap. 2, includes a 
thorough discussion of the many types of systems 
frequently encountered in practice). While we assume that 
the test data for estimating the reliability are statistically 
independent, we do not, in general, require that the 
processes be statistically independent when operating as 
part of the full system. (In principle, it is also possible to 
formulate a likelihood function based on test data that are 
statistically dependent. That is, the testing outcome for 
process j may be statistically dependent on the outcome for 
process i, for some i ≠ j. We do not pursue that extension 
here.) In the discussion below, the term “operationally 
[in]dependent” is used to refer to the case where the 
processes are either statistically independent or dependent, 
as relevant, when operating as part of the full system.  

The general MLE formulation involves a parameter 
vector θ, representing the parameters to be estimated, 
together with an associated log-likelihood criterion L(θ). 
Let ρ and ρj represent the reliabilities (success 
probabilities) for the full system and for process j, 
respectively, j = 1, 2, ..., p. The vector θ = [ρ1 , ρ2 ,…, ρp]T; 
ρ is not included in θ because it will be uniquely 
determined, or at least bounded, from the ρj and possibly 
other information via relevant constraints. When ρ is 
uniquely determined by a function of θ, then the estimate 
ρ̂ , as determined from applying this function to the MLE 
of θ (say θ̂ ), is the MLE of ρ. This invariance of MLE 
applies even though the mapping from θ to ρ is not 
generally one-to-one and may not be continuous (see, e.g., 
Zehna, 1966). 

Ultimately, we are interested in an estimate and 
confidence region for ρ, as derived from the MLE for θ. 

The specific definition of θ will depend on the details of 
the system. Interestingly, for a given definition of θ, the 
definition of L(θ) will not depend on how the subsystems 
are arranged in the full system. That is, L(θ) is the same 
regardless of whether, say, the subsystems are in series or 
parallel. However, the MLE will change as a function of 
the system arrangement. This is a consequence of the 
constraints in the optimization problem that is solved to 
produce the MLE, as illustrated below. 

It is generally assumed, at a minimum, that 
success/failure data are available on the p processes within 
the full system. As mentioned above, it is also generally 
assumed that success/failure data are available directly on 
the full system. In cases involving dependent subsystems, it 
may be desirable that the information from the p processes 
include some data other than direct subsystem 
success/failure data in order to obtain the information 
needed for characterizing the nature of the dependence (we 
say “desirable” because it may be possible to estimate 
bounds to the system reliability in the absence of such 
information). For example, in the dependent-subsystem 
case discussed in Section 3, obtaining data on one critical 
component appearing within multiple subsystems allows 
for an MLE of ρ; the absence of such data allows the 
analyst to estimate a lower bound to ρ.  

We now present the general MLE optimization problem. 
Let Θ represent the feasible region for the elements of θ. 
To ensure that relevant logarithms are defined and that the 
appropriate derivatives exist, it is assumed, at a minimum, 
that the feasible region Θ includes the restriction that 0 < ρj 
< 1 for all j (other restrictions may be included as 
appropriate). The general MLE formulation is: 
 

ˆ arg max ( )

subject to ( , ) 0,f
∈Θ

ρ ≥
θ

θ = θ

θ

L
                        (2.1) 

 

where f (⋅) is some function reflecting the constraints 
associated with the operation of the full system. In some 
common cases (e.g., fully series and fully parallel cases, 
with the processes corresponding to the subsystems as in 
Subsection 2.2), the inequality in the constraint can be 
replaced with an equality. 

Let X represent the number of successes in n 
independent, identically distributed (i.i.d.) experiments 
with the full system and Xj represent the number of 
successes in nj i.i.d. experiments with process j, j = 1, 2, ..., 
p. Note that in the discussion below there is no notational 
distinction between a random variable (vector) and its 
realization, with the expectation that the distinction should 
be clear from the context. Let Y represent the full set of 
data {X, X1, X2,…, Xp}. From the assumption of 
independence of all test data, the probability mass function, 
say p(Y | θ, ρ), is: 
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leading to the log-likelihood function L(θ) ≡ 
log p(Y | θ, ρ): 
 

1

( ) log log(1 )

log log 1 constant,

( )

( ) ( )
p

j j j j j
j

X n X

X n X
=

= ρ + − − ρ

⎡ ⎤+ ρ + − − ρ +⎣ ⎦∑

L θ

 

(2.3) 

where the constant is not dependent on θ. Note that the 
generic forms for the above likelihood and log-likelihood 
apply regardless of the specific layout of the subsystems 
(series, parallel, combination series/parallel, or 
operationally dependent). However, the relationship 
between ρ and the ρj differs according to the layout of the 
processes. In finding the MLE of θ, say θ̂ , this relationship 
manifests itself as constraints in an optimization problem.  

Typically, the MLE is determined via finding a root of 
the score equation ( )∂ ∂θ θL  = 0, or a normalized form of 
this equation, in the asymptotic sample size case, where the 
score vector is  
 

1

2

p

∂ ∂ρ⎡ ⎤
⎢ ⎥∂ ∂ρ∂ ⎢ ⎥= ⎢ ⎥∂
⎢ ⎥
∂ ∂ρ⎢ ⎥⎣ ⎦

#θ

L
LL

L

.                        (2.4)  

 

The elements of the score vector depend on the constraints. 
A common special case is where the constraints lead to a 
unique differentiable function h(⋅) that relates θ to ρ: ρ = 
h(θ). In that case, (2.3) leads to the following form of the 
score vector in (2.4): 
 

1 1 1

1 11

1

1
p p p

p p

X n

X h n X h

n

X

X X

∂ − ∂
=

∂ − ∂

−

⎡ ⎤−
−⎢ ⎥

ρ ρ⎢ ⎥
∂ ⎢ ⎥− +

⎢ ⎥∂ ρ ρ
−⎢ ⎥

−⎢ ⎥ρ ρ⎢ ⎥⎣ ⎦

−
#

θ θθ
L

.      (2.5) 

 

We will see several illustrations of the form in (2.5) in the 
examples and theoretical results below. 
 

2.2 Fully Series and Fully Parallel Cases 
To illustrate the general formulation of Subsection 2.1, 

we consider here the two most common “extreme” cases of 

fully series systems and fully parallel systems with the p 
processes corresponding to p operationally independent 
subsystems. The results below can extend readily to 
common cases of mixed (operationally independent) 
series/parallel systems (see, e.g., Leemis, 1995, Sect. 2.1, 
for a description of such general systems). The results here 
illustrate the setting mentioned in the context of (2.5) 
above, where there exists a differentiable function ρ = h(θ). 

From (2.1), the MLE in the series-subsystem case is 
found according to  
 

ˆ arg max ( )
∈Θθ

θ = θL  

1
subject to

p

j
j=

ρ = ρ∏ , 

 

while the MLE in the parallel-subsystem case is found 
according to 
 

ˆ arg max ( )
∈Θθ

θ = θL  

1
subject to 1 (1 )

p

j
j=

− ρ = ρ−∏ . 

  

In the above series and parallel cases, it is straightforward 
to determine the score vector using (2.5).  

Making the substitution ρ = 1
p

jj= ρ∏  in eqn. (2.5), the j 
= 1, 2, ..., p elements of the score vector in (2.4) (or (2.5)) 
for the series case are: 
 

(1 ) 1
( )( )
( )

j j j

j j j j

X X n Xn X+ −− ρ
= − −

∂ρ ρ − ρ ρ − ρ
∂L .            (2.6) 

 

Likewise, making the substitution 1 − ρ = 1 1( )p
jj= − ρ∏  in 

eqn. (2.5), the elements of the score vector in (2.4) (or 
(2.5)) for the parallel case are: 
 

1
1

(1 )
( )

( )
p

j j j
i

j j ji
i j

X n n X XX

=
≠

+ − −
= + − ρ −

∂ρ ρ ρ − ρ
∂ ∏L .   (2.7) 

 

Except for the degenerate settings of X = n in the series 
case and X = 0 in the parallel case, the solution to 

( )∂ ∂θ θL  = 0 must generally be found by numerical 
search methods. (The two degenerate cases yield ˆ jρ  = 
( ) ( )j jn X n n+ +  and ˆ jρ  = ( )j jX n n+ , respectively, 
both of which are the natural—intuitively obvious—
solutions.) 
 

3. DEPENDENT SUBSYSTEMS 
There are obviously innumerable ways in which 

subsystems can interact while operating as part of a full 
system. The reliability analysis for each such system must 
be handled separately based on the information available. 
While the reliability analysis with operationally dependent 
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subsystems is usually more difficult than with operationally 
independent subsystems, the MLE may still be available if 
the problem can be cast in the form of (2.1) with an 
appropriate constraint. For example, in systems that may be 
represented as a series of m ≤ p generally dependent 
subsystems, the following expression relates the full system 
reliability to conditional subsystem reliabilities: 
 

( )

( )
1 2 1 3 1 2

1
1

1 1| 1 1 1 1

1 1 , (3.1)

( ) ( ) { } { }

{ }m
m jj

S S S S S

S

P P P S

P S−
=

ρ = = = = = = =

= =

∩

" ∩
 

where Sj = 0 or 1 is the indicator of whether subsystem j is, 
respectively, a failure or success. Hence, the analyst may 
have the information needed to implement (2.1) with an 
equality constraint that uniquely defines ρ if data and/or 
prior information are available to characterize the 
conditional probabilities on the right-hand side of (3.1). 
Further information on the relatively common setting 
where dependence gets introduced through shared 
components is available from the author (not included here 
due to ACC 2009 space constraints). 
  

4. THEORETICAL PROPERTIES 
 This section summarizes the convergence properties 
associated with the MLE formulation above. Note that 
standard i.i.d. MLE theory (e.g., Serfling, 1980, Sect. 4.2) 
does not apply because of the different success/failure 
probabilities associated with the different subsystems. 
Nevertheless, the structure associated with (2.1) and (2.3) 
allows us to show that the MLE for ρ will converge to the 
true full system reliability under reasonable conditions. 
 First, however, we present a result giving conditions 
under which there is a unique function h(θ) relating θ to ρ. 
 

Lemma 1. Suppose that the constraint in problem statement 
(2.1) can be represented as an equality f (θ, ρ) = 0 with f 
being a continuously differentiable function in both θ ∈ Θ 
and 0 < ρ < 1. For a fixed θ′ ∈ Θ, suppose ( , )f ′∂ ρ ∂ρθ  ≠ 0 
almost surely (a.s.) at ρ such that ,( )f ′ ρθ  = 0. Then there 
exists an open neighborhood of θ′ and a unique 
continuously differentiable function h such that for all θ in 
this neighborhood, ρ = h(θ) and 
 

1( ) ( , ) ( , )f fh −∂ ∂ ρ ∂ ρ⎛ ⎞= − ⎜ ⎟∂ ∂ ∂ρ⎝ ⎠
θ θ θ

θ θ
                 (4.1) 

 
Proof. The result is a consequence of the implicit function 
theorem (e.g., Apostol, 1974, Sect. 13.4). Q.E.D. 
 

 We now present the following strong (a.s.) convergence 
result for the MLE of ρ. Let ∗ρ  be the true value of the full 
system reliability and ∗θ  = 1 2, , ,[ ]Tp

∗ ∗ ∗ρ ρ ρ…  be the 
corresponding true value of θ. Further, let AN = 

1 2diag var var var( ), ( ), , ( )p⎡ ⎤∂ ∂ρ ∂ ∂ρ ∂ ∂ρ⎣ ⎦…L L L  be a 
diagonal matrix used to normalize for the variability of the 

elements in ∂ ∂θL , where N = {n,  n1 ,  n2 , ..., np} is the 
collective sample size. Proposition 1 below establishes 
conditions for ρ̂  = ∗ρ  + o(1) being a root of the 
normalized score equation, 1

N
− ∂ ∂A θL  = 0, where o(1) is a 

term going to zero as N gets large in the sense described 
below. As usual when working with score vectors, 
however, the Proposition does not guarantee that this 
solution is unique and/or a global maximum of L(θ).   
 

Proposition 1. For constants 0 < C − ≤ C+ < 1, suppose the 
feasible region Θ is such that Θ = {θ: C − ≤ ρj ≤ C + for all 
j} and that C − ≤ ρ ≤ C +. Further, suppose that the 
constraint in problem statement (2.1) can be represented as 
an equality f (θ, ρ) = 0 with f being a continuously 
differentiable function in both θ ∈ Θ and C − ≤ ρ ≤ C +. For 
some strictly positive constants C and C ′ and all θ ∈ Θ and 
C − ≤ ρ ≤ C +, suppose C < ( , )f∂ ρ ∂ρθ  ≤ C ′ and C ≤ 

( , ) jf∂ ρ ∂ρθ  ≤ C ′ for all j. Then, for the problem 
described in (2.1) and (2.3), ρ̂  = ∗ρ  + o(1) is an a.s. 
solution to 1

N
− ∂ ∂A θL  = 0 as n + n1 → ∞, n + n2 → ∞, ..., 

n + np → ∞, where, for each j, one of the following three 
possibilities holds: (i) jn n  = o(1), (ii) jn n  = o(1), or 
(iii) jn n  = O(1) and jn n  = O(1). 
 

Comment. The multiple limits n + n1 → ∞, n + n2 → ∞, ..., 
n + np → ∞ are true if and only if one of the following 
three (mutually exclusive) possibilities occur: (a) n → ∞ 
and nj < ∞ for all j, (b) n < ∞ and nj → ∞ for all j, or (c) n 
→ ∞ and nj → ∞ for at least one j. The proof considers 
these three cases in turn subject to the additional 
constraints (i) − (iii) in the Proposition statement. 
 

Proof. The conditions of the Proposition are stronger than 
those of Lemma 1. Hence, there exists a differentiable 
function h such that for all θ in an open neighborhood of 
θ̂ ,  ρ = h(θ) with derivative given by (4.1). Thus, the score 
vector is given by (2.5). The remainder of the proof is 
available upon request (not included here due to space 
constraints).  
 

5. THE FISHER INFORMATION MATRIX 
 The Fisher information matrix is helpful in at least 
two respects in the reliability estimation problem: (i) It can 
be used to determine when the estimation problem in 
Section 2 is well posed (i.e., when θ is identifiable) through 
an evaluation of the conditions ensuring that the 
information matrix is positive definite (e.g., Goodwin and 
Payne, 1977, pp. 104 and 139) and (ii) the inverse mean 
information matrix is the covariance matrix appearing in 
the asymptotic distribution of the appropriately normalized 
MLE. Hence, when combined with the asymptotic normal 
distribution, the information matrix may be used in 
constructing confidence regions for the MLE when the 
sample size is sufficiently large. More generally, the 
information matrix provides a summary of the amount of 
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information in the data relative to θ (e.g., Spall, 2003, Sect. 
13.3). We restrict our attention below to the fully series and 
fully parallel subsystems cases (Subsection 2.2), but the 
analysis can be modified in a straightforward manner for 
certain other cases, including hybrid series-parallel 
subsystems cases.    

The p × p Fisher information matrix F(θ) for a twice-
differentiable log-likelihood function is given by 
 

2
( ) T TE E

⎛ ⎞∂ ∂ ∂⎛ ⎞= ⋅ − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
θ

θ θ θ θ
L L LF = ,           (5.1) 

 

where 2 T∂ ∂ ∂θ θL  appearing after the last equality above 
corresponds to the Hessian matrix of the log-likelihood 
function. 

Let us first compute F(θ) for the series case using the 
Hessian-based form appearing after the second equality in 
(5.1). Because Θ = {0 < ρj < 1 for all j}, it is known that 
the Hessian matrix is continuous and, consequently, 
symmetric. From (2.6), the elements of the negative 
Hessian for the series case of interest are: 
 

2

2 2 2 22

2

when ,
(1 ) 1

when .
(1 )

( )( )
( )

( )

j j j

j j j

j k

j k

X X n Xn X j k

n X j k

+ −⎧ − ρ
+ + =⎪

ρ − ρ ρ − ρ⎪− = ⎨∂ρ ∂ρ − ρ⎪ ≠⎪ − ρ ρ ρ⎩

∂ L

 

Then, the corresponding elements of the information matrix 
F(θ) = ( )jkF⎡ ⎤⎣ ⎦θ  are: 
 

2

2 2 when ,
1(1 )

( )
when .

(1 )

( )
j j j

jj j
jk

j k

n n nn j k
F

n j k

ρ + ρ⎧ ρ
+ + =⎪ − ρρ − ρ ρ⎪= ⎨

ρ⎪ ≠⎪ − ρ ρ ρ⎩

θ  

 (5.2) 
 

Likewise, the Hessian can be used to compute F(θ) in 
the parallel subsystem case. From (2.7), the elements of the 
negative Hessian in the parallel case are: 
 

2

2 2 2 22

2

2

(1 ) when ,
1 1

(1 )( ) when ,
1 1

( )
( ) ( )

( )( )

j j j

j j j

j k

j k

X n n X X X j k

X X j k

− −⎧ − ρ
+ + =⎪

ρ − ρ − ρ ρ⎪− = ⎨
∂ρ ∂ρ − ρ ρ − ρ +⎪ ≠⎪ − ρ − ρ ρ⎩

+

∂ L

 

leading to the following elements of the information 
matrix: 
 

2

(1 ) (1 )
when ,

1
( )

(1 )( ) when .
1 1

( )

( )( )

j j j

j j
jk

j k

n n n
j k

F
n n j k

− ρ + ρ − ρ⎧
+ =⎪ρ − ρ ρ⎪= ⎨

− ρ ρ − ρ +⎪ ≠⎪ − ρ − ρ ρ⎩

θ   (5.3) 

 

 Then, the expression in (5.2) or (5.3) can be used to 
determine if the information matrix is positive definite, 
thereby characterizing the identifiability of θ. It is clear that 
both n and the nj can contribute to the positive definiteness 
of F(θ). For example, if the nj dominate n, then increasing 
all nj at the same rate (in the sense that j kn n  = O(1) and 

k jn n  = O(1) for all j, k) is sufficient to achieve the 
positive definiteness for sufficiently large sample sizes. It 
is also possible to have n → ∞ subject to the nj growing 
sufficiently rapidly as well. In a practical application, it will 
be necessary to assume a value for θ prior to carrying out 
the estimation in order to evaluate F(θ). This value for θ 
may be chosen conservatively or at a “typical” level in 
determining identifiability.     

The other main interest for application of the information 
matrix is determining approximate confidence regions. 
However, one of the complications in using the standard 
asymptotic normality results is the multiple samples sizes, 
n, n1,..., np . Fortunately, the form for F(θ) provides 
clarification with respect to the mix of sample sizes.  

Recall that the standard generic form for the asymptotic 
distribution of MLEs is,   
 

dist 1sample size MLE true value ,( ) ( )N −− ⎯⎯⎯→ 0 F  (5.4) 
 

where dist⎯⎯⎯→  denotes convergence in distribution and F  
is the limit of the mean information matrix (i.e., the limit of 
the information matrix averaged over the sample size) (e.g., 
Hoadley, 1971; Rao, 1973, pp. 415−417). In well-posed 
problems, F  is a finite-magnitude positive definite matrix. 
Hence, to within slower growth terms, the magnitude of the 
unaveraged Fisher information matrix F(θ) must grow 
linearly with the increase in the relevant sample size. In the 
context of the typical forms for F(θ) above, it is clear that 
both n and the nj can contribute to the growth in magnitude 
for F(θ). For example, as above, if the nj dominate n, then 
increasing all nj at the same rate (in the sense that j kn n  = 
O(1) and k jn n  = O(1) for all j, k) is sufficient to achieve 
the necessary growth in the magnitude of F(θ). It is also 
possible to have n → ∞ subject to the nj growing 
sufficiently rapidly as well. The author is currently 
pursuing the issue of asymptotic normality in greater detail. 
  

6. BOOTSTRAP CONFIDENCE INTERVALS 
 It is well known that the traditional asymptotic 
normality-based methods are often inadequate in 
constructing confidence intervals for reliability estimates. 
Two factors contribute to this inadequacy: (i) sample sizes 
that are too small to justify the asymptotic normality and 
(ii) confidence intervals from the asymptotic normality that 
fall outside of the interval [0, 1] as a consequence of the 
need to approximate the true asymmetric distribution with 
the symmetric normal distribution. The latter factor is 
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exacerbated by the fact that practical reliability estimates 
are often very near unity. We now present a bootstrap-
based method for constructing confidence intervals for the 
full system reliability estimate ρ̂  under the assumption that 
ρ̂  is uniquely determined from θ̂ . Lemma 1 presented 
sufficient conditions for such a function via the implicit 
function theorem. 

Bootstrap methods are well-known Monte Carlo 
procedures for creating important statistical quantities of 
interest when analytical methods are infeasible (e.g., Efron 
and Tibshirani, 1986; Ljung, 1999, pp. 304 and 334; and 
Aronsson et al., 2006). The steps below describe a 
“parametric bootstrap” approach to constructing confidence 
intervals for ρ̂ . Parametric bootstrap methods sample from 
a specified distribution based on using the estimated 
parameter values; a standard bootstrap method samples 
from the raw data.  

 

Step 0: Treat the MLE θ̂ , and associated ρ̂ , as the true 
value of θ and ρ. 
Step 1: Generate (by Monte Carlo) a set of bootstrap data 
of the same collective sample size N = {n,  n1 ,  n2 , ..., np} 
as the real data Y using the assumed probability mass 
function in (2.2) and the value of θ and ρ from Step 0. 
Step 2: Calculate the MLE of θ, say bootθ̂ , from the 
bootstrap data Y in Step 1, and then calculate the 
corresponding full system reliability MLE, bootρ̂ .  
Step 3: Repeat Steps 1 and 2 a large number of times 
(perhaps 1000) and rank order the resulting bootρ̂  values; 
one- or two-sided confidence intervals are available by 
determining the appropriate quantiles from the ranked 
sample of bootρ̂  values. 
 

7. CONCLUDING REMARKS 
 We have described above an MLE-based approach for 
estimating the reliability of a complex system by 
combining data from full system reliability tests and 
subsystem or other tests. The method applies in general 
systems, where the subsystems may be arranged in series, 
parallel, combination series/parallel, or other mode.  

This MLE approach provides a means of estimating the 
reliability of systems with relatively few (or even no) full 
system tests through the knowledge obtained via subsystem 
tests. By appropriately formulating constraints in an 
optimization problem, the approach accommodates general 
relationships between the subsystems and full system, 
including statistical dependencies among subsystems 
operating within the full system. Interestingly, the 
likelihood function has the same general form across all 
settings; only the constraints in the optimization problem 
change. The method includes asymptotic (Fisher 
information-based) and finite-sample (bootstrap) methods 
for characterizing the uncertainty via confidence regions.  
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