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Abstract— In this paper, we propose a POD-based technique
that is suitable for the design of reliable observers for the
estimation of velocity field and contaminant flow for Navier-
Stokes flow. POD modes are constructed using the method
snapshot. Karhunen-Loeve (Galerkin) projection to develop a
reduced-order model obtained by projecting the velocity field
onto the most important POD modes. The resulting finite-
dimensional dynamical system is suitable for the design of
nonlinear observers. The estimate of the velocity field is then
used to estimate the concentration field of a contaminant from
the 2D advection-diffusion equation. The prime application
considered is the estimation of airflow and contaminant flow
in building systems. A 2D simulation example is provided to
demonstrate the applicability of the technique.

I. INTRODUCTION

Flow control and optimization research has been very
active over the last few years. In contrast, the flow estimation
problem has not been considered to such an extent. One of
the major challenges of the NS equations is the fact that
they are nonlinear. In most cases, a linearized version of the
Navier-Stokes equation is considered. Using existing tools
from linear infinite dimensional system control ([7],[8]), one
can obtain a number interesting results for the control and
estimation of flow systems. Kalman filter based approaches
have been recently reported in [9] and [10].

The state estimation problem is particularly complex since
the number of available sensors are generally quite limited
and sensor placement is often restricted due to the lack of
accessibility and extreme conditions (not suitable for sensor
viability). The knowledge of 2D and 3D NS velocity field has
multiple applications in very diverse areas. In building sys-
tems, the knowledge of the velocity field in building systems
allows one to monitor contaminant flows inside the building
and to control air quality. Velocity field estimation play an
important role in meteorological applications especially in
cases where one is attempting to estimate contaminant flow
using basic ground measurements. In general contaminant
flow estimation is based on the assumption that the velocity
field is known and constant. Under this assumption, the
component mass balance becomes linear and hence the
estimation can be conducted using purely linear techniques.
In many applications, as in building systems, the variations in
the velocity field can be significant and thus, the estimation
of contaminant based on a steady-state assumption may be
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seriously compromised. POD-based techniques are generally
more suitable for nonlinear system. Once a projection into
a finite dimensional subspace is obtained (by the method
of snapshots for example), the nonlinear NS equations can
be projected onto the subspace using Galerkin projection
(a.k.a. Karhunen-Loeve projection). The Galerkin projections
express the distributed state variables as linear combinations
of the POD modes. By setting the variables in this form and
substituting to the original equations, a set of nonlinear or-
dinary differential equations is obtained for the coefficients.
The main advantage of the Galerkin projection is that it
preserves the nonlinearity of the complex system in the form
of a low-dimensional set of nonlinear ordinary differential
equations. The application of POD-based technique in simple
geometry has been recently demonstrated in Rowley [2]-[5].
In [14], POD-based estimation techniques were developed
for the estimation of velocity field in building systems.
In this study, we pursue the work presented in [14] and
propose the use of POD-based approach for the estimation
of velocity field and contaminant flow in building systems.
The effectiveness of the technique is demonstrated for a 2D
flow problem. It is shown that both convective and diffusive
contaminant flow can be accurately estimated along with the
velocity field using a finite-dimensional estimator of low
dimensions. The paper is structured as follows. In Section
II, the POD-based approach is applied to the estimation
of velocity field. The estimation of contaminant flow is
described in Section III. Section VI presents simulation
results of 2D room case study followed by brief conclusions
in Section VII.

II. VELOCITY FIELD ESTIMATION

In this section of the paper, we consider the estimation
of velocity fields in air flow in building systems. For the
purpose of this study, we assume that the airflow velocity
field dynamics are governed by the incompressible Navier-
Stokes equation given by:

div(u) = 0
∂u

∂t
= −(u · ∇)u+ ν∇2u−∇p (1)

where u : Ω × R → R3 represents the velocity field
taking values over a spatial domain Ω, p is the pressure
field, ν = 1/Re, Re is the Reynolds number. Here it is
assumed that the velocity and pressure fields are defined on
a closed-subset of R3 and take values on a normed space V .
This equation constitutes a scaled formulation of the Navier-
Stokes equation where the velocities are scaled by a factor
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U , time by U/L, the viscosity by ρUL and the pressure by
ρU2 where ρ is the density, U and L are nominal velocities
and length.

The incompressible flow assumption is justifiable for the
set of conditions considered for the modeling of airflow in
commercial buildings. We note that the approach described
below can be directly applied to the compressible flow
assumption (as demonstrated in [2]-[5]).

A. POD Based Model Reduction

In POD based model reduction, the velocity field u(x, t)
is expressed as an expansion in the POD modes φ(x)
defined on the spatial domain Ω. (Note that depending on the
application, temporal models ψ(t) may be more appropriate).
The expansion is given as:

u(x, t) =
n∑

j=1

aj(t)φj(x) (2)

In general, the decomposition is taken over a Hilbert
space H , the space of smooth divergence-free vector-valued
functions on Ω. The choice of inner product becomes a
crucial aspect of the decomposition. In the incompressible
flow approach however, the standard inner product

〈u , v〉 =
∫

Ω

u(x) · v(x)dV (3)

where u(x)·v(x) represents the standard dot product between
vectors u(x) and v(x) in Euclidean space, dV is a volume
element.

The basis of the technique described here is to restate the
Navier-Stokes equation in terms of the modal decomposition
(2). Assuming that div(φi) = 0 (i = 1, . . . , n), substitution
of (2) in (1) yields

n∑
i=1

ȧi(t)φi(x) = −

 n∑
j=1

aj(t)φj(x) · ∇

 n∑
k=1

ak(t)φk(x)

+ν
n∑

i=1

ai(t)∇2φi(x)−∇p (4)

Projecting onto the space of POD modes leads to,

〈
n∑

k=1

ȧk(t)φk(x), φi(x)〉 =

−〈

 n∑
j=1

aj(t)φj(x) · ∇

 n∑
k=1

ak(t)φk(x), φi(x)〉

+ν〈
n∑

k=1

ak(t)∇2φk(x), φi(x)〉 − 〈∇p, φi(x)〉. (5)

By orthogonality of the modes

〈φi(x), φj(x)〉 =
{

1 i = j
0 i 6= j

, (6)

it follows that (5) reduces to the following set of ordinary
differential equations:

ȧi(t)〈φi(x), φk(x)〉 =

−
n∑

i=1

n∑
j=1

ai(t)aj(t)〈(φj(x) · ∇)φi(x), φk(x)〉

+ν
n∑

i=1

ai(t)〈∇2φi(x), φk(x)〉 − 〈∇p, φk(x)〉 (7)

which reduces to

ȧk(t) = −
n∑

i=1

n∑
j=1

ai(t)aj(t)〈(φj(x) · ∇)φi(x), φk(x)〉

+ν
n∑

i=1

ai(t)〈∇2φi(x), φk(x)〉 − 〈∇p, φk(x)〉. (8)

Equation (8) provides the basis for the design of the
observer. Given a set of representative POD modes, the
reduced-order system of ordinary differential equations con-
stitutes a description of the fluid flow dynamics. Thus by
building an observer for system (8), an (indirect) observer
of the fluid flow velocity field u(x, t) is obtained.

B. POD modes

The ability to reconstruct the velocity field u(x, t) using
estimates of the time-varying coefficients ai(t) depends
completely on the choice of POD modes obtained.

Let H be a Hilbert space with inner product 〈·, ·〉. It
is assumed that a data ensemble is given, {uk ∈ H|k =
1, . . . ,m}, which provides a representative sample of the
system dynamics. In general, the ensemble {uk} is composed
of a number of experiments designed to highlight various
aspects of the process dynamics. These experiments are
typically formed a set of snapshots of the velocity field uk

taken at specific times tk.
These snapshots are usually obtained using CFD simu-

lation of the process and the times tk of the snapshots are
designed to highlight various aspects of the system dynamics.
The snapshots can also be obtained through experiments by
placing sensors at predefined locations.

For the purpose of this study, the Hilbert space H is the
set of functions defined on the spatial domain Ω where the
fluid flows. (Here the spatial domain is the geometry of a
room in a building system). Let S be a subspace of H of
fixed dimension n < m. The projection of any element uk of
H is given by PSuk where PS is the orthogonal projection
operator onto S. The objective of proper orthogonal decom-
position is to find a subspace S of fixed dimension n < m
such that error E(‖uk−PSuk‖) is minimized, where ‖ · ‖ is
the induced norm on H and E(·) is the expectation operator.

The solution of the optimization problem leads to the
eigenvalue problem (see [1] for a detailed development),

Rφ = λφ (9)
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where R : H → H is the linear operator given by

R = E(uk ⊗ u∗k) (10)

where u∗ ∈ H∗ is the adjoint (dual) of a u ∈ H and H∗
is the space of functionals u∗(·) = 〈·, u〉. The operation ⊗
represents the standard tensor product. Thus for any u, v and
w in H, (u⊗ v∗)(w) = u〈w, v〉.

In practice, the snapshots uk are a sampled value of the
velocity field u(x, tk) at time tk evaluated at a finite number,
N , of locations xi (i = 1, . . . , N ) over the spatial domain
Ω. Since, in general, the number of spatial locations N is
large, the corresponding spectral decomposition problem can
become prohibitively complex.

As an alternative, one can compute the POD modes using
the method of snapshots. Starting with an ensemble {uk}
(with k = 1, . . . ,m where m << N ), the POD modes are
taken as linear combinations of the elements of the ensemble.
That is,

φ(x) =
m∑

k=1

ckuk. (11)

Note that this choice is not arbitrary since elements of the
range of the linear operator R are by construction in the span
of the ensemble {uk}.

Rewriting the eigenvalue problem yields

Uc = λc (12)

where U is a m by m matrix with elements Uij = 1
m 〈ui, uj〉.

(Thus the problem is reduced to an m dimensional eigenvalue
problem. Note that this is true even when the original
problem is infinite dimensional.)

In this study, the method of snapshots was used to extract
the POD modes from a CFD simulation that yield snapshots
over a detailed grid over a small number of time instants.

C. Observer Design

The dynamical system (8 yields a set of quadratic differ-
ential equations of the form:

ȧk(t) = Lka(t) + a(t)TQka(t) (13)

where Lk are is a row vector with elements are given by

Lki
= ν〈∇2φi(x), φk(x)〉 (14)

and Qk is an n by n matrix with elements

Qkij
= 〈(φj(x) · ∇)φi(x), φk(x)〉 (15)

for k = 1, . . . , n. In general, the pressure term is ignored.
This can be justified as follows. Since the POD modes are
such that div(φ) = 0, it follows that∫

Ω

∇p · φk(x)dV =
∫

∂Ω

pφk(x) · nΩdS (16)

where nΩ represents the unit vector normal to the spatial
domain Ω. Hence, the pressure term will vanish altogether
over a closed domain (φk(x) = 0 on the boundary of Ω,
∂Ω).

It is assumed that several measurements are available. If
one assumes that r velocity field measurements are available
at r predefined locations, these measurements must first
be expressed in terms of the modal decomposition. For
example, if one measures the average velocity, uavg(x0, t) =
(u(x0, t) + v(x0, t) + w(x0, t)), at a point xo, then the
corresponding measurement becomes

uavg(x0, t) =
n∑

i=1

ai(t)(φ1
i (x0) + φ2

i (x0) + φ3
i (x0)) (17)

where φj
i (x) represents the jth element of the ith POD mode.

Since the POD modes are time independent, the resulting
output map can be written in the form

uavg(x0, t) = Ca(t) (18)

where C is a 1 by n matrix and a(t) is the n-dimensional
vector of time varying coefficients of the Galerkin approxi-
mation of u(x, t). In general, the output map will be written
as

y(t) = Ca(t)

which is constructed by expressing the measured quantity
using the POD modes.

If pressure is measured at a point x0, the pressure can be
expressed in modal form as follows:

p(x0, t) =
n∑

i=1

ai(t)pi(x0) (19)

where pi(x0) is the pressure associated to φi(x0).
Assuming that the available measurements include veloc-

ity measurements and pressure measurements, the complete
dynamical system considered in this study takes the form:

ȧk(t) = Lka(t) + a(t)TQka(t) , k = 1, . . . , n
y(t) = Ca(t) (20)

The objective of this study is to consider the design of
an observer for the system (20). Assuming that the POD
modes provide an accurate description of the features of the
flow field, the estimation of the Galerkin coefficients ai(t)
yields an estimate of the velocity field using the expression
(2). Note that if the initial conditions ai(0) are known, then
the predictions of the dynamical system (20) will be in
agreement with actual value ai(t) and a good estimate of the
flow field should result. However, the initial conditions are
generally not known and the value of ai(t) must be replaced
by an estimate âi(t). In addition, the flow system is subject to
uncertainties and disturbances that must be filtered in some
way.

Given the dynamical system (20) and assuming that the
system is observable, one can rely on a number of potential
approaches to provide estimates of the Galerkin coefficients.
The use of an observer for the estimation of the Galerkin
coefficients was proposed in [5] for the design of an feedback
control scheme. In order to reduce the complexity of the
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observer design, only the linear approximation of (20) was
considered. It is clear that a nonlinear observer approach
would provide improvement in the performance of the ob-
server. This aspect of the problem is treated in this study.

III. ESTIMATION OF CONTAMINANT FLOW

The observer design for the estimation of velocity fields
in building systems can be used for contaminant flow esti-
mation. In the remainder of this paper, we will consider the
estimation of concentration fields using the velocity field esti-
mation. Given that div(u) = 0 and assuming the diffusivity of
the contaminant is spatially constant, the concentration field
dynamics are governed by the advection-diffusion equation
given by:

∂c

∂t
= −u · ∇c+ κ∇2c+ Js (21)

where c : Ω × R → R represents the concentration field,
Js : Ω × R → R is the source field and κ = D/UL with
D being the diffusivity coefficient. The velocity and time
are again scaled by factors U and U/L, respectively. The
concentration and source fields are dimensionless as they are
taken as the mass fraction of the contaminant.

IV. POD BASED MODEL REDUCTION

Similar to the velocity field, the concentration field, c(x, t)
is expressed as an expansion in the POD modes, θ(x),
defined on Ω. The expansion is given by:

c(x, t) =
p∑

i=1

bi(t)θi(x) (22)

The decomposition is taken over a Hilbert space H , taken
to be the space of smooth, real valued functions on Ω with
the standard inner product:

〈ci, cj〉 =
∫

Ω

ci(x) · cj(x)dV (23)

Various inner products involving the gradient and the Lapla-
cian of the concentration fields were tested however the
standard inner product produced superior results.

Substitution of (2) and (22) into (21) yields:

p∑
i=1

ḃi(t)θi(x) =

−

(
n∑

i=1

ai(t)φi(x)

)
· ∇

(
p∑

i=1

bi(t)θi(x)

)

+κ∇2

(
p∑

i=1

bi(t)θi(x)

)
+ Js (24)

Projecting onto the space of POD modes leads to:

〈
p∑

i=1

ḃi(t)θi(x), θl(x)〉 =

−〈
n∑

i=1

p∑
j=1

ai(t)bj(t)∇θj(x) · φi(x), θl(x)〉

+κ〈∇2

(
p∑

i=1

bi(t)θi(x)

)
, θl(x)〉+ 〈Js, θl(x)〉(25)

By linearity of the inner product and orthonormality of the
modes, we have the following set of differential equations:

ḃl(t) = −
n∑

i=1

p∑
j=1

ai(t)bj(t)〈∇θj(x) · φi(x), θl(x)〉

+ κ

p∑
i=1

bi(t)〈∇2θi(x), θl(x)〉+ 〈Js, θl(x)〉 (26)

The set of differential equations from (26) coupled with
the set from (8) can be used to design an indirect observer
for both the fluid flow velocity field, u(x, t), and the con-
centration field, c(x, t).

V. OBSERVER DESIGN

A. Reduced Order Nonlinear System

The overall dynamical system yields the following set of
quadratic differential equations:

ȧk(t) = Lka(t) + a(t)TQka(t), k = 1, . . . n
ḃl(t) = Nlb(t) + a(t)TPlb(t), l = 1, . . . p (27)

where Nl is a row vector with elements given by:

Nli = κ〈∇2θi(x), θl(x)〉 (28)

and Pl is an n by p matrix with elements

Plij
= 〈∇θj(x) · φi(x), θl(x)〉 (29)

for l = 1, . . . , p. The source term is ignored since we assume
the source, Js, is a finite set of point sources or nonzero only
on ∂Ω. Hence, we have:

〈Js, θl(x)〉 =
∫

Ω

Js · θl(x)dV = 0, l = 1, . . . p (30)

B. Measurements

We assume that the concentration of the contaminants can
be measured. Similar to the velocity field measurements, we
can relate a concentration measurement at position x0 and
time t to the Galerkin projection coefficients, bl(t), using:

c(x0, t) =
p∑

i=1

bi(t)θi(x0) (31)
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Hence, the vector of all the concentration measurements,
yconc(t), can be written as:

yconc(t) = Cb(t) (32)

Also, if yvel is the vector of all the velocity measurements,
the overall dynamical system is given by:

ȧk(t) = Lka(t) + a(t)TQka(t), k = 1, . . . n
ḃl(t) = Nlb(t) + a(t)TPlb(t), l = 1, . . . p

y(t) =
[
yvel(t)
yconc(t)

]
=
[
C 0
0 C

] [
a(t)
b(t)

]
(33)

C. Observer Design

The objective of the second half of this study is the design
of an observer for (33). In [14], an extended Kalman filter
(EKF) was considered for the velocity field estimation. For
this system, an unscented Kalman filter (UKF) is applied.
Despite being able to better handle nonlinearities using
unscented transformations, it was found that an UKF did not
significantly outperform an EKF for the dynamical system
given in (33).

VI. RESULTS

A. 2D Room Case Study

We consider the application of the observer for (33) in
the same two-dimensional room previously studied with a
change in the location of the inlet. The inlet was placed on
the upper wall and directs contaminated fluid down into the
room. Figure 1 depicts the location of the inlet as well as
the concentration sensors. The location of the single velocity
measurement remains unchanged. As seen in the figure, three
concentration sensors were used. The sensors at each of
the outlets were used to capture the convective transport of
the contaminant, carbon monoxide and the middle sensor
captured the diffusive transport towards the middle of the
room.

Fig. 1. Geometry of the two-dimensional room.

B. Snapshot Generation and Galerkin Projection

Six separation CFD simulations were used for the genera-
tion of the snapshots. The first four started with a zero initial
velocity and concentration fields within the room. The inlet
velocity and mass fraction of carbon monoxide, were 0.179
m/s and 0.02, 0.179 m/s and 0.07, 0.626 m/s and 0.07 and
0.626 m/s and 0.07. The last two simulations started with the
steady state velocity fields from an inlet velocity of 0.223 m/s
and 0.626 m/s with zero inlet mass fraction. The snapshots
were generated with the inlet mass fraction increased from 0
to 0.015. Two velocity and three concentration POD modes
were retained from the snapshots.

The Galerkin projection produced a five-dimensional
continuous-time dynamical system which was discretized
using a sample time of 5 seconds.

A CFD simulation was used to study the performance
of the proposed observer. The simulation started with zero
initial velocity and concentration fields and inlet velocity and
mass fraction of 0.360 m/s and 0.04, respectively. The initial
values of the estimates of the Galerkin projection coefficients
were â1 = â2 = b̂1 = b̂2 = b̂3 = 0.

C. Velocity Estimation

Figure 2 compares the estimated velocity field to the
field from the CFD simulation. The result reiterates the
effectiveness of the observer at estimating velocity fields as
demonstrated in [14].

Fig. 2. Simulation results for the 2D room case study. Shown are the mean
squared velocity fields for the CFD and the estimated velocity field at t =
110 sec. The CFD velocity field is on the left and the estimated velocity
field is on the right.

D. Convective Transport Estimation

Figure 3 compares the concentration field from the CFD
simulation to the estimated field while convection is the
dominate method of transport of the contaminant. The re-
sults exhibit the efficacy of the observer at estimating the
convective transport of the contaminate throughout the room.
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Fig. 3. Simulation results for the 2D room case study. Shown are
concentration fields for the CFD and the estimated concentration field at
t = 110 sec. The CFD concentration field is on the left and the estimated
concentration field is on the right.

E. Diffusive Transport Estimation

Figure 4 compares the CFD and estimated concentration
fields when the contaminant has diffused into the middle
of the room. The results show that the observer is able to
estimate both the convective and the diffusive transport of the
contaminant. This is in spite of reducing the Navier Stokes
and the advection diffusion equation to a five-dimensional
dynamical system. Figure 5 shows the total mean squared
error in the estimate of the concentration.

Fig. 4. Simulation results for the 2D room case study. Shown are
concentration fields for the CFD and the estimated concentration field at
t = 340 sec. The CFD concentration field is on the left and the estimated
concentration field is on the right.

VII. CONCLUSIONS

A POD-based observer design method is developed for
the estimation of velocity field from the 2D and 3D Navier-
Stokes flow and contaminant flow from the 2D advection-
diffusion equation. In building systems, the POD-based ap-

Fig. 5. Total mean squared error in the estimate of the concentration field
for the 2D room example.

proach provides very simple low-order representation of the
flow that are both accurate and reliable.
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