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Abstract— Necessary and sufficient conditions are provided
for stochastic stability and mean exponential stability of im-
pulsive systems with jumps triggered by a renewal process,
that is, the intervals between jumps are independent and
identically distributed. The conditions for stochastic stability
can be efficiently tested in terms of the feasibility of a set of
LMIs or in terms of an algebraic test. The relation between
the different stability notions for this class of systems is also
discussed. The results are illustrated through their application
to the stability analysis of networked control systems. We
present two benchmark examples for which one can guarantee
stability for inter-sampling times roughly twice as large as in
a previous paper.

I. INTRODUCTION

We consider a linear impulsive system taking the form

ẋ(t) = Ax(t), t 6= tk

x(tk) = Jx(t−k ), x(0) = x0, t0 ≤ 0 < t1, (1)

t ∈ R≥0, k ∈ Z≥0,

where the times between consecutive jumps {hk := tk+1 −
tk, k ≥ 0} are independent and identically distributed (i.i.d.)

with a common cumulative distribution F . Following [1], we

call (1) an impulsive system driven by a renewal process,

motivated by the fact that the process

N(t) := max{k ∈ Z≥0 : tk ≤ t} (2)

that counts the number of jumps up to time t is a renewal

process [2].

Pioneering work on systems with i.i.d. intervals between

sampling times can be found, e.g., in [3] and [4]. Necessary

and sufficient conditions for the stability of (1) are known

in the literature for the particular cases where the interval

between jumps is constant and exponentially distributed

(e.g. [5]). A nonlinear version of (1), is considered in [1],

and sufficient conditions are provided for a stability definition

that implies mean exponential stability. In [6], a class of

networked control systems with i.i.d. transmission times is

considered, and sufficient conditions are given for almost sure

stability and mean-square stability.
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In the present paper we provide necessary and sufficient

conditions for stochastic stability and mean exponential

stability of the system (1). These stability definitions are

similar to other definitions in the literature (e.g. [7]). The

conditions for stochastic stability are given both in terms of

a feasibility test of a set of LMIs and in terms of an algebraic

test. These conditions are shown to be related to the stability

of a properly defined discrete-time system. Regarding mean

exponential stability, we use a stochastic Lyapunov function

approach [8]. The relation between stochastic stability, mean

exponential stability, and mean square stability is discussed

for the class of systems considered. Although the approaches

used to establish stochastic stability and mean exponential

stability are different, we show that these two stability

notions are equivalent in many cases of interest.

To illustrate the use of the stability conditions, we consider

a networked control system in which a remote controller re-

ceives and processes sensor information and sends actuation

signals through a communication network with stochastic

inter-sampling times [1]. The equations of the feedback

connection can be modeled by an extension of the system (1),

in which the matrix J depends on the index k. Besides

illustrating the results, this example allow us to verify that

the results in [1] were indeed conservative. In fact, with the

results in the present paper one can guarantee stability for

inter-sampling roughly twice as large as in [1].

The paper is organized as follows. Section II presents

some preliminaries. In Section III we state and prove our

main results concerning stochastic and mean exponential

stability of (1), and discuss the relation between the stability

notions. Section IV presents further conditions for stochastic

stability of (1) and extensions of the results to the case of

index dependent jump matrices. An example is presented in

Section V followed by the conclusions in Section VI.

Notation: For a given matrix A, its transpose is denoted

by AT , its adjoint by A∗, its spectral radius by σ(A), and

its trace by tr(A). The kronecker product is denoted by ⊗.

II. PRELIMINARIES

In addition to the process x(t) defined in (1), it is useful

to define a timer process τ(t), which keeps track of the time

elapsed since the last jump. The augmented process x(t) =
[x(t)T τ(t)]T ∈ Rn × R is then defined as

[

ẋ(t)
τ̇(t)

]

=

[

Ax(t)
1

]

, t 6= tk

[

x(tk)
τ(tk)

]

=

[

Jx(t−k )
0

]

,

[

x(0)
τ(0)

]

=

[

x0

τ0

]

t0 ≤ 0 < t1,(3)

t ∈ R≥0, k ∈ Z≥0,
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where we denote by t0 the last jump time before the initial

time t = 0, that is, −τ0 = t0 ≤ 0 < t1. The process x(t)
can be shown to be a Markov Process [9]. For simplicity,

we assume constant initial conditions (x0, τ0) but there is no

difficulty in considering an initial distribution for (x0, τ0).
We denote by (Ω,B,P) the underlying probability space

of the stochastic process x(t; ω), ω ∈ Ω. The dependence

of x on ω will often be dropped, as for other random

variables. The expected value will be denoted by E(.) and

the probability of a given event A by Prob[A] = P [A].
All stochasticity in x(t; ω) derives from the random

variables hk(ω) that determine the time intervals between

consecutive jumps. These variables are assumed i.i.d. with a

common distribution F that has support on a given interval

[0, T ], T ∈ R>0 ∪ {+∞}, which means that

0 < F (x) < 1, x ∈ [0, T ), F (T ) = 1. (4)

We assume some regularity on F , namely that this function

can be written as F = F1 + F2, where F1 is an absolutely

continuous function F1(x) =
∫ x

0 f(s)ds, for some density

function f(x) ≥ 0, and F2 is a piecewise constant increasing

function that captures possible atom points {ai > 0}, where

the cumulative distribution places mass {wi}. The integral

with respect to the monotone function F is then defined as

∫ T

0

G(x)F (dx) =

∫ T

0

G(x)f(x)dx +
∑

i

wiG(ai),

where G(x) is generally a matrix-valued function.

For absolutely continuous distributions F (x) = F1(x), the

hazard rate λ(x) is defined as,

λ(x) =
−S′(x)

S(x)
, x ∈ [0, T ), (5)

where S(x) is the survivor function S(x) = 1 − F (x).
We define the random variable hτ0

(ω) = t1 to be the

time interval between the initial time t = 0 and the time of

the next jump t1. The distribution of this random variable is

determined by the survivor function Shτ0
(x) given by

Shτ0
(x) := Prob[hτ0

> x] = Prob[h0 > x + τ0|h0 > τ0]

=
S(x + τ0)

S(τ0)
.

The value at time t of a sample path of (1) starting at an

initial condition (x0, τ0) is denoted by x(t; x0, τ0) and is

given by

x(t; x0, τ0) = Φτ0
(t)x0, (6)

where the transition function Φτ0
(t) is given by

Φτ0
(t) := Φ(t, 0) :=











Φ(t, tr)Φ(tr, t1)Φ(t1, 0), r > 1

Φ(t, t1)Φ(t1, 0), r = 1

exp(At), r = 0

,

(7)

where r = max{k ∈ Z≥0 : tk ≤ t} and

Φ(t, tr) := exp(A(t − tr)), Φ(t1, 0) := J exp(Ahτ0
),

Φ(tr, t1) := Πr−1
j=1Φ(tj+1, tj), Φ(tj+1, tj) := J exp(Ahj).

We consider three stability notions for (1), which are

consistent with those appearing in the literature (e.g.,[7]).

Definition 1: The system (1) is said to be

(i) Mean Square Stable (MSS) if for any (x0, τ0),

lim
t→+∞

E[x(t; x0, τ0)
T x(t; x0, τ0)] = 0.

(ii) Stochastic Stable (SS) if there exists a positive constant

κ(x0, τ0) such that for any (x0, τ0)
∫ +∞

0

E[x(t; x0, τ0)
T x(t; x0, τ0)]dt < κ(x0, τ0).

(iii) Mean Exponentially Stable (MES) if for any (x0, τ0)

∃c,α:E[x(t; x0, τ0)
Tx(t; x0, τ0)]≤c exp(−αt)xT

0x0,∀t≥0.

III. MAIN RESULTS

In this section we provide conditions for stochastic sta-

bility and mean exponential stability of the system (1) and

discuss the relation between them. The proofs are deferred

to Subsection III-D.

A. Stochastic Stability

The following theorem provides testable necessary and

sufficient conditions for stochastic stability of (1) and is the

main result of the paper.

Theorem 2: Consider the following conditions

(A) M(s) :=

∫ s

0

exp(Aw)T exp(Aw)dw is F−integrable

i.e.,

∫ T

0

M(s)F (ds) is bounded ;

(B) ∃P>0 :

∫ T

0

(J exp(As))T PJ exp(As)F (ds) − P < 0;

(C) σ(H) < 1, where

H :=

∫ T

0

(J exp(As))T ⊗ (J exp(As))T F (ds).

Then the following three statements are equivalent

i) The system (1) is stochastic stable.

ii) (A) and (B) hold.

iii) (A) and (C) hold.

Notice that condition (B) is an LMI condition since given a

basis {Bi}, i ∈ {1, . . . , m := n(n+1)
2 } for the linear space of

n × n symmetric matrices, we can express P =
∑m

i=1 πiBi

and rewrite (B) as ∃πi∈R:i∈{1,...,m} :

m
∑

i=1

πi(

∫

T

0

(J exp(As))T BiJ exp(As)F (ds) − Bi)<0, (8)

m
∑

i=1

πiBi > 0

The integrals involved in (C) and (8) may be efficiently

computed numerically, and in some cases even symbolically.

The need for the condition (A) arises from the fact that,

when (i) the impulsive system matrix A is unstable, (ii) the

interval distribution does not have finite support, i.e., T =
+∞, and (iii) the jumps are somewhat infrequent, then it
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might not be possible for the impulsive system to be stable

even with a full reset at jump times: J = 0. To gain intuition

on why (A) is needed and on why (B) and (C) could not

suffice, suppose that J = 0 (in which case (B) and (C) hold

trivially), T = ∞ and, for simplicity, take τ0 = 0. Then,

E(x(t)T x(t)) can be computed as

E(x(t)Tx(t))=
∞
∑

k=0

E(x(t)Tx(t)|N(t)=k)Prob[N(t)=k](9)

= E(x(t)T x(t)|N(t) = 0)Prob[N(t) = 0]

= xT

0 exp(At)T exp(At)x0S(t)

Suppose also that F (s) is continuously differentiable
F ′(s) = −S′(s) = f(s) and that we integrate condition
(A) by parts, yielding

∫

T

0

M(s)(−S
′(s))ds=−M(s)(S(s))|s=T

s=0 +

∫

T

0

M
′(s)(S(s))ds

=

∫

T

0

exp(As)T exp(As)S(s)ds, (10)

where we used the fact that M(0) = 0 and S(T ) = 0. It is

then clear that, for this particular case, condition (A) must

hold for
∫ T

0
E(x(s)T x(s))ds to be bounded, and therefore

for (1) to be stochastic stable.

B. Mean Exponential Stability

The next theorem provides necessary and sufficient condi-

tions for mean exponential stability of (1). We assume in this

section that F is continuously differentiable and therefore

that the hazard rate λ(x) is continuous.

Theorem 3: The system (1) is mean exponentially stable

if and only if there exists a symmetric matrix-valued function

P (τ), τ ∈ [0, T ) and constants c1 > 0, c2 > 0 such that for

every S1 > 0, S2 > 0

c1I < P (τ) < c2I, (11)

Ṗ (τ)=−S1−ATP (τ)−P (τ)A−λ(τ)(JTP (0)J−P (τ)+S2).

(12)

The proof, which considers a Lyapunov function taking the

form x(t)T P (τ(t))x(t), is omitted due to space limitations.

This theorem provides further insight on the stability of (1),

but the conditions are not as straightforward to check as the

conditions of Theorem 2. However, in the special case where

the intervals between jumps are exponentially distributed,

these conditions become simpler. This is stated in the next

corollary.

Corollary 4: The system (1) with F (x) = 1− exp(λx) is

mean exponentially stable if and only if

∀S>0 ∃P>0 : AT P + PA + λ(JT PJ − P ) = −S.

In the next section we show that in some cases of interest,

mean exponential stability is equivalent to stochastic stability

and therefore we can use the conditions of Theorem 3 to test

mean exponential stability.

C. Relation between stability notions

The following example shows that, in general, the stability

notions of Definition 1 are not equivalent for the system (1).

Example 5: Consider the system (1) with A = a >

0, J = j ∈ R, and suppose that the survivor function

of the time intervals between jumps is given by S(t) =
exp(−2at) 1

t+1 , t ∈ [0, T ), T = +∞. The condition (A)

of Theorem 2, which can be tested using (10), does not hold

since
∫ ∞

0
exp(2as)S(s)ds = +∞ and therefore the system

in not stochastic stable. However, making j = 0, considering

an arbitrary initial condition (x0, τ0), and using a similar rea-

soning to (9), we have that E(x2(t)) = exp(2at)S(t+τ0)
S(τ0)

x2
0 =

τ0+1
t+τ0+1x2

0 , which tends to zero for any τ0 ∈ [0, T ), and

therefore the system is mean square stable.

If we have instead S(t) = exp(−2at) 1
t2+1 , condition (A)

of Theorem 2 holds and condition (B) of the same theorem

also holds for sufficiently small j, and therefore the system

is stochastic stable when j = 0. However, making j = 0 and

τ0 = 0, E(x2(t)) = 1
t2+1x2

0 does not decrease exponentially,

and therefore the system is not mean exponentially stable.

From the Definition 1 it is evident that mean exponential

stability implies stochastic stability, but the previous example

shows that the converse implication does not hold in general.

The next lemma states equivalence between the two stability

notions for an important subclass of systems.

Lemma 6: Suppose the cumulative distribution between

jumps F is continuously differentiable and has finite support,

that is, T < +∞. Then the system (1) is stochastic stable if

and only if it is mean exponentially stable.

Another important case for which the different notions

of stability collapse is that of exponentially distributed time

intervals between jumps, F (x) = 1 − exp(−λx), x ∈
[0, T ), T = +∞. In this case, the distribution does not have

finite support but, as stated in the following Lemma, the three

stability notions in Definition 1 are equivalent.

Lemma 7: Suppose the cumulative distribution between

jumps is exponential, that is, F (x) = 1 − exp(λx). Then

the system (1) is stochastic stable if and only if it is mean

exponentially stable and if and only if it is mean square

stable.

D. Proofs

Due to space limitations, we prove only Theorem 2. As a

preliminary to the proof, we introduce the following function

from the space of n × n matrices into itself

L(U) =

∫ T

0

(J exp(As))T UJ exp(As)F (ds), (13)

and we denote by Lk(U) the composition obtained by

applying k times this function, e.g., L2(U) = L(L(U)). By

convention L0(U) = U . We denote by ν the operator that

transforms a matrix into a vector ν(A) = ν([a1 . . . an]) =
[aT

1 . . . aT

n]T . Using the property [10, Lemma 4.3.1]

ν(AXB) = (BT ⊗ A)ν(X), (14)
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we obtain ν(L(U)) = Hν(U), or equivalently,

L(U) = ν−1 ◦ H ◦ ν(U), (15)

where H is described in (C) of Theorem 2.

We denote by Sn
+(C) the space of n×n self-adjoint pos-

itive semi-definite complex matrices. We need the following

proposition which can be derived from [11, Prop. 1].

Proposition 8: For B∈Rn2×n2

the following are equivalent

(a) σ(B) < 1
(b) limk→+∞ Bkν(X) = 0, for every X ∈ Sn

+(C).

Proof: (of Theorem 2) We start by characterizing fur-

ther (i). By definition, the system (1) is stochastic stable if

and only if for any (x0, τ0), xT

0 P (τ0)x0 is bounded, where

P (τ0) :=

∫ +∞

0

E[Φτ0
(s)T Φτ0

(s)]ds, τ0 ∈ [0, T ), (16)

and Φτ0
(s) is given by (7). The expectation is taken with

respect to the independent random variables hτ0
, {hk, k ≥

1}. Computing separately the expectation with respect to hτ0
,

defining Fτ0
(x) := F (x+τ0)

S(τ0)
, x ∈ [0, T − τ0), and noticing

that for a scalar function g(x)

Ehτ0
(g(hτ0

)) =

∫ T−τ0

0

g(s)Fτ0
(ds) ≤

∫ T

0

g(s)
F (ds)

S(τ0)

=
Eh0

(g(h0))

S(τ0)
,

we get

Ehτ0
[xT

0 E{hk,k≥1}[Φτ0
(s)T Φτ0

(s)]x0] ≤

(E{hk,k≥0}(x
T

0 Φτ0=0(s)
T Φτ0=0(s))x0)

S(τ0)
,

and therefore xT

0 P (τ0)x0 ≤
xT

0 P (0)x0

S(τ0)
. Notice that (4)

implies S(τ0) > 0, τ0 ∈ [0, T ). It is then clear that (i) holds

if and only if P := P (0) is bounded. Suppose this is the

case, i.e., that (i) holds and therefore that P is bounded. We

notice that we can interchange the integral and expectation

operations in the expression for P , that is, (16) with τ0 = 0.

In fact, denoting by M(s) := Φτ0=0(s)
T Φτ0=0(s), we have

that the diagonal entries of M(s) verify Mii(s) ≥ 0, and are

integrable since P is bounded, and therefore we can apply the

Fubini Theorem.Since M(s) is positive semidefinite the off-

diagonal elements are dominated by the diagonal elements

and therefore are also integrable. Besides interchanging the

integral and expectation operations, suppose we also partition

the region of integration into the intervals [tk, tk+1), yielding

P =E[

+∞
∑

k=0

∫ tk+1

tk

Φ(s, 0)T Φ(s, 0)ds] (17)

=E[

+∞
∑

k=0

Φ(tk, 0)T(

∫ tk+1

tk

Φ(s, tk)TΦ(s, tk)ds)Φ(tk, 0)](18)

=

+∞
∑

k=0

E[Φ(tk, 0)T UΦ(tk, 0)] (19)

where

U :=E[

∫ tk+1

tk

Φ(s, tk)T Φ(s, tk)ds]

=

∫ T

0

[

∫ s

0

exp(Aw)T exp(Aw)dw]F (ds)

is positive definite, and the remaining matrices are defined in

(7). The interchange of the expected value and summation in

(18) can be proved to be valid, using the Lebesgue monotone

convergence theorem and similar arguments to the ones just

used for the interchange of the integral and expectation in

(16). It is clear from (19) that U must be bounded, or

equivalently (A) must hold. Due to the fact that hk are i.i.d,

(19) can be written as

P =
+∞
∑

k=0

Lk(U), (20)

where L is defined by (13). This expression reveals that (i)

holds if and only if the summation (20) is bounded.

To prove that (i) implies (ii), notice that

P = U +

+∞
∑

k=1

Lk(U) = U + L(

+∞
∑

k=0

Lk(U)) = U + L(P ),

from which we conclude that L(P )−P = −U < 0, i.e., (ii).

To prove that (ii) implies (iii) we consider the system

xk+1 =HTxk, Xk+1 =L∗(Xk), ν(Xk)=xk, X0 ∈ Sn
+(C),
(21)

where L∗(Xk) := ν−1 ◦ HT ◦ ν(Xk) is given by

L∗(Xk) =

∫ T

0

J exp(As)Xk(J(exp(As))T F (ds),

and for any Y, Z ∈ Sn
+(C) verifies

tr(L(Z)∗Y ) = tr(Z∗L∗(Y )). (22)

Notice that Xk ≥ 0 for a given k implies Xk+1 = L∗(Xk) ≥
0, and therefore, by induction, we conclude that Xk ≥ 0 for

all k. We show that (ii) implies that this system is stable by

considering a Lyapunov function V (xk) = tr(Pν−1(xk)) for

(21), where P verifies (B), that is P > 0 and L(P )−P < 0.

In fact, this function V is radially unbounded and positive

definite for Xk ≥ 0, and verifies V (0) = 0. Using (B) and

(22), we have that for any Xk ∈ Sn
+(C) − {0}

V (xk+1) − V (xk) = tr(Pν−1(HT ν(Xk))) − tr(PXk)

= tr(PL∗(Xk)) − tr(PXk) = tr(L(P )Xk) − tr(PXk)

= tr((L(P ) − P )Xk) = −tr(ZXk) < 0,

where Z := −(L(P ) − P ) > 0. Therefore (21) is stable for

any symmetric positive semidefinite initial condition X0 ∈
Sn

+(C), which by Proposition 8 is equivalent to σ(H) =
σ(HT ) < 1 which is (iii).

Finally, to prove that (iii) implies (i), notice that σ(H) < 1
implies that

(I − H)−1 =

+∞
∑

k=0

Hk(I) (23)
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is bounded [10, Theorem 6.2.8]. By applying ν−1(.)ν on

both sides of (23) we conclude that (I−L)−1 =
∑+∞

k=0 Lk(I)
is also bounded. Since ∃c :

∑+∞
k=0 Lk(U) < c

∑+∞
k=0 Lk(I),

this implies that (20) is bounded. We can invert the steps

(20)-(16) showing that xT
0 P (τ0)x0 is bounded and therefore

(i) holds, which concludes the proof.

IV. EQUIVALENT CONDITIONS AND EXTENSIONS

In this section we further characterize the stochastic

stability of system (1) by providing conditions in terms

of the stability of two suitably constructed discrete-time

stochastic processes. These discrete-time stochastic processes

are obtained by sampling the system (1) at jump times

z1k = x(tk) and z2k = x(t−k ) and can be described by

z1k+1 = J exp(Ahk)z1k

z2k+1 = exp(Ahk)Jz2k (24)

The notions of stability for a discrete-time stochastic

process are analogous to those in Definition 1, provided that

one replaces the continuous time t ∈ R by the discrete time

k ∈ N.

Theorem 9: Consider the following set of four matrix-

valued functions

K = {J exp(Ah), exp(Ah)J, (J exp(Ah))T , (exp(Ah)J)T }.

and suppose that the condition (A) of Theorem 2 holds. Then

the following statements are equivalent

i) The system (1) is stochastic stable.

ii) The discrete-time system

zk+1 = K(hk)zk, (25)

is V-stable where hk are the time intervals described in

Section I, K(h) can be any of the matrices of the set K,

and V can be replaced by any of the stability notions

under consideration: mean exponential, stochastic, or

mean square.

iii) ∀Q>0, ∃P>0 : L(P ) − P = −Q, where L can be any

of the operators {
∫ T

0
K(s)T PK(s)F (ds) : K ∈ K}

iv) σ(H) < 1 where H can be any of the matrices

{
∫ T

0 K(s)T ⊗ K(s)T F (ds) : K ∈ K}.

Regarding statement ii), assuming that the condition (A) of

Theorem 2 holds, stability of (25) for any one of the stability

notions and for any one of the matrices K in the set K
suffices to guarantee stochastic stability of (1) and, in fact,

also guarantees stability of (25) for all other stability notions

and for all other matrices K in K.

A. Index Dependent Jump Matrices

In this section we extend Theorem 2 to the case of jump

matrices that depend on the jump index k, i.e.,

ẋ(t) = Ax(t), t 6= tk

x(tk) = Jkx(t−k ), x(0) = x0, t0 ≤ 0 < t1, (26)

t ∈ R≥0, k ∈ Z≥0,

where the times between consecutive jumps hk := tk+1− tk
are still as defined in Section I. We assume that the depen-

dence of Jk on k is K periodic, that is, Jk = Jk+K , ∀k. The

next lemma extends Theorem 2 to the periodic system (26)

and is used in the example presented in the next Section.

Lemma 10: The following are equivalent

i) The system (26) is stochastic stable.

ii) (A) of Theorem 2 holds and

∃Pr>0 :

∫ T

0

(Jr exp(As))T P[r+1]Jr exp(As)F (ds)−P[r] <0;

where r ∈ {1, . . . , K}, [r] = 1 if r = K + 1, [r] =
r otherwise .

iii) (A) of Theorem 2 holds and σ(H) < 1, where for Dr =
∫ T

0
(Jr exp(As))T ⊗ (Jr exp(As))T F (ds),

H =













0 D1 0 . . . 0
0 0 D2 . . . 0
...

...
...

...
...

0 0 . . . 0 DK−1

DK 0 . . . 0 0













.

V. EXAMPLE

We illustrate the results of the present paper by eliminating

the conservativeness of the results in [1] for two benchmark

problems. In [1], a networked control system is considered,

for which a plant and a remote controller are connected

through a communication network. The linear plant and

remote linear controller take the form:

ẋP = AP xP + BP û y = CP xP (27)

ẋC = ACxC + BC ŷ u = CCxC + DC ŷ (28)

where xP and xC are the states of the plant and the

controller; û and y the plant’s input and output; ŷ and u

the controller’s input and output. Ignoring network delay,

between the sampling times {tk, k ∈ Z≥0} both û and ŷ are

held constant

û(t) = û(tk), ŷ(t) = ŷ(tk), t ∈ [tk, tk+1), k ∈ Z≥0

The components of the signals u(t) and y(t) are not neces-

sarily both sampled and sent to the network at every sampling

time. Defining

e =

[

eu

ey

]

=

[

û − u

ŷ − y

]

,

this is captured by

[

eu(tk)
ey(tk)

]

=

[

Ru
k 0

0 R
y
k

] [

eu(t−k )
ey(t

−
k )

]

,

where the matrices Ru
k = diag([π1k . . . πnk]), πjk ∈ {0, 1},

and R
y
k = diag([κ1k . . . κnk]), κjk ∈ {0, 1} choose what

controller and plant outputs, respectively, are sampled at each

sampling time and therefore specify the network protocol.

4036



A. Batch Reactor

This example considers the control of a linearized model
of an open loop unstable batch reactor, described by (27),
where

AP =







1.38 −0.2077 6.715 −5.676
−0.5814 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104






,

BP =







0 0
5.679 0
1.136 −3.146
1.136 0






, CP =

[

1 0 1 −1
0 1 0 0

]

.

As in [1], we assume that only the outputs are sent through

the network, using a round-robin protocol, meaning that the

matrix R
y
k that specifies the network protocol is given by

R
y
k = R0, when k even and R

y
k = R1, when k odd, where

R0 :=

[

1 0
0 0

]

R1 :=

[

0 0
0 1

]

.

The intervals hk between consecutive output sampling times
tk are assumed i.i.d. and following a distribution F . The
system is controller by a PI controller, described by (28),
where

AC =

[

0 0
0 0

]

, BC =

[

0 1
1 0

]

, CC =

[

−2 0
0 8

]

, DC =

[

0 −2
5 0

]

.

The dynamic equations for x := [xT

P xT

C eT

y ]T take the

form (1) with

A =

[

Axx Axe

Aex Aee

]

, Jk =

[

I 0
0 R[k]

]

where [k] = 0, when k even and [k] = 1, when k odd, and

Axx =

[

AP + BP DCCP BP CC

BCCP AC

]

, Axe =

[

BP DC

BC

]

,

Aex =
[

−CP 0
]

Axx, Aee =
[

−CP 0
]

Axe.

To compare our results with the ones in [1] we consider

uniformly and exponentially distributed time intervals hk.

Notice that in these two cases stochastic stability and mean

exponential stability are equivalent and therefore we can

use the computationally efficient conditions in Lemma 10.

We note that the nomenclature used in [1] is mean square

stability, but the results provided there are, in fact, sufficient

conditions for mean exponential stability as defined in the

present paper, and therefore the result are comparable. The

results are summarized in Table I.

TABLE I

STABILITY CONDITIONS FOR THE BATCH REACTOR EXAMPLE

Necessary and

sufficient conditions
Results taken from [1]

Maximum support T

of Uniform Distribution
0.112 0.0517

Maximum average λ of

Exponential Distribution
0.0417 0.0217

B. CH-47 Tandem-Rotor Helicopter

The second example regards the control of a CH-47
tandem-rotor helicopter. The example is completely analo-
gous to the previous one except that the controller is static.
The system is described by (27) with

AP =







−0.02 0.005 2.4 −32
−0.14 0.44 −1.3 −30

0 0.018 −1.6 1.2
0 0 1 0






, BP =







0.14 −0.12
0.36 −8.6
0.35 0.009
0 0






,

CP =

[

0 1 0 0
0 0 0 57.3

]

and the controller is described by

u = DC ŷ, DC =

[

−12.7177 −45.0824
63.5163 25.9144

]

The results are shown in Table (II).

TABLE II

STABILITY CONDITIONS FOR THE CH-47 HELICOPTER EXAMPLE

Necessary and

sufficient conditions
Results taken from [1]

Maximum support T

of Uniform Distribution
3.11 × 10−3 1.48 × 10−3

Maximum average λ of

Exponential Distribution
1.21 × 10−3 6.21 × 10−4

VI. CONCLUSIONS AND FUTURE WORK

The analysis of linear impulsive system with i.i.d. time

intervals between consecutive jumps was considered, mo-

tivated by the application of this class of systems in net-

worked control systems. Necessary and sufficient conditions

were provided for stochastic stability and mean exponential

stability, and the relation between the two definitions was

addressed. Natural directions for future work include con-

sidering mean square stability and analyzing the system (1)

with the introduction of a control input.
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