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Abstract— In this paper we consider the problem of load
balancing over heterogeneous networks, i.e. networks whose
nodes have different speeds. We assume that tasks are indivis-
ible and with different weights. Our goal is that of minimizing
the maximum execution time over nodes.

We provide a gossip-based distributed algorithm whose
convergence to a bounded set is guaranteed. We show that the
convergence time of the proposed algorithm relies ultimately
on the average meeting time between two agents performing a
random walk on a graph.

I. INTRODUCTION

In this paper we consider the problem of load balancing

over heterogeneous networks, i.e. networks whose nodes

have different speeds. Our goal is that of determining, using

consensus algorithms based on gossip [4], [6], [16], [18], the

solution that minimizes the maximum execution time over

nodes. It is based on the recent work by Kashyap et al.

[18] and on our previous results in [12] where homogeneous

networks have been considered.

The study of consensus networks has recently stirred much

interest in the control community with a particular focus on

the deep connection between consensus and algebraic graph

theory [9], [14], [15], [17], [20], [23], [24], [25], [26].

In several applicative domains related to consensus the

assumption that the state of each node is a continuous

variable is clearly an oversimplified assumption, and it is

necessary to explicitly take into account the discrete nature

of loads composed by indivisible tasks (discrete or quantized

consensus) [2], [3], [10], [18], [19], [22]. An interesting

application in this sense is given by load balancing over

networks [1], [5], [7], [11], [13], [21]. This is the reason why

our presentation will be carried out within this framework

even if the proposed results can also be applied to other

application domains.

In particular, in this paper we propose a general framework

for quantized consensus assuming the network is heteroge-

nous, i.e., composed by nodes of different speeds. This is an

appropriate formalism to describe several real applications,

e.g., a network consisting of a low cost cluster made by off-

the-shelf, low cost, processing units where the heterogeneity

is the result of the low cost requirement (second hand

hardware for instance). The consensus problem for this type

of nets, as far as we know, has not received much attention

in the control literature.

The objective is that of balancing the total load in the

net assigning to each node i a fraction xi of the total load
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proportional to its speed, so as to minimize the maximum

execution time. We develop a gossip algorithm that converges

to a predefined configuration under the constraint that at each

time the total load of the net remains constant.

We assume that the total load is composed by discrete

tasks with weights of arbitrary size. In such a case the opti-

mal solution does not always correspond to a configuration in

which all nodes have the same execution time. As discussed

in [12] this is not related to our particular approach but is

intrinsic in the nature of gossip, that implements at each step

a pairwise optimization, and does not always yield an optimal

solution. However, we prove that there exists a bounded set

that contains the optimal solution that is always reachable

and we study the convergence properties and the convergence

time to this bounded set.

As mentioned in the literature [12], [18], in the case of dis-

crete consensus to ensure good convergence properties it is

necessary to enrich the gossip algorithm with an appropriate

swapping rule. Whenever a balancing between two nodes is

not possible, the swap "shakes" the network configuration to

redistribute the load and allows loads composed by discrete

tasks to travel in the network, reaching a situation in which

a new balancing may occur.

As a final remark we observe that no task status exchange

nor task transfer costs have been considered here for fine

granularity load balancing. This can be reasonable in the case

of load balancing on Massively Parallel Processing (MPP)

or heterogeneous nodes with specially dedicated, high–speed

communication channels. However, assuming that no cost is

associated to transfer is an oversimplified assumption in most

of the load balancing applications where nodes should only

exchange their loads when strictly necessary. We made such

an assumption because it is necessary to introduce swaps

that allow the balancing among nodes that are not connected.

Note however that, as already discussed above, even if the

proposed procedure is presented with reference to the load

balancing application, it provides a general result in terms

of quantized consensus over heterogeneous networks.

Finally, we assume that no random perturbations occur for

the convenience of system analysis, even if we are aware that

such perturbations may be not negligible in certain realities

(e.g., network traffic, memory utilization, ect.).

The main contribution of this paper is twofold. Firstly,

starting from the results in [12], [18] it provides a gossip-

based algorithm for heterogeneous networks using the notion

of swap domains. Secondly, it provides an analysis of the

convergence properties of the proposed algorithm for some

classes of network topology.
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II. PROBLEM STATEMENT

We consider a heterogeneous network of n nodes whose

connections can be described by an undirected connected

graph G = (V, E), where V = {1, 2, . . . , n} is the set of

nodes and E ⊆ V × V is the set of edges. To each node

i ∈ V is allocated a load xi that must be processed. The

speed factor, denoted γi, represents the amount of load that

can be processed in a time unit by node i.
We assume that K indivisible tasks should be assigned to

the nodes, and an integer cost cj (j = 1, . . . , K) is associated

to each task. We define a cost vector c ∈ NK whose j-th

component is equal to cj , and n binary vectors ~yi ∈ {0, 1}K

such that

yi,j =

{
1 if the j-th task is assigned to node i
0 otherwise.

(1)

Note that with the proposed notation the load of each node

can be expressed as xi = cT ~yi.

In the following we denote γmin the smallest speed in the

network (clearly γmin > 0), and cmax the maximum cost of

tasks in the network.

The load distribution which we are looking for is the one

that minimizes the maximum execution time, starting from

any initial condition. Namely, if we define the load and speed

vectors
~x =

[
x1 x2 . . . xn

]T

γ =
[

γ1 γ2 . . . γn

]T

and Γ = diag(γ), we would like to minimize the following

objective function:

f(x) = max
i=1,...,n

xi

γi

= ‖Γ−1x‖∞ (2)

under the assumption that the total load remains constant,

namely 1
T x = 1

T x(0), where x(0) represents the initial

load configuration.

Using a centralized approach an optimal solution to this

problem can be determined solving the following integer

programming problem with binary variables:





min V = ‖cT Y Γ−1‖∞
s.t.
Y 1 = 1

yi,j ∈ {0, 1} ∀ i = 1, . . . , n; j = 1, . . . , K.

(3)

We denote Y ∗ (resp., V ∗) the optimal solution (resp., the

optimal value of the performance index) of Problem (3).

In the following section we provide a dynamic decentral-

ized balancing scheme based on gossip.

III. GOSSIP ALGORITHM

A. Swap definition

We first define a task exchange process between two adja-

cent nodes that, while not changing the value of the objective

function, modifies the load configuration. The definition we

propose here is an extension of the one in [12].

Definition 1 (Swap): Let us consider two nodes i and r
incident on the same edge. Let Ki(t) (Kr(t)) be the set of

tasks contained in node i (r) at time t. Let Ii ⊆ Ki(t) and

Ir ⊆ Kr(t) be two subsets of their tasks such that Ii ∪Ir 6=
∅.

Let us call swap the operation that moves the tasks in Ii

to r, and the tasks in Ir to i at time t + 1, reaching the

distribution

Ki(t + 1) = Ir ∪ (Ki(t) \ Ii),
Kr(t + 1) = Ii ∪ (Kr(t) \ Ir)

provided that the objective function locally defined for the

two nodes does not change, i.e.,

max





∑

j∈Ki(t+1)

(
cj

γi

)
,

∑

j∈Kr(t+1)

(
cj

γr

)


 =

max





∑

j∈Ki(t)

(
cj

γi

)
,

∑

j∈Kr(t)

(
cj

γr

)

 .

In particular, a total swap occurs if Ii = Ki(t) and Ir =
Kr(t), while a partial swap occurs if either Ii ( Ki(t) or

Ir ( Kr(t). �

We point out that there are many ways to implement a

swap. We deliberately left it undefined since the problem

of finding the optimal way to swap loads to minimize the

convergence time of dynamic load balancing is an open

problem of research.

B. A distributed algorithm

We now provide a decentralized rule to solve the opti-

mization problem presented in Section II that is based on

gossip.

We define two binary vectors ŷi and ŷr with the same

meaning as ~yi and ~yr but with a number of elements equal to

the number of tasks locally present in the nodes. We denote

K̂ir(t) = |Ki(t) ∪Kr(t)| the set of tasks present in nodes i
and r at time t. We define ĉ = c ↑K̂ir(t) the projection of c

in K̂ir(t), namely a vector whose elements are the costs of

the tasks present in nodes i and r at time t.
Algorithm 2 (Gossip Algorithm with discrete tasks):

1) Let t = 0.

2) Select an edge {i, r} at random.

3) Solve the integer programming problem (IPP):




k∗ = min k
s.t.
ĉT ŷi

γi

≤ k

ĉT (1 − ŷi)

γr

≤ k

k ∈ R+ ∪ {0}

ŷi ∈ {0, 1}K̂ir(t)

(4)

4) If k∗ < max

{
ĉT ŷi(t)

γi

,
ĉT (1 − ŷi(t))

γr

}
then let

ŷi(t + 1) = ŷi,

ŷr(t + 1) = ~1 − ŷi

else execute a swap.
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Fig. 1. The network discussed in Example 3.

t edge node 1 node 2 node 3 V (Y )
0 4, 10 1, 2, 2, 3, 3, 5, 6, 7 14.5
1 {1, 3} 3, 5, 6 1, 2, 2, 3, 4, 7, 10 14.5
2 {2, 3} 3, 5, 6 1, 2, 7 2, 3, 4, 10 14
3 {1, 3} 5, 6 1, 2, 7 2, 3, 3, 4, 10 11

TABLE I

THE RESULTS OF APPLYING ALGORITHM 2 AT THE NET IN EXAMPLE 3.

5) Let t = t + 1 and goto step 2.

�

In practice IPP (4) provides the load distribution that

minimizes the execution times at the two nodes. If the

resulting distribution is better than the previous one, the load

is assigned accordingly, otherwise a swap is executed.

Note that Algorithm 2 is based on the solution of NP-

Hard problems. Appropriate heuristics, with a polynomial

complexity in the number of tasks, can be formulated that

still guarantee the convergence to a set Ỹ that will be defined

in the following. An example of such heuristics is given in

[12] in the case of unitary speeds.

The swap allows to overcome several blocking condi-

tions: anytime the network reaches a local minimum of the

objective function the swap "shakes" the network ensuring

convergence within some precise bounds (see Theorem 7).

Example 3: Let us consider the fully connected1 net in

Fig. 1 composed by 3 nodes with speeds γ1 = γ2 = 1 and

γ3 = 2. Assume that it contains 10 tasks whose weights are

equal to c1 = 1, c2 = c3 = 2, c4 = c5 = 3, c6 = 4, c7 = 5,

c8 = 6, c9 = 7 and c10 = 10.

Assume that the initial configuration is

K1(0) = {3, 10}, K2(0) = ∅,
K3(0) = {1, 2, 4, 5, 6, 7, 8, 9}.

Using Algorithm 2, we obtain the optimal load balancing

in three steps, as summarized in Table I. In particular, here

we have pointed out the selected edges, the weights of the

tasks in each node, and the resulting values of the objective

function. �

C. Convergence properties

We now discuss the convergence properties of Algorithm 2

that are strictly related to the possibility of having swaps.

Definition 4 (Swap domain): We call "swap domain"

Gγ ⊆ G a connected subgraph induced by nodes with the

same speed. �

1A network is fully connected if there is an arc from each node to any
other one.
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Fig. 2. The network discussed in Example 5.

In practice, given a graph that can be partitioned in

a certain number of swap domains, if we perform graph

compression and merge all the nodes belonging to the same

swap domain under a single aggregate node, and repeat the

procedure for all the swap domains, we finally obtain a fully

connected (compressed) graph.

Example 5: Let us consider the network in Fig. 2 that has

seven nodes with three different speeds. This network can

be partitioned in three different subgraphs G1, G2 and G3

induced respectively by nodes {1, 2}, {3, 4} and {5, 6, 7}. In

this case each swap domain is connected to each other. �

Each swap domain identifies a set of nodes where "total

swaps" may happen. On the contrary "total swaps" between

adjacent nodes of different domains cannot occur.

It is relevant to note that the definition of "swap domain"

is embedded in the graph topology. In particular the nodes

don’t need to know in which domain they are or even that

any domain exists.

Definition 6: We call final set

Ỹ = {Y = [~y1 ~y2 · · · ~yn] |

∣∣∣∣
cT ~yi

γi

−
cT ~yr

γr

∣∣∣∣ ≤
cmax

γmin
,

∀ i, r ∈ {1, . . . , n}}
(5)

i.e., the set of configurations such that, for any couple of

nodes i, r ∈ V , the difference among their execution times

is at most equal to the ratio cmax/γmin. �

Theorem 7: Let Y (t) be the matrix that summarizes the

load balancing resulting from Algorithm 2 at the generic time

t. If each swap domain is connected to each other, it holds

lim
t→∞

Pr
(
Y (t) ∈ Ỹ

)
= 1

where Pr(Y (t) ∈ Ỹ) denotes the probability that Y (t) ∈ Ỹ .

Proof: We define a Lyapunov-like function

V (t) = [V1(t), V2(t)] (6)

consisting of two terms. The first one is equal to the objective

function of (3), namely

V1(t) = ‖cT Y (t)Γ−1‖∞. (7)

The second one is a measure of the number of nodes whose

execution time is equal to ‖cT Y (t)Γ−1‖∞, i.e.,

V2(t) =

∣∣∣∣arg max
i=1,...,n

cT ~yi(t)

γi

∣∣∣∣ . (8)
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Note that we impose a lexicographic ordering on the

performance index, i.e., V = V̄ if V1 = V̄1 and V2 = V̄2;

V < V̄ if V1 < V̄1 or V1 = V̄1 and V2 < V̄2.

The proof is based on three arguments.

(1) We first prove that V (t) is a non increasing function

of t.

This is trivially true when a swap is executed, since in

such a case V (t + 1) = V (t).
Consider the case in which the selected nodes i and r

balance their load. It holds

max

{
cT ~yi(t + 1)

γi

,
cT ~yr(t + 1)

γr

}
<

max

{
cT ~yi(t)

γi

,
cT ~yr(t)

γr

}
,

hence three different cases may happen.

(a) One of the selected nodes is the only node in the

network such that its execution time is equal to ‖cT Y Γ−1‖∞.

In such a case V1(t + 1) < V1(t) hence V (t + 1) < V (t).
(b) One of selected nodes is such that its execution time

is equal to ‖cT Y (t)Γ−1‖∞ but there exists at least one other

node in the network with the same execution time. In such

a case V1(t + 1) = V1(t) and V2(t + 1) = V2(t) − 1, hence

V (t + 1) < V (t).
(c) The execution time of both the selected nodes is

smaller than ‖cT Y (t)Γ−1‖∞. In such a case V (t + 1) =
V (t).

(2) Secondly, we observe that, if the current configuration

is outside the final set Ỹ , then there exists at least one node

whose execution time is equal to ‖cT Y (t)Γ−1‖∞ that could

balance his load with (at least) one other node if they were

incident on the same arc: this would reduce function V (t)
(see cases (a) and (b) of the previous item).

To prove this we observe that if the current configuration

is outside the final set Ỹ , then there exists (at least) one

couple of nodes i and r such that

cT ~yi(t)

γi

−
cT ~yr(t)

γr

>
cmax

min{γi, γr}
(9)

where
cT ~yi(t)

γi

is equal to the maximum execution time. If

we move a task cj ≤ cmax from node i to node r we have:

cT ~yi(t + 1) = cT ~yi(t) − cj ,

cT ~yr(t + 1) = cT ~yr(t) + cj .

Now
cT ~yi(t + 1)

γi

=
cT ~yi(t) − cj

γi

<
cT ~yi(t)

γi

(10)

and

cT ~yr(t)

γr

+
cj

γr

≤
cT ~yr(t)

γr

+
cmax

min{γi, γr}
<

cT ~yi(t)

γi

where the second inequality follows from assumption (9);

thus
cT ~yr(t + 1)

γr

=
cT ~yr(t) + cj

γr

<
cT ~yi(t)

γi

. (11)

By (10) and (11) it follows that

max

{
cT ~yi(t + 1)

γi

,
cT ~yr(t + 1)

γr

}
<

max

{
cT ~yi(t)

γi

,
cT ~yr(t)

γr

}
.

(3) Finally, we observe that being each swap domain

connected to each other, there exists a series of swaps that

lead to a configuration in which the loads of the two nodes

identified in the previous item are adjacent and the arc

between them is selected. This happens with probability 1
as t goes to infinity. �

Remark 8: Theorem 7 characterizes the convergence

properties of Algorithm 2 in terms of a finite set Ỹ . This

obviously does not imply that an optimal load balancing is

achieved.

As shown in [12] this is not a limitation of the particular

proposed algorithm. An optimal load balancing with non-

unitary tasks cannot always be achieved by greedy gossip

algorithms, that balance the load between two nodes at each

step, even on a fully connected network. In fact, to reach

consensus an optimization involving more than two nodes at

the same time may be necessary. �

We also note that Theorem 7 provides only a sufficient

condition for the convergence inside the set Ỹ . To prove that

it is not necessary we may consider an initial load distribution

that is already balanced, i.e. Y (0) ∈ Ỹ . Furthermore, due

to the random nature of the gossip algorithm, it is also

easy to formulate other examples that end in Ỹ even if the

assumptions of Theorem 7 do not hold.

Finally we also observe that no swap is necessary to obtain

a solution inside Ỹ in the case of a fully connected network,

since any node can communicate with any other node.

IV. CONVERGENCE TIME OF ALGORITHM 2

In this section we discuss the expected convergence time

of Algorithm 2, and provide an upper bound to it in the case

of two different net topologies2.

In the following we assume that only total swaps are

allowed inside each swap domain.

The convergence time is a random variable defined for a

given initial load configuration Y (0) = Y as:

Tconv(Y ) = inf {t | ∀ t′ ≥ t, Y (t′) ∈ Ỹ}.

Thus, Tconv(Y ) represents the number of steps required at

a certain execution of Algorithm 2 to reach the convergence

set Ỹ starting from a given tasks distribution.

Let us firstly introduce the following notation.

• Nmax is the maximum number of improvements of

V (t) defined as in (6), needed by any realization of

Algorithm 2 to reach the set Ỹ , starting from a given

configuration.

• Tmax is the maximum average time between two con-

secutive improvements of V (t) defined as in (6), needed

2The approach we use for this evaluation is inspired by the methodology
used by Kashyap et al. in [18].
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by any realization of Algorithm 2, starting from a given

configuration.

Using the previous notation, it follows that the expected

convergence time is

E [Tconv(Y )] ≤ Nmax · Tmax. (12)

The following proposition provides an upper bound on

Nmax that is independent from the net topology.

Proposition 9: Let us consider a net with n nodes and let

γ be the corresponding speed vector. Let x(0) be the vector

representative of the initial amount of load at nodes. It holds:

Nmax ≤ (n − 1) · ̺ · (M − m) (13)

where
M = ‖Γ−1x(0)‖∞,

m =

n∑

i=1

xi(0)

n∑

i=1

γi

=
1

T x(0)

1T Γ1
,

̺ = max
{i,r}∈E

mcm{γi, γr},

(14)

and mcm denotes the minimum common multiple.

Proof: By definition the maximum number of improve-

ments of V1 = f needed by any realization of Algorithm 2

to reach the set Ỹ is smaller or equal to the ratio between

the global improvement of f needed before reaching the

convergence set Ỹ starting from x(0), and its minimum

admissible improvement.

By Step 5 of Algorithm 2 the load distribution is updated

if and only if leads to an improvement of the objective

function, otherwise a swap is executed. Thus, the largest

value of f(x) occurs at the initial configuration and is equal

to M = f(x(0)) = ‖Γ−1x(0)‖∞.

The minimum value of f(x) corresponds to the case of

perfect load balancing, that in general is not achievable in

the discrete case. However, a lower estimate of it is given

by its optimal value in the case of infinitely divisible tasks,

namely by f(x∗) where x∗ = αγ and α =
1x(0)

1T Γ1
. Thus, if

we define m = f(x∗) = α, then for any load balancing x it

holds m ≤ f(x).
We also observe that the minimum load exchange is

equal to 1 since all tasks have an integer cost. Now, if we

consider the generic edge {i, r}, we know that the minimum

improvement of f that we may obtain when balancing this

edge is equal to 1/mcm{γi, γr}. As a consequence the

minimum improvement of f at a generic step of Algorithm 2

is equal to 1/̺ = 1/ max{i,r}∈E mcm{γi, γr}, where E is

the set of edges.

Thus, we may conclude that the largest number of im-

provements of f before reaching the convergence set Ỹ
starting from x(0) is at most equal to ̺ · (M − m).

Finally, in the worst case n−1 consecutive balancing may

occur before having an improvement of f , namely n − 1
consecutive reductions of V2 may occur before having a

reduction of V1 = f . In particular, this case may happen

if n − 1 nodes have the same execution time that is equal

to the maximum one. In this case, a first balancing may

occur between the only "different" node and any of the other

ones. Then, a new balancing may occur between any of the

remaining n − 2 nodes with the maximum execution time

and one with a smaller execution time, and so on. �

We now focus on Tmax. Evaluating Tmax, and hence the

average convergence time (12) of Algorithm 2, is in general

a difficult issue because it is strictly related to the particular

topology of the net.

In the following we consider two cases: fully connected

networks and generalized ring topology nets. In both cases

the computation is carried out using Markov chains. It is

not easy to generalize such analytical results to arbitrary net

topologies. However, similar approaches based on Markov

chains can always be used to evaluate numerically an upper

bound on Tmax for a particular net example.

A. Fully connected networks

Proposition 10: Let us consider a fully connected net-

work, and let n be the number of nodes.

It holds

Tmax =
n(n − 1)

2
. (15)

Proof: The maximum average time between two consec-

utive balancing occurs when only one balancing is possible.

Thus, if N is the number of arcs of the net, then the

probability of selecting the only arc whose incident nodes

may balance their load is equal to p = 1/N , while the

average time needed to select it is equal to N . Since the

network is fully connected, if n is the number of nodes,

the number of arcs is N = n(n − 1)/2 and so Tmax =
n(n − 1)/2. �

Proposition 11: If a net is fully connected, the average

convergence time of Algorithm 2 is

E [Tconv(Y )] ≤ ̺ · (M − m) ·
n(n − 1)2

2
= O(n3).

Proof: Follows from equation (12) and Propositions 9

and 10. �

B. Generalized ring topology

Definition 12 (Generalized ring topology): A graph G =
(E, V ) has a generalized ring topology if it satisfies the

following assumptions.

• It is composed by s rings, each one with k nodes. The

generic j-th ring Rj is a graph Rj = (Vj , Ej) with

Vj = {1, . . . , k} and

Ej = {{i, r} ∈ E | r = i+1, ∀i = 1, . . . , k−1}∪{k, 1}.

• The same speed is associated to all nodes in the

same ring, while nodes of different rings have different

speeds. Thus each ring defines a different swap domain.

• Let (i, j), with i = 1, . . . , k and j = 1, . . . , s, be the i-
th node of ring Rj . Let Σi = {(i, j) ∈ V, j = 1, . . . , s}
be the set of the nodes of index i in all rings. All nodes

in Σi are fully connected, i.e., for all i = 1, . . . , k, there
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(1,3) 
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Fig. 3. A net with a generalized ring topology where s = 3 and k = 4.

exists an edge in E that connects each node in Σi with

any other node in Σi.

�

An example of a net with a generalized ring topology is

reported in Fig. 3: here s = 3 and k = 4.

Note that such a topology well fits with our problem for

two main reasons. Firstly, it is scalable both in the number

of nodes in the rings and in the number of rings (namely in

the number of swap domains). Secondly, the diameter of the

net, namely the maximum distance among nodes that may

balance, increases with the number of nodes in the ring.

Proposition 13: Let us consider a net with a generalized

ring topology. Let s be the number of rings and n = k · s be

the total number of nodes in the net.

If only total swaps are executed3, then it holds

Tmax ≤
n2(s + 1)

32 · s
·
(n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16) .

(16)

Proof: We preliminary observe that, due to the gossip

nature of Algorithm 2 and to the random rule used to select

the edges, the problem of evaluating an upper bound on Tmax

can be formulated as the problem of finding the average

meeting time of two agents walking on a graph executing

a random walk4. In fact, the average meeting time of the

two agents may be thought as the average time of selecting

an edge whose incident nodes may balance their load. Note

that in general more than two edges may balance their load,

thus assuming that only two agents are walking on the

graph provides us an upper bound on the value of Tmax.

In particular, the worst case in terms of meeting time occurs

when the two agents are on different rings.

In the following we compute the average meeting time

using discrete Markov chains. For the sake of simplicity, we

assume that the number of nodes k in each ring is even5.

We call distance between two agents in nodes (i, j) and

(i′, j′), di,i′ = 1 + min{|i − i′|, k − |i − i′|}, namely the

number of arcs in the shortest path connecting node i with

node i′. In simple words the above distance is equal to the

distance between the two agents, computed as if they were in

3In this paper we will always assume that only total swaps are executed.
When partial swaps are also allowed all the bounds on the convergence time
change. We do not provide a bound for such a case.

4This problem has been extensively studied in different fields [8].
5The case of rings with an odd number of nodes k is upper bounded by

the case of rings with k + 1 nodes.

the same ring, plus 1. This is consistent with the assumption

that, in a generalized ring topology net, any node with a given

index in a certain ring is connected to all the other nodes

having the same index in different rings. Therefore nodes

with a unitary distance are nodes within the same section Σ.

Under the assumption that k is even, the maximum distance

between the two agents is equal to D = k/2 + 1.

The Markov chain relative to a net with an even value of k
is shown in Fig. 4, thus it is a particular birth-death process.

Each node (apart from the first one, named A) is character-

ized by an integer number that denotes the distance between

the two nodes. Let us now discuss the weight of the arcs in

the Markov chain.

— The weight of the arcs going from nodes i to i + 1,

and viceversa, for i = 2, . . . , D − 1 is equal to 2/N where

N = ks(s + 1)/2 is the number of arcs6. This follows from

the fact that if a net has N arcs the probability of selecting

a generic edge is equal to 1/N ; moreover, if the distance

between the two agents is i = 1, . . . , D − 1, two are the

edges whose selection leads to an increasing or decreasing

of their distance.

The same reasoning explains the weight of the arc going

from D − 1 to D and the weight of the arc going from 2 to

1.

— If the distance between the two agents is unitary (the

state of the Markov chain is 1) two different cases may occur:

either we select an edge that leads to a distance equal to

2, or the edge incident on the nodes containing the agents

is selected. The first case occurs with a probability equal to

4/N ; the second case occurs with a probability equal to 1/N
and leads to the absorbing state A.

— Now, assume that the distance between the agents is

equal to D. In such a case the selection of 4 different arcs

may lead to a decreasing of their distance. Therefore the arc

of the Markov chain going from node D to node D− 1 has

a weight equal to 4/N .

— Finally, the weights of all self-loops are due to the fact

that the sum of the weights of arcs exiting a node is equal

to 1 in a discrete Markov chain.

Given the Markov chain in Fig. 4 it is easy to compute

the average hitting time of the absorbing state from any

admissible distance. This can be done solving analytically

the following linear system of equations:

(I − P ′) τ = 1 (17)

where I is the D-dimensional identity matrix; P ′ has been

obtained by the probability matrix P of the Markov chain

in Fig. 4 removing the row and the column relative to the

absorbing state7; τ is the D-dimensional vector of unknowns:

its i-th component τ(i) is equal to the hitting time of the

absorbing state starting from an initial distance equal to i,

6The number of arcs of a ring topology net is equal to k times the number
of arcs of each section Σ, plus k times the number of arcs of each ring.
Being each Σ a fully connected graph with s nodes, its number of arcs is
equal to s(s − 1)/2. Therefore, N = ks(s + 1)/2 + ks = ks(s + 1)/2.

7It obviously holds that the hitting time of the absorbing state is null
from the absorbing state itself.
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 A 1 2 3 D 

1-4/N 1-4/N 1-4/N 1-5/N    1 

1/N 2/N 2/N 2/N 4/N 

2/N 2/N 2/N 4/N 

Fig. 4. The Markov chain associated to a generalized ring topology net
with an even value of k.

for i = 1, . . . , D; finally, 1 is the D-dimensional column

vector of ones. We found out that the worst case in terms of

hitting time occurs when the two agents are at their maximum

distance, i.e., for i = D. In particular it is

τ(D) =
n2(s + 1)

32 · s
·
(n

s
+ 16

)
=

k2s(s + 1)

32
· (k + 16)

where the last equality follows from the fact that n = ks.

This proves the statement being Tmax ≤ τ(D). �

Proposition 14: If a net has a generalized ring topology

and only total swaps are executed, then the average conver-

gence time of Algorithm 2 in terms of the number of nodes

n is

E [Tconv(Y )]

≤ ̺ · (M − m) ·
n2(s + 1)

32 · s
·
(n

s
+ 16

)
· (n − 1) = O(n4)

or, in terms of the net parameters k and s

E [Tconv(Y )]

≤ ̺ · (M − m) ·
k2s(s + 1)

32
· (k + 16) · (k s − 1)

= O(k4s3).

Proof: Follows from equation (12) and Propositions 9

and 13. �

V. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of determining an

optimal load balancing over networks with nodes of different

speed. The case of finite tasks with different costs has been

considered. A solution based on gossip has been proposed

and convergence properties have been examined in detail.

Then, we studied the convergence time of the proposed

quantized gossip algorithm. In particular we examined two

different net topologies, namely fully connected and gener-

alized ring topologies.

In this paper we assumed that swaps are executed ran-

domly. One of our future lines of research in this topic will

be that of determining appropriate (deterministic) rules to

execute swaps that improve the convergence properties of

Algorithm 2 and provide a stop criterion when the optimality

set is reached.
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[18] A. Kashyap, T. Başar, and R. Srikant. Quantized consensus. Automat-

ica, 43,7:1192–1203, 2007.
[19] A. Nedic, A. Olshevsky, A. Ozdaglar, and J.N. Tsitsiklis. On

distributed averaging algorithms and quantization effects. In LIDS
Technical Report 2778, MIT, Lab. for Information and Decision
Systems, 2007.

[20] R. Olfati-Saber and R. M. Murray. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Trans. on

Automatic Control, 49:1520–1533, 2004.
[21] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov

chains and the analysis of iterative load-balancing schemes. In Proc.
of the 39th Annual Symposium on Foundations of Computer Science,
pages 694–703, Palo Alto, CA, USA, November 1998.

[22] M.G. Rabbat. On spatial gossip algorithms for distributed averaging.
In Proc. of the IEEE Statistical Signal Processing Workshop, Madison,
Wisconsins, US, 2007.

[23] W. Ren and R.W. Beard. Consensus seeking in multiagent systems
under dynamically changing interaction topologies. IEEE Trans. on
Automatic Control, 50 (5):655–661, 2005.

[24] W. Ren and R.W. Beard. Distributed consensus in multi-vehicle

cooperative control. Theory and applications. Springer Verlag, 2008.
[25] G. Xie and L. Wang. Consensus control for networks of dynamic

agents via active switching topology. In Advances in Natual Computa-

tion, Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2005.

[26] G. Xie and L. Wang. Consensus control for a class of networks
of dynamic agents. International Journal of Robust and Nonlinear

Control, 17 (10-11):941–959, 2006.

1993


