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Abstract— We consider the problem of dynamic sensor
activation for event diagnosis in partially-observed discrete-
event systems. The observing agent is able to activate sensors
dynamically during the evolution of the system. The sensor
activation policy is the function that describes which sensors
are to be activated after an observed string of events. The
sensor activation policy must achieve the requirements of
the property of diagnosability previously defined for discrete
event systems. A policy is said to be minimal if there is no
other policy, with strictly less sensor activation, that achieves
diagnosability. For the purpose of computing minimal policies,
we define language partition methods that lead to efficient
computational algorithms. Specifically, we define “window-
based” language partitions that lead to scalable algorithms
for computing minimal policies. By increasing the size of the
window in this class of partitions, one is able to refine the
solution space over which minimal solutions are computed.

Index Terms— discrete event systems, supervisory control,
sensor activation, event diagnosis

I. INTRODUCTION

We are interested in the problem of event diagnosis in

partially-observed discrete-event systems. The objective is

to perform model-based inferencing to detect the occurrence

of significant unobservable events such as faults. On-line

diagnosis is driven by the observed sequences of events. In

many applications, these observations are limited or costly.

Such limitations include, for example, availability of sensors

and their life span, battery power, as well as computation

and communication resources. Therefore, there is significant

motivation to use sensors economically in system diagnosis.

Relevant work in the discrete event formalism started

with the sensor selection problem. Under the constraint that

diagnosability or observability be preserved, the objective of

sensor selection is to minimize the set of events that need

to be observed; see, e.g., [1]–[3]. However, by assuming a

given sensor is always activated or never activated for all oc-

currences of an event, the sensor selection problem excludes

the possibility for the observing agent to decide dynamically

when to activate or deactivate the various sensors.

The motivation for turning sensors on and off dynamically

is that sensors are often operated in an adversarial environ-

ment where available resources are limited or costly. For

example, in a unmanned aerial vehicle system, making a

measurement may cost hours of flight; in a radar system,

emitting radar signals can be dangerous since they can be
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used to detect the position of the radar station. Moreover, the

life span of a sensor is often dependent on its measurement

frequency. In several applications, security concerns may

motivate the minimization of communications with sensing

devices. These considerations have motivated recent research

on the problem of dynamic sensor activation for discrete

event systems [4], [5]. The objective in these works is to

minimize some cost function related to the measurement

frequency of event occurrences so that the property of

diagnosability is preserved. There has also been related

work on the problem of minimization of the frequency of

communication of event occurrences in distributed discrete

event systems with multiple agents [6], [7].

The approaches in [4], [5] have high computational cost.

We adopt a different approach to dynamic sensor activation

where the problem is formulated in a manner where a

trade-off between computational cost and refinement of the

solution space is captured. In recent work reported in [8],

polynomial algorithms (in the state space representation of

the system) for calculating minimal sensor activation policies

are presented for achieving the properties of observability

and coobservability in controlled discrete event systems. In

this paper, our focus is the property of diagnosability. A

significant difference with the work in [8] is the introduction

in this paper of the notions of language partitions and

window partitions for characterizing the search space over

which optimal sensor activation policies are to be searched.

This leads to the formulation of scalable algorithms for min-

imizing sensor activation while ensuring that diagnosability

of the system is preserved. In [8], the solution space is

fixed by the transition structure of the automaton modeling

the system. Here, the use of window partitions permits the

relationship between the size of the solution space and the

size of the problem to be treated as an input to the algorithms.

So the algorithms will be adjustable upon different hardware

and software environments, and upon the size of the problem.

Running our algorithms over a finer solution space can result

in a better solution, but at the price of more computational

effort. For fixed computational resources, this technique

ensures a desirable balance between high solution accuracy

and fast processing time.

We borrow some features from the communication prob-

lems and sensor activation problem described in [6]–[8]

for the problem setting. The notion of feasibility is used

to capture the consistency between the agent’s observation

of the system and its decisions on sensor activation. The

optimality criterion is logical: a sensor activation policy is

optimal (minimal) if any less sensor activations during the

dynamic evolution of the system renders a correct solution
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incorrect, i.e., diagnosability is lost.

This paper is organized as follows. Section II presents

the precise description of our sensor activation model and

its relation to the property of diagnosability. In Section III,

we specialize the problem to the computation of sensor

activation policies over a finite search space delimited by

a partition of the language model of the system. We first

present a general class of language partitions and then

specialize this class to so-called window partitions based

on automata representations of the language model. Sec-

tion IV presents our algorithms for computing minimal

sensor activation policies over a given window partition in

order to achieve diagnosability; illustrative examples of these

algorithms are given in Section V. Section VI concludes the

paper. Due to space limitations, all proofs have been omitted;

they are available from the authors.

II. SENSOR ACTIVATION FOR DIAGNOSABILITY

A. Sensor Activation Model

We first present a general language-based model for sensor

activation during the evolution of the system. We assume

that the system behavior is described by the prefix-closed

language L over event set E . Let E = Euo∪Eo, where Euo is

the subset of E whose occurrences cannot be observed and

Eo is the subset of E whose occurrences can be observed.

However, an occurrence of event e ∈ Eo is observed only

if the sensor for event e is activated at the time of that

occurrence. Formally, the set of observable events whose

sensors are activated at a given time in the evolution of the

system is described by the sensor activation mapping

ω : L→ 2Eo (1)

Given two sensor activation mappings ω ′ and ω ′′, ω ′ ⊆ ω ′′

means that, for all s ∈ L, ω ′(s) ⊆ ω ′′(s), while ω ′ ⊂ ω ′′

means that ω ′ ⊆ ω ′′ and there exists s ∈ L, such that

ω ′(s) ⊂ ω ′′(s). ω = ω ′ ∪ ω ′′ means that, for all s ∈ L,

ω(s) = ω ′(s)∪ω ′′(s).
Given ω , we use induction to define the information

mapping θ ω : L→ E∗o as follows. For the empty string ε ,

θ ω(ε) = ε, (2)

and for all se ∈ L,e ∈ E ,

θ ω(se) =

{

θ ω(s)e if e ∈ ω(s)
θ ω(s) otherwise

(3)

In words, after the occurrence of s, the next event e is known

to the agent iff the agent activates the sensor for e after the

occurrence of s.

Given language L and sensor activation policy ω , let

θ ω be the corresponding information mapping. The set of

confusable string pairs in L, denoted by Tcon f (ω), is defined

as

Tcon f (ω) = {(s,t) ∈ L×L : θ ω (s) = θ ω(t)} (4)

We note here that for all s ∈ L, we have (s,s) ∈ Tcon f (ω).
It is important to clarify that not all arbitrary sensor acti-

vation policies ω will be “feasible” based on the information

available to the agent. To guarantee feasibility, it is required

that any two sequences of events that are indistinguishable

to the agent must be followed by the same activation policy

for the same event. Namely, activation policy ω must be

“compatible” with the information mapping θ ω that is built

from it. Formally, ω is said to be feasible if

(∀ e ∈ E)(∀ se,s′e ∈ L) θ ω(s) = θ ω(s′)
⇒ [e ∈ ω(s)⇔ e ∈ ω(s′)]

(5)

In principle, to check feasibility, we first calculate θ ω from

ω , and then check if (5) holds.

For the prefix-closed language L′ ⊆ L, we define ω |L′ =
ω ∩ (L′ × 2Eo), where ω ∩ (L′ × 2Eo) means that we are

restricting ω to the smaller domain of the prefix-closed

sublanguage L′. And, correspondingly, we define information

mapping θ |L′ = θ ∩ (L′ × E∗o ), where θ ∩ (L′× E∗o ) means

that we are restricting θ to the smaller domain of the prefix-

closed sublanguage L′.

ω |L′ is said to be feasible if

(∀ e ∈ E)(∀ se,s′e ∈ L′) θ ω |L′(s) = θ ω |L′(s
′)

⇒ [e ∈ ω |L′(s)⇔ e ∈ ω |L′(s
′)]

(6)

Clearly, if ω is feasible, then ω |L′ is also feasible.

Feasibility is used to capture the interdependence of the

agent’s observation of the system and the sensor activation

policies. That is, in general, the determination of when to

activate sensors depends on the “observation” of the system,

and at the same time it also affects the “observation” of the

system. An example that illustrates such interdependency is

given as follows.

Example 1: The system is modeled by the regular expres-

sion L = PC[(e + ε)(ae)∗] where the notation PC denotes

the prefix-closure operation. (We use PC instead of the

more common overbar notation to avoid confusion with later

notations.) Let E = Eo = {a,e}. The agent can freely choose

to deactivate the sensor for any one but exactly one event

occurrence for either event a or event e, and it is easy to

verify that these policies are feasible. Now, suppose the agent

initially deactivates the sensor for event e (after empty string

ε). Consequently, the agent cannot distinguish strings ε and

e. By feasibility, such ambiguity precludes the agent from

using different policies for the occurrence of event a after

strings (ae)n and e(ae)n, as well as event e after strings

(ae)na and e(ae)na, where n ∈ N. Moreover, if the agent

further deactivates the sensor for the occurrence of event a

after string ε , then, by feasibility, it has to deactivate sensors

for all occurrences of all events. �

B. Diagnosability with Information Mappings

In the context of sensor activation, the agent no longer

observes an occurrence of an observable event unless the

corresponding sensor is activated when such an event hap-

pens. However, whenever a sensor activation policy is given,

the agent’s observation of the system is captured by a

corresponding information mapping, as stated in Section II-

A. We extend the standard definition of diagnosability of

discrete event systems to account for information mappings.
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Let E f ⊆ Euo denote the set of “fault” events that must

be diagnosed. The objective is to identify the occurrence, if

any, the fault events, while tracking the observable strings

generated by the system. For such purpose, the set of

fault events is partitioned into disjoint sets corresponding

to different fault types:

E f = E f 1∪̇ . . . ∪̇E f l (7)

We denote this partition by Π f . Hereafter, the meaning of “a

fault of type Fi has occurred” is that some event in the set

E f i has occurred.

Hereafter, s∈Ψ(E f i) denotes that the last event of a string

s ∈ L is a fault event of type fi. That is,

Ψ(E f i) = {sσ f ∈ L : σ f ∈ E f i} (8)

L/s denotes the postlanguage of L after s, i.e.

L/s = {t ∈ E∗ : st ∈ L} (9)

With a slight abuse of notation, we write E f i ∈ s to denote

that PC(s)∩Ψ(E f i) 6= /0. A language L is live if

((∀ s ∈ L,n ∈ N) ∃ t ∈ E∗)‖t‖= n∧ st ∈ L (10)

where ‖t‖ denotes the length of t and N is the set of nonneg-

ative integers. We assume that L is live when diagnosability

is considered.

In the context of a given information mapping θ : E∗→E∗o ,

the definition of diagnosability in [9] is restated as follows,

where θ−1 is the inverse mapping of θ defined in the usual

manner.

A prefix-closed and live language L is said to be diag-

nosable with respect to θ and Π f on E f if the following

holds:

(∀ i ∈Π f )(∃ ki ∈ N)(∀ s ∈Ψ(E f i))
(∀ t ∈ L/s)[‖t‖ ≥ ki⇒ D]

(11)

where the diagnosability condition D is

(∀µ ∈ L)µ ∈ θ−1θ (st)⇒ E f i ∈ µ (12)

A prefix-closed and live language L is said to be diagnos-

able with respect to ω if it is diagnosable with respect to

θ ω .

The definition of diagnosability says that, for any string

in the system which contains any type of faulty events, the

diagnostic engine can distinguish that string from strings

without that type of faulty events within finite delay.

C. Monotonicity of Diagnosability in Sensor Activation

In this section, we formally analyze our problem of

minimization of sensor activation.

The first theorem establishes the monotonicity of feasible

sensor activation policies.

Theorem 1: Given a prefix-closed language L with two

sensor activation policies ω ′ and ω ′′, if ω ′ and ω ′′ are both

feasible, i.e., they both satisfy (5), then

ω ′ ⊇ ω ′′⇒Tcon f (ω
′)⊆Tcon f (ω

′′) (13)

The second theorem discusses the union of two feasible

policies, which is a direct result of the monotonicity property.

Theorem 2: Consider a prefix-closed language L and two

feasible sensor activation policies ω ′ and ω ′′ for it. Then,

ω = ω ′∪ω ′′ is also feasible.

The next theorem states that monotonicity holds for diag-

nosability under feasible sensor activation policies.

Theorem 3: Suppose Eo and E f i, i = 1, . . . , l are given. Let

sensor activation policies ω ′ and ω ′′ be feasible and ω ′⊆ω ′′.
Then, L diagnosable under ω ′ implies that L is diagnosable

under ω ′′.

III. LANGUAGE PARTITIONS FOR SENSOR ACTIVATION

To construct a finite solution space for the sensor activation

problem, we present a method to partition a language into

a finite number of subsets. A general language partition

is presented first, followed by a window partition for an

automaton model as a specific case.

A. General Language Partitions

The definitions of ω and θ in Section II-A are language-

based. In such a model, for a system containing loops,

the domain of our sensor activation policy is infinite. It is

desirable to limit the richness of the sensor activation policy

to a finite domain. For doing so, we partition the language L

into a finite number of disjoint subsets, with the requirement

that all strings within the same subset have the same last

event. Then, we restrict the richness of possible sensor

activation policies by requiring that all strings within each

one of these subsets must have the same sensor activation

decision regarding their common last event. We call such a

partition a language-based partition (LBP).

Formally, let ∆ be a finite set whose elements are subsets

of language L. Then, ∆ is an LBP if its elements δ j, j =
0,1, . . . ,m, satisfy all four properties below.

1) δ0 = {ε} and /0 6∈ ∆,

2) (∀ δ j ∈ ∆\ {δ0})s,t ∈ δ j⇒ [s = s′e∧ t = t ′e] for some

s′,t ′ ∈ L and e ∈ E ,

3) ∪m
j=0δ j = L, and

4) (∀ δi,δ j ∈ ∆)[δi 6= δ j⇒ δi∩δ j = /0].

Its corresponding application to a sensor activation policy is

by restricting the sensor activation policy as

(∀ δi ∈ ∆)se,s′e ∈ δi⇒ [e ∈ ω(s)⇔ e ∈ ω(s′)] (14)

where e ∈ E is determined by δi. We say that a sensor

activation policy is ∆-implementable if it satisfies (14).

The choice of ∆ is a trade-off between the degree of

refinement in capturing the system dynamics and the com-

putational resources needed for solving problems. With the

restriction of LBP ∆, a ∆-implementable sensor activation

policy, denoted by Ω, can be represented as a subset of ∆ as

(∀ δi ∈ ∆(\{δ0}))δi ∈Ω⇔ [(∀ se ∈ δi) e ∈ ω(s)] (15)

where e ∈ E is determined by δi. In other words, Ω⊆ (∆ \
{δ0}) is a set that collects all δi, i = 1, . . . ,m, in which the

sensor is activated for the occurrences of the last event of all

strings.
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Given language L and sensor activation policy Ω ⊂ ∆,

let θ be the corresponding information mapping. The set

of confusable pairs of elements of ∆, denoted by Tcon f (Ω),
is defined as

Tcon f (Ω) = {(δi,δ j) ∈ ∆×∆ : [(∃ se ∈ δi, s′e′ ∈ δ j)
θ (s) = θ (s′)]∨ [δi = δ0∧ [(∃ s′e′ ∈ δ j)θ (s′) = ε]]
∨[δ j = δ0∧ [(∃ s′e′ ∈ δi)θ (s′) = ε]]∨δi = δ j = δ0}

(16)

We note here that for all δi ∈ ∆, (δi,δi) ∈ Tcon f (Ω).
We define the “unobservable reach” of δk ∈ ∆ under Ω,

denoted by UR(δk,Ω), to be

UR(δk,Ω) = {δl ∈ ∆ :

((∃ se,ste′ ∈ L) se ∈ δk,ste
′ ∈ δl) θ (s) = θ (st)}

(17)

In words, UR(δk,Ω) is a subset of ∆ whose elements δl

contain a string, say ste′ for some e′ ∈E , that extends another

string s with se ∈ δk such that, after s, t is unobservable. In

the case where e = e′, by (5) for feasibility, we need to have

the same sensor activation policy for e after strings s and

s′ = st. Then, by (15) for the constraints pertaining to ∆-

implementability, we can characterize the feasibility of Ω as

follows. Ω is feasible iff

(∀ δi,δ j ∈ ∆)(∃ se ∈ δi∧ s′e ∈ δ j)
[θ (s) = θ (s′)⇒ [δi ∈Ω⇔ δ j ∈Ω]]

(18)

For any given ∆-implementable sensor activation policy

with respect to LBP ∆, the following theorem states that,

among all of its feasible and ∆-implementable subpolicies,

there is a policy which is a global maximum.

Theorem 4: Consider language L with LBP ∆, and con-

sider sensor activation policy Ω ⊆ ∆. Then, there exists a

maximum feasible sensor activation policy Ω↑F ⊆ ∆ such

that Ω↑F ⊆ Ω, i.e., for all feasible Ω′ with Ω′ ⊆ Ω, we

have Ω′ ⊆ Ω↑F . Suppose that Ωi, i = 1, . . . ,k, represent

all feasible sensor activation subpolicies of Ω. Then, we

have Ω↑F = ∪k
i=1Ωi. Furthermore, its corresponding set of

confusable string pairs is Tcon f (Ω
↑F) = ∩k

i=1Tcon f (Ωi).

B. Window Partitions for Automata Models

The deterministic finite-state automaton model of an un-

timed discrete event system is described as

G = (X ,E, f ,x0) (19)

where X is the finite set of states, E is the finite set of events,

f : X ×E → X is the transition function where f (x,e) = y

means that there is a transition labelled by event e from state

x to state y, and x0 is the initial state. f is extended to X×
E∗ in the usual way: for se ∈L (G) and e ∈ E , f (x0,se) =
f ( f (x0,s),e). L (G) is used to denote the language generated

by G.

By taking advantage of the state representation provided

by automata, we present a new method to partition language

L (G), resulting in window partitions that will be denoted

by ∆w hereafter. The name “window” comes from the fact

that, for any element δi ∈ ∆w, whether the string s ∈ δi or

not is determined by both the state reached before the last

event in s and the sequence of the last n event occurrences

of s.

Let n be a given positive integer. Then, for each δi ∈ ∆w

that contains a string se whose length is greater than or equal

to n, all strings in L (G) that visit state f (x0,s) before the

occurrence of the last event and have the same sequence of

the last n events, are collected in δi. If δi ∈ ∆w contains a

string whose length is smaller than n, then δi is a singleton.

We describe mathematically window partitions as follows.

Let M be a positive integer depending on the system G.

The set ∆w = {δi ⊆ L (G) : i = 0, . . . ,M} is called an n-

Window-Partition of L (G) if the following is true:

1) For all u ∈L (G), if ‖u‖< n then {u} ∈ ∆w.

2) For all u,v ∈L (G) with ‖u‖ ≥ n and ‖v‖ ≥ n, there

exists δi ∈ ∆w, s.t. u,v ∈ δi, iff there exist e ∈ E and

s,s′,t ∈ E∗ with ‖t‖= n−1, s.t. u = ste, v = s′te, and

f (x0,st) = f (x0,s
′t).

Lemma 1: If ∆w is an n-Window-Partition, then ∆w is a

Language-Based-Partition (LBP).

In an n-Window-Partition, for all e ∈ E , x ∈ X , and t ∈ E∗

with s,st ∈L (G) and ‖t‖= n−1, (t,x,e) is used to denote

{ste ∈L (G) : f (x0,st) = x}. When n = 1, (x,e) is used to

denote (ε,x,e).
Example 2: Consider G shown in Fig. 1. Then, for L (G),

the 2-Window-Partition is

∆w = {{ε},{ f},{d},{e},(b,0, f ),(b,0,d),(b,0,e),(d,5,c),
( f ,1,a),(c,1,a),(e,2,a),(a,3,e),(e,4,b),(a,4,b)}

b

0

a

2

43

1

e

a

ef
d

5c

Fig. 1. Example for Window-Partition.

It can be shown that window partitions generalize the

(state-based) implementability conditions used in [6], [8].

Such a generalization allows to tradeoff between the amount

of computation and the achievable quality of the final solu-

tion. Therefore, for fixed computational resources, this tech-

nique can ensure a desirable balance between high solution

accuracy and fast processing time.

IV. OPTIMIZATION OF SENSOR ACTIVATION

A. Problem Statement

The problem formulation for dynamic sensor activation

with an agent observing/diagnosing the system is as follows.

Given a language L together with an LBP ∆, a specification

of sets of faulty events E f = E f 1∪̇ . . . ∪̇E f l , and a set of

observable events Eo ⊆ E for the agent, suppose that under

Ω = {δi ∈ ∆ : (∃ se ∈ δi) e ∈ Eo}, the full-activation policy,

the system is diagnosable.

Goal: Find a sensor activation policy Ω∗ ⊂ ∆ such that:

1) Ω∗ is feasible and, under Ω∗, the system is diagnosable.

2) Ω∗ is minimal, i.e., there is no other feasible Ω′ ⊂Ω∗

under which the system is diagnosable.
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The goal is to calculate any sensor activation policy that is

a minimal solution. We do not address the selection of one

minimal solution over another. This is usually application-

dependent and it can be addressed in a second stage, after the

above problem has been solved. In this regard, it is impera-

tive to develop effective algorithms for calculating minimal

solutions. This is the topic of the next two subsections.

B. Main Algorithm for Minimization of Sensor Activation

We present Algorithm MIN-SEN-DIAG for finding a mini-

mal sensor activation policy Ω∗ that preserves diagnosability.

For the sake of generality, we present this algorithm in the

context of LBPs.

Algorithm MIN-SEN-DIAG:

INPUT: Language L, partition ∆, set of observable events Eo,

and sets of faulty events E f i, i = 1, . . . , l.
Step 0: Initialization. Set Ω = {δk ∈∆ : (∃ se∈ L) se∈ δk∧e∈
Eo} and set D = /0.

Step 1: Pick a δk ∈ ∆ with δk ∈Ω but δk 6∈ D. Let Ω̃←Ω\
{δk}. Then, calculate the maximum feasible sensor activation

policy Ω↑F of all feasible subsets of Ω̃.

Step 2: If (∆ \Ω↑F)∩D = /0, test diagnosability for policy

Ω↑F . If (∆\Ω↑F)∩D 6= /0 or testing diagnosability fails, set

D← D∪{δk}. Otherwise, set Ω←Ω↑F .

Step 3: If Ω 6= D, go to Step 1. Otherwise set Ω∗←Ω and

stop.

OUTPUT: Minimal sensor activation policy Ω∗. �

Theorem 5: The output of Algorithm MIN-SEN-DIAG is a

solution Ω∗ of the minimization of sensor activation problem

stated in Section IV-A.

The number of iterations of Algorithm MIN-SEN-DIAG

is upper bounded by ‖∆‖. However, the overall complexity

for the algorithm is also dependent on its two subroutines

regarding: (i) the verification of diagnosability and (ii) the

calculation of the maximum feasible sensor activation policy.

It is at this point that we specialize from LPBs to the case

of window partitions obtained from automata models.

We have solved the problem of verification of diagnos-

ability with respect to information mappings and developed

algorithms in the case of window partitions of the language.

These algorithms are of polynomial complexity in the size of

the window partitions. Since these results are of independent

interest, and also due to lack of space here, they will be

presented elsewhere. In the remainder of this paper, we solve

the problem of the second subroutine mentioned above. We

present an algorithm for calculating the maximum feasible

sensor activation policy in the case of a window partition.

C. Maximum Feasible Subpolicy for Window Partitions

Consider language L and an LBP ∆. For any ∆-

implementable sensor activation policy Ω⊆ ∆, by Theorem

4, there always exists a maximum feasible subpolicy Ω↑F of

Ω such that any feasible subpolicy of Ω is a subpolicy of

Ω↑F . However, the calculation of Ω↑F depends on how the

language L is partitioned. This is certainly a design issue that

depends on the modelling formalism chosen for language L.

The guideline is that a reasonable class of partitions should

balance the computational effort for solving the problem with

the desirable degree of refinement of the final solution. For

this purpose, we focus on the case of window partitions.

For window partitions, the maximum feasible sensor ac-

tivation policy Ω↑F of all feasible policies that are subsets

of policy Ω can be found by Algorithm ↑F-WINDOW as

follows.

Algorithm ↑F-WINDOW :

INPUT: Automaton G, sensor activation policy Ω, and win-

dow partition ∆w.

Step 0: Initially, set Ω̂←Ω and T ← {(δi,δi) ∈ ∆w×∆w}.
Step 1: If T and Ω̂ keep on growing, recursively set

T ← T ∪{(δi,δ j) ∈ ∆w×∆w :

(∃ (δk,δl) ∈ T ) δi ∈UR(δk,Ω̂)∧δ j ∈UR(δl,Ω̂)}
(20)

T ← T ∪{(δi,δ j) ∈ ∆w×∆w : (∃(δk,δl) ∈ T )(∃se ∈ δk,
te ∈ δl)(∃see′,tee′′ ∈L (G))[see′ ∈ δi∧ tee′′ ∈ δ j]}

(21)

Ω̂← Ω̂\ {δk ∈ Ω̂ : (∃ δl ∈ ∆w \ Ω̂)
(∃ se,te ∈L (G))[(δl ,δk) ∈ T ] ∧ [se ∈ δl ∧ te ∈ δk]}

(22)

Repeat this step until Ω̂ and T have converged.

Step 2: Then, set Ω↑F ← Ω̂ and Tcon f (Ω
↑F)← T .

OUTPUT: The maximum feasible sensor activation policy

Ω↑F of all feasible subpolicies of policy Ω and the corre-

sponding Tcon f (Ω
↑F). �

To justify Algorithm ↑F-WINDOW we need to characterize

the relationship between feasibility and Tcon f .

Lemma 2: Ω is feasible if, for arbitrary δk,δl ∈ ∆ with

some se ∈ δk and te ∈ δl for some e ∈ E ,

(δk,δl) ∈ Tcon f (Ω)⇒ (δk ∈Ω⇔ δl ∈Ω) (23)

Theorem 6: For a given system G and fixed positive

integer n, let Ω be a sensor activation policy corresponding to

an n-window partition. Then, the output Ω↑F of Algorithm

↑F-WINDOW satisfies Theorem 4, i.e., it is the maximum

feasible sensor activation policy of all feasible and ∆w-

implementable policies Ω′ that satisfy Ω′ ⊆Ω. Furthermore,

the output Tcon f (Ω
↑F) is the set of pairs of confusable

elements in ∆w under Ω↑F .

The number of iterations of Algorithm ↑F-WINDOW is

upper bounded by the size of Tcon f plus the size of Ω↑F . It

is further upper bounded by ‖∆w×∆w‖+‖∆w‖.

V. ILLUSTRATIVE EXAMPLES

In this section, we illustrate how Algorithm MIN-SEN-

DIAG and Algorithm ↑F-WINDOW proceed by examples.

We consider for simplicity the case of 1-Window-Partition

in Examples 3 and 4. Then, by expressing the solution of

Example 4 in 2-Window-Partition and reapplying Algorithm

D-MACHINE to it, we show that a refinement of solution

space improves the solution quality in Example 5. In this

case, the set of transitions of G is the space over which

optimization is performed. Instead of writing down all Ω’s

and D’s all the time during the procedure, we use square

brackets to show that a transition is removed (i.e., the sensor

for that transition is not activated) and use parentheses to
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show that a transition cannot be removed (i.e., the sensor for

that transition must be activated). The subscripts outside the

square brackets and parentheses are used to mark the order

in which the transitions are removed. Therefore, suppose we

are removing the nth transition; the current D is the set of all

transitions within parentheses that have a subscript less than

n, and the current Ω is set of all the transition of G minus all

transitions within square brackets that have a subscript less

than n.

Notation: For (i, j) ∈ X×X , (i, j) ∈ T means that, for all

e,a ∈ E and for all (i,e),( j,a) such that f (i,e) and f ( j,a)
is defined, ((i,e),( j,a)) ∈ T .

Example 3: This example illustrates Algorithm ↑F-

WINDOW. Suppose the system is given by Fig. 1 as for

Example 2. We consider 1-Window-Partition with Ω =
{(0,e),(1,a),(2,a),(5,c)}. By Step 0, set Ω̂←Ω, and T =
{(x,x) : x ∈ X}.
Recursively apply Step 1 as follows. By (20), set

T = {(0,1),(0,5),(1,5),(3,4),(3,0),(3,1),(3,5),(4,0),(4,1),
(4,5)}∪{(x,x) : x ∈ X}

By (21), set T ← T ∪ {(2,4)}. Since (3,0) ∈ T, by

(22), we have Ω̂ ← Ω̂ \ {(0,e)}. By (20), T ← T ∪
{(0,2),(1,2),(2,5),(3,2),(4,2)}. T does not change this

time by applying (21). By (22), Ω̂ does not change. Calcu-

lations are exhausted for Step 1. Go to Step 2 and return

Ω↑F ← Ω̂. Finally, Ω↑F = {(1,a),(2,a),(5,c)}, and T =
{(0,1),(0,5),(1,2),(1,5),(2,5),(3,4),(3,0),(3,1),(3,5),
(4,0),(4,1),(4,5),(0,2),(3,2),(4,2)}∪{(x,x) : x ∈ X}. �

Example 4: This example illustrates Algorithm MIN-

SEN-DIAG. Suppose the system is given by Fig. 1 as for

Example 2. We consider 1-Window-Partition first. Let f be

the only faulty event and the only unobservable event. The

results of the following iterations are also shown in Fig. 2.

(b)3

0

(a)5

2

43

1

[e]2

[a]7

(e)4
f

[d]1

5
(c)6

Fig. 2. Illustrative example for Algorithm MIN-SEN-DIAG.

By Step 0, set Ω = {(0,d),(0,e),(5,c),(1,a),(2,a),(3,e),
(4,b)} and D = /0. Iterate Step 1 to Step 2 for transitions

(0,d) and (3,e) in this order, respectively. All of them are

removed. We have Ω←Ω\ {(0,d),(3,e)}.
Try to remove (4,b). By Step 1, set Ω̃ ← Ω \ {(4,b)}.
By the calculation of Example 3, corresponding Ω↑F =
{(1,a),(2,a),(5,c)}. Go to Step 2. The system is not di-

agnosable under such Ω↑F . Set D← D∪{(4,b)}.
A removal of (0,e) will force us to remove (1,a). By Step 2,

the system becomes not diagnosable. Set D← D∪{(0,e)}.
A removal of (1,a) will force us to remove (0,e). But (0,e)
is already in D. Set D← D∪ {(1,a)}. By similar reason,

set D← D∪{(5,c)}. Iterate Step 1 to Step 3 for transition

(2,a). We can find out that (2,a) is removable.

By Step 3, we have Ω = {(0,e),(5,c),(1,a),(4,b)}= D.
Set Ω∗←Ω. We have Ω∗ = {(0,e),(5,c),(1,a),(4,b)}. �

Example 5: In the 2-Window-Partition case, the policy Ω
equivalent to the minimal solution Ω∗ of 1-Window-Partition

from Example 4 is

Ω = {{e},(b,0,e),(d,5,c),(c,1,a),( f ,1,a),(e,4,b),(a,4,b)}

Running Algorithm MIN-SEN-DIAG starting with this Ω, we

can find that (c,1,a) is removable and a minimal policy for

2-Window-Partition is

Ω∗ = {{e},(b,0,e),(d,5,c),( f ,1,a),(e,4,b),(a,4,b)}

The solution is improved by refining the solution space. �

VI. CONCLUSION

We formulated the problem of dynamic sensor activa-

tion in the context of event diagnosis. Algorithms were

developed for the optimization of sensor activation policies

that preserve the property of diagnosability. We defined the

class of window partitions where we were able to trade

off between the amount of computations and the achievable

quality of the final solution. The problem of how to apply the

results in this paper to obtain a global optimal solution for

some (quantitative) cost function over dynamic observations

remains open.
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