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Abstract— This paper derives state-space models for mul-
tirate multi-input sampled-data systems. Based on the corre-
sponding transfer function models, an auxiliary model based
recursive least squares algorithm is presented to identify the
model parameters of the multirate systems from the multirate
input-output data. Further, convergence properties of the pro-
posed algorithm are analyzed. An illustrative example is given.

I. INTRODUCTION

THE conventional sampled-data control systems assume

that the input updating period is equal to the output

sampling period. However, in many industrial processes this

is not such a case due to various limitations such as delays

in sensors and laboratory analysis [1], [2]. For example, for

a polymer reactor, the composition, density or molecular

weight distribution measurements are typically obtained after

several minutes, while the manipulated variables can be

adjusted at relatively fast rates [3]. This leads to a dual-

rate/multirate system. A natural question is how to establish

the mathematical models and to estimate the model parame-

ters for such a multirate system from multirate input-output

data, which is the focus of this work.

In the area of multirate system identification, much work

has been published. For example, Lu and Fisher used the

projection and least-squares algorithms to estimate the pa-

rameters and intersample outputs for dual-rate deterministic

systems [4], [5], Ding et al used the polynomial transfor-

mation technique to deal with the identification problem

for dual-rate stochastic systems [6] and [7] discussed the

parameter estimation of multirate multi-input multi-output

systems also using the polynomial transformation techniques.

By means of the lifting technique, Li et al [8] and Wang

et al [9] used the available system states and the multirate

input-output data to estimate parameters of the lifted state-

space models for multirate systems. Also, Ding and Chen

presented the combined parameter and state estimation al-

gorithms of the lifted state-space models for general dual-

rate systems based on the hierarchical identification principle
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[10]. However, most identification algorithms for multirate

systems reported in the literatures are based on multirate

single-input single-output systems. Recently, Shi et al gave a

crosstalk identification algorithm for multirate xDSL systems

[11] and Yu and Shi solved the l2− l∞ filter problem for lifted

multirate systems [12].

The auxiliary model identification principle [13] has been

used to solve the identification problem of nonlinear systems

[14] and dual-rate systems [15], [16]. This paper considers

identification problems for multirate multi-input sampled-

data systems also using the auxiliary model identification

principle.

The paper is organized as follows. Section II discusses

the problem formulation related to a multirate multi-input

system. Section III derives a discrete-time state-space model

of the multirate multi-input system. Section IV discusses the

auxiliary model based recursive least squares identification

algorithm for multirate multi-input systems to identify pa-

rameters of the transfer function model derived from the

state-space model. Section V analyzes the convergence of

the parameter estimation given by the proposed algorithm.

Section VI provides an illustrative example. Finally, conclud-

ing remarks are given in Section VII.

II. PROBLEM FORMULATION

The focus of this paper is a multirate multi-input system

– as depicted in Figure 1, where Pc is a multi-input single-
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Fig. 1. The multirate multi-input sampled-data system

output continuous-time process with additive disturbance

v(t); the jth input updating period is Tj := p jh, the input

u j(t) to Pc is produced by a zero-order hold HTj
with period

Tj, processing a discrete-time signal u j(kTj); w(t) is the true

output of Pc but unmeasurable; the continuous-time output

signal y(t) is sampled by a sampler ST with period T := qh,

yielding a discrete-time signal y(kT ). For convenience, let

p1, p2, · · · , pr be positive integers and q be the least common

multiple of (p1, p2, · · · , pr) [8]. Here, h is called the base

period and T the frame period [10].
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Using the properties of the zero-order holds, for j =
1,2, · · · ,r,

u j(t) = u j(kTj), kTj 6 t < (k +1)Tj. (1)

For such multirate systems, the input-output data available

are

{u1(kT1),u2(kT2), · · · ,ur(kTr),y(kT ) : k = 1,2, · · ·}

which are referred to as the multirate measurement input-

output data. Especially, for r = 2-input system, if T1 = 2 s

and T2 = 3 s, the input-output data available are

{u1(0),u1(2),u1(4),u1(6), · · · ,u2(0),u2(3),u2(6), · · · ,

y(0),y(6),y(12), · · ·}.

The system depicted in Figure 1 is a linear periodically

time-varying due to different updating and sampling periods

[8], [10], [17]–[19]. For such a time-varying multirate multi-

input system, our objectives are as follows:

• First, to establish the mathematical model from discrete-

time input signals [u1(kT1), u2(kT2), · · ·, ur(kTr)] with

different periods to the output y(kT ), that is, to find the

mapping relationship (state-space model) between the

available input and output data.

• Second, by using the auxiliary model (or reference

model) identification methods, to propose an algorithm

to estimate the parameters of the transfer function model

obtained from the state-space model.

• Third, to prove that the parameter estimation error

consistently converges to zero under the persistent ex-

citation condition.

III. THE STATE-SPACE MODELS OF MULTIRATE SYSTEMS

Let us introduce some notations first. The symbol I stands

for an identity matrix of appropriate sizes; 1n×m is an n×m

matrix whose elements are 1, 1n := 1n×1; the superscript

T denotes the matrix transpose; the norm of the matrix

X is defined by ‖X‖2 = tr[XX T] = tr[X TX ]; let X be a

square matrix, the symbols λmax[X ] and λmin[X ] represent

the maximum and minimum eigenvalues of X , respectively;

|X | = det[X ] denotes the matrix determinant; E denotes the

expectation operator; If f (k) → 0 and g(k) → 0 as k → ∞,

f (k) = O(g(k)) expresses that there exist constants δ1 > 0

and k0 such that

∣

∣

∣

f (k)
g(k)

∣

∣

∣
6 δ1 for k > k0 and f (k) = o(g(k))

represents
f (k)
g(k) → 0 as k → ∞.

Assume that the continuous-time process Pc has the fol-

lowing state-space model,






ẋ(t) = Acx(t)+
r

∑
j=1

Bc ju j(t),

y(t) = Cx(t)+ v(t),
(2)

where x(t) ∈ R
n is the state vector, u j(t) ( j = 1,2, · · · ,r) is

the jth channel control input, y(t)∈R
1 the output, v(t)∈R

1

a stochastic noise with the zero mean and Ac, Bc j and C are

the matrices of appropriate dimensions.

In order to derive the state-space model of the multirate

multi-input system for the available multirate data, it is

necessary to discretize Pc via the zero-order hold method

with the sampling period T . This is the key point of this

work.

Theorem 1: For the multirate multi-input system in Fig-

ure 1, let q be the least common multiple of (p1, p2, · · · , pr),
ν j := q/p j, j = 1,2, · · · ,r. Then, the state-space model of

the multirate multi-input system can be expressed as






x(kT +T ) = Ax(kT )+
r

∑
j=1

ν j

∑
i=1

B jiu j(kT +(i−1)Tj),

y(kT ) = Cx(kT )+ v(kT ),

(3)

where

x(kT ) := x(t)|t=kT , u j(kT + iTj) := u j(t)|t=kT+iTj
,

y(kT ) := y(t)|t=kT , v(kT ) := v(t)|t=kT ,

and

Ah := eAch ∈ R
n×n, A := eAcqh,

Bp j
:=

∫ Tj

0
eActdtBc j ∈ R

n,

B ji := A
q−ip j

h Bp j
∈ R

n, j = 1,2, · · · ,r, i = 1,2, · · · ,ν j.

Proof The state solution of (2) is given by

x(t) = eAc(t−t0) +
r

∑
j=1

∫ t

t0

eAc(t−τ)Bc ju j(τ)dτ,

where t0 is the initial time and t the current time.

In order to discretize Pc with the sampling period T , let

t0 = kT and t = kT +T in the above formula, we have

x(kT +T ) = eAcT x(kT )+
r

∑
j=1

∫ kT+T

kT
eAc(kT+T−τ)Bc ju j(τ)dτ. (4)

For j = 1,2, · · · ,r and i = 1,2, · · · ,ν j, using the properties of

the zero holds in (1) gives

u j(t) = u j(kT +(i−1)Tj), kT +(i−1)Tj 6 t < kT + iTj.

Thus

x(kT +T ) = eAcqhx(kT )+
r

∑
j=1

[ ν j

∑
i=1

∫ kT+iTj

kT+(i−1)Tj

eAc(kT+T−τ)dτBc ju j(kT +(i−1)Tj)

]

= Ax(kT )+
r

∑
j=1

[ ν j

∑
i=1

eAc(T−iTj)
∫ 0

−Tj

e−Act

dtBc ju j(kT +(i−1)Tj)

]

= Ax(kT )+
r

∑
j=1

[ ν j

∑
i=1

eAc(T−iTj)
∫ Tj

0
eAct

dtBc ju j(kT +(i−1)Tj)

]

= Ax(kT )+
r

∑
j=1

[ ν j

∑
i=1

A
q−ip j

h Bp j
u j(kT +(i−1)Tj)

]

= Ax(kT )+
r

∑
j=1

ν j

∑
i=1

B jiu j(kT − (i−1)Tj). (5)
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Letting t = kT in (2) gives the discretized output equation

y(kT ) = Cx(kT )+ v(kT ). (6)

Combining (5) with (6) leads to the results of Theorem 1.

¤

IV. ALGORITHM DESCRIPTION

This section discusses the auxiliary model based recursive

least squares algorithm of the transfer function model corre-

sponding state-space model in (3) of the multirate system.

Let z−1 be a unit delay operator: z−1y(kT ) = y(kT −T ).
From (3), we get

y(kT ) =
r

∑
j=1

ν j

∑
i=1

C(zI −A)−1B jiu j(kT +(i−1)Tj)

+v(kT )

=
r

∑
j=1

ν j

∑
i=1

C adj[zI −A]B ji

det[zI −A]
u j(kT +(i−1)Tj)

+v(kT )

=
r

∑
j=1

ν j

∑
i=1

z−nC adj[zI −A]B ji

z−n det[zI −A]
u j(kT +(i−1)Tj)

+v(kT )

=:
1

α(z)

r

∑
j=1

ν j

∑
i=1

β ji(z)u j(kT +(i−1)Tj)

+v(kT ) (7)

with α(z) and β ji(z) being polynomials in z−1 of degree n

and both being represented as

α(z) = z−n det[zI −A]

=: 1+α1z−1 + · · ·+αnz−n,

αi ∈ R
1, i = 1,2, · · · ,n;

β ji(z) = z−nC adj[zI −A]B ji

=: β ji(1)z−1 + · · ·+β ji(n)z−n,

β ji(l) ∈ R
1, j = 1,2, · · · ,r, i = 1,2, · · · ,ν j,

l = 1,2, · · · ,n.

The goal here is to estimate the parameters αi and β ji(l)
of the multirate model in (7) from multirate data {u1(kT1),
u2(kT2), · · ·, ur(kTr), y(kT ): k = 0,1,2, · · ·}.

Referring to Figure 1, define the unmeasurable inner

variable (also called the unknown noise-free output or true

output),

w(kT ) :=
1

α(z)

r

∑
j=1

ν j

∑
i=1

β ji(z)u j(kT +(i−1)Tj),

or

α(z)w(kT ) =
r

∑
j=1

ν j

∑
i=1

β ji(z)u j(kT +(i−1)Tj). (8)

Then from (7), we have

y(kT ) = w(kT )+ v(kT ). (9)

Define the parameter vector θ and the information vector

ϕ0(kT ) as

θ := [α1, · · · ,αn,β11(1), · · ·β11(n), · · · ,

β1ν1
(1), · · · ,β1ν1

(n), · · · ,βr1(1), · · · ,βr1(n),

· · · ,βrνr(1), · · · ,βrνr(n)]T ∈ R
n0 ,

ϕ0(kT ) := [ψT

0(kT ),ψT

u(kT )]T ∈ R
n0 ,

n0 := n+n(ν1 +ν2 + · · ·+νr),

ψ0(kT ) := [−w(kT −T ), · · · , w(kT −nT )]T ∈ R
n,

ψu(kT ) := [u1(kT −T ), · · · ,u1(kT −nT ), · · · ,

u1(kT +(ν1 −1)Tj −T ), · · · ,

u1(kT +(ν1 −1)Tj −nT ), · · · ,

ur(kT −T ), · · · ,ur(kT −nT ), · · · ,

ur(kT +(νr −1)Tr −T ), · · · ,

ur(kT +(νr −1)Tr −nT )]T ∈ R
n(ν1+ν2+···+νr).

Equations (8) and (9) can be equivalently written as

w(kT ) = ϕT

0(kT )θ , y(kT ) = ϕT

0(kT )θ + v(kT ). (10)

Notice that ϕ0(kT ) contains unknown inner variables w(kT −
iT ) (i = 1,2, · · · ,n), so the standard recursive least squares

(RLS) algorithm cannot be applied directly to obtain the

estimate of the parameter vector θ in (10).

Based on the auxiliary model identification principle in

[15], the unknown variables w(kT − iT ) in ϕ0(kT ) (i.e.,

in ψ0(kT )) are replaced with the outputs wa(kT − iT ) of

an auxiliary model, then the estimation problem of θ can

be solved using wa(kT ) instead of w(kT ). Here, wa(kT ) is

referred to as the estimate of w(kT ). Define

ϕ(kT ) := [ψT(kT ),ψT

u(kT )]T,

ψ(kT ) := [−wa(kT −T ), · · · ,−wa(kT −nT )]T.

Let θ̂(kT ) represent the estimate of θ at time kT . We

replace ϕ0(kT ) with ϕ(kT ) and can obtain the following

auxiliary model based recursive least squares (AM-RLS)

algorithm for estimating the parameter vector θ for multirate

system in (10) from the multirate data, which is abbreviated

as the MR-AM-RLS algorithm,

θ̂(kT ) = θ̂(kT −T )+P(kT )ϕ(kT )[y(kT )

−ϕT(kT )θ̂(kT −T )], (11)

P−1(kT ) = P−1(kT −T )+ϕ(kT )ϕT(kT ), (12)

ϕ(kT ) = [ψT(kT ),ψT

u(kT )]T, (13)

ψ(kT ) = [−wa(kT −T ), · · · ,−wa(kT −nT )]T, (14)

ψu(kT ) = [uT

1(kT ), · · · ,uT

1(kT −nT ),

· · · ,uT

r(kT ), · · · ,uT

r(kT −nT )]T, (15)

wa(kT ) = ϕT(kT )θ̂(kT ) (auxiliary model). (16)

P(kT ) is the covariance matrix of the parameter estimation

error.

To initialize the MR-AM-RLS algorithm, the initial value

P(0) is generally taken to be P(0) = p01n0×n0
with p0

normally a large positive number (select p0 = 106), and the
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initial value θ̂(0) a zero vector or a small real vector, e.g.,

θ̂(0) = 1n0
/p0.

Note that the MR-AM-RLS algorithm can be implemented

on-line.

V. CONVERGENCE OF THE PARAMETER ESTIMATION

In this section, the main results of this paper are proved by

formulating a martingale process and by using the martingale

convergence theorem (Lemma D.5.3. in [20]).

Assume that {v(kT ),Fk} is a martingale sequence defined

on a probability space {Ω,Fk,P}, where {Fk} is the σ alge-

bra sequence generated by v(kT ), i.e., Fk = σ(v(kT ),v(kT −
T ),v(kT −2T ), · · ·) [20]. The noise sequence {v(kT )} satis-

fies

(A1) E [v(kT )|Fk−1] = 0, a.s.,

(A2) E
[

‖v(kT )‖2|Fk−1

]

6 σ2
v , a.s.

Define

P−1
0 (kT ) :=

k

∑
i=1

ϕ0(iT )ϕT

0(iT )+
1

p0
I,

r(kT ) := tr[P−1(kT )], r0(kT ) := tr[P−1
0 (kT )].

Define the parameter estimation error vector θ̃(kT ) and a

nonnegative definite function V (kT ) as

θ̃(kT ) := θ̂(kT )−θ , (17)

V (kT ) := θ̃
T

(kT )P−1(kT )θ̃(kT ) (18)

Lemma 1: Assume that there exist functions f (k) > 0 and

g(k) > 0 such that lim
k→∞

f (k) = f0 < ∞,
∞

∑
k=1

g(k) is divergent

and
∞

∑
k=1

f (k)g(k) is convergent. Then f0 = 0.

The proof of Lemma 1 is straightforward and hence

omitted.

Lemma 2: For the MR-AM-RLS algorithm in (11)–(16),

the following inequalities hold:

∞

∑
i=1

ϕT(iT )P(iT )ϕ(iT )

{ln |P−1(kT )|}c
< ∞, a.s., for any c > 1.

The proof can be done in a similar way in [6] and is

omitted.

Lemma 3: For the system in (10) and the MR-AM-RLS

algorithm in (11)-(16), assume that (A1) and (A2) hold and

(A3) H(z) =
1

α(z)
−

1

2
is strictly positive real.

Then the following inequality holds,

E[V (kT )+S(kT )|Fk−1] 6 V (kT −T )+S(kT −T )

+2ϕT(kT )P(kT )ϕ(kT )σ2
v ,

where

S(kT ) := 2
k

∑
i=1

ũ(kT )ỹ(kT ), ũ(kT ) := −ϕT(kT )θ̃(kT ),

ỹ(kT ) :=
1

2
ϕT(kT )θ̃(kT )+ [y(kT )−wa(kT )− v(kT )].

Here, (A3) guarantees that S(kT ) > 0.

The assumptions in (A1) and (A2) imply that v(kT ) is a

uncorrelated noise sequence with zero mean, time-varying

but a bounded variance. The following Theorem 2 show

that the convergent rate of the MR-AM-RLS parameter

estimation is the ratio of the logarithm of the maximum

eigenvalue to the minimum eigenvalue of the covariance

matrix P−1
0 (kT ).

Theorem 2: For the system in (10) and the MR-AM-RLS

algorithm in (11)-(16), suppose that (A1)-(A3) and

(A4) [lnr0(kT )]c = o(λmin[P
−1
0 (kT )]) for any c > 1,

α(z) is stable (i.e. all zeros of α(z) are inside the unit circle).

Then the parameter estimation error satisfies

‖θ̂(kT )−θ‖2 = O

(

{lnλmax[P
−1
0 (kT )]}c

λmin[P
−1
0 (kT )]

)

for any c > 1.

Assume that there exist positive constants c0, c1, c2 and

k0 such that for k > k0, the following generalized persistent

excitation condition (unbounded condition number) holds

(C1) c1I 6
1

k

k

∑
i=1

ϕ0(iT )ϕT

0(iT ) 6 c2kc0 I, a.s. (19)

Then for any c > 1, we have

‖θ̃(kT )‖2 = O

(

[lnk]c

k

)

→ 0, a.s.

This shows that the estimation error ‖θ̃(kT )‖ converges to

zero as k goes to infinity.

VI. EXAMPLE

Example Consider a 3-input single-output system with

three-input updating periods T1 = 2h, T2 = 3h and T3 = h

and the output sampling period T = 6h, take h = 2, the

corresponding transfer model is taken to be

y(kT ) =
1

α(z)
[β11(z)u1(kT )+β12(z)u1(kT +T1)

+β13(z)u1(kT +2T1)+β21(z)u2(kT )

+β22(z)u2(kT +T2)+β31(z)u3(kT )

+β32(z)u3(kT +T3)+β33(z)u3(kT +2T3)

+β34(z)u3(kT +3T3)+β35(z)u3(kT +4T3)

+β36(z)u3(kT +5T3)]+ v(kT ),
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where

α(z) = 1+α1z−1 +α2z−2 +α3z−3

= 1+0.600z−1 +0.400z−2 +0.300z−3,

β11(z) = β11(1)z−1 +β11(2)z−2 +β11(3)z−3

=−0.200z−1 +0.500z−2 −0.400z−3,

β12(z) = β12(1)z−1 +β12(2)z−2 +β12(3)z−3

=−0.650z−1 +0.600z−2 +0.100z−3,

β13(z) = β13(1)z−1 +β13(2)z−2 +β13(3)z−3

= 1.000z−1 −0.500z−2 +0.400z−3,

β21(z) = β21(1)z−1 +β21(2)z−2β21(3)z−3

=−0.400z−1 +0.800z−2 −0.200z−3,

β22(z) = β22(1)z−1 +β22(2)z−2 +β22(3)z−3

= 0.700z−1 +0.200z−2 +0.300z−3,

β31(z) = β31(1)z−1 +β31(2)z−2 +β31(3)z−3

= 1.000z−1 −0.900z−2 +0.200z−3,

β32(z) = β32(1)z−1 +β32(2)z−2 +β32(3)z−3

= 1.000z−1 −0.750z−2 +0.125z−3,

β33(z) = β33(1)z−1 +β33(2)z−2 +β33(3)z−3

= 1.200z−1 −1.080z−2 +0.240z−3,

β34(z) = β34(1)z−1 +β34(2)z−2 +β34(3)z−3

= 1.200z−1 −0.780z−2 +0.120z−3,

β35(z) = β35(1)z−1 +β35(2)z−2 +β35(3)z−3

= 0.800z−1 −0.880z−2 +0.200z−3,

β36(z) = β36(1)z−1 +β36(2)z−2 +β36(3)z−3

= 0.600z−1 −0.700z−2 +0.400z−3, .

Then the identification model can be expressed as

w(kT ) = ϕT

0(kT )θ , y(kT ) = w(kT )+ v(kT ),

where

θ = [α1,α2,α3,β11(1),β11(2),β11(3),

β12(1),β12(2),β12(3),β13(1),β13(2),β13(3),

β21(1),β21(2),β21(3),β22(1),β22(2),β22(3),

β31(1),β31(2),β31(3),β32(1),β32(2),β32(3)

β33(1),β33(2),β33(3),β34(1),β34(2),β34(3),

β35(1),β35(2),β35(3),β36(1),β36(2),β36(3)]T

= [0.600,0.400,0.300,−0.200,0.500,−0.400,

−0.650,0.600,0.100,1.000,−0.500,0.400,

−0.400,0.800,−0.200,0.700,0.200,0.300,

1.000,−0.900,0.200,1.000,−0.750,0.125,

1.200,−1.080,0.240,1.200,0.780,0.120,

0.800,−0.880,0.200,0.600,−0.700,0.400]T,

ϕ0(kT ) = [−w(kT −T ),−w(kT −2T ),−w(kT −3T ),

u1(kT −T ),u1(kT −2T ),u1(kT −3T )

u1(kT +T1 −T ),u1(kT +T1 −2T ),

u1(kT +T1 −3T ),u1(kT +2T1 −T ),

u1(kT +2T1 −2T ),u1(kT +2T1 −3T ),

u2(kT −T ),u2(kT −2T ),u2(kT −3T ),

u2(kT +T2 −T ),u2(kT +T2 −2T ),

u2(kT +T2 −3T ),u3(kT −T ),u3(kT −2T ),

u3(kT −3T ),u3(kT +T3 −T ),

u3(kT +T3 −2T ),u3(kT +T3 −3T ),

u3(kT +2T3 −T ),u3(kT +2T3 −2T ),

u3(kT +2T3 −3T ),u3(kT +3T3 −T ),

u3(kT +3T3 −2T ),u3(kT +3T3 −3T ),

u3(kT +4T3 −T ),u3(kT +4T3 −2T ),

u3(kT +4T3 −3T ),u3(kT +5T3 −T ),

u3(kT +5T3 −2T ),u3(kT +5T3 −3T )]T.

The inputs {u1(kT1)}, {u2(kT2)} and {u3(kT3)} are taken as

uncorrelated persistent excitation signal sequences with zero

mean and unit variances, {v(kT )} as a white noise sequence

with zero mean and variances σ2 = 0.102. Applying the MR-

AM-RLS algorithm to estimate the parameters of this system,

the parameter estimates and their errors with different noise

variances are shown in Table I and the parameter estimation

errors δ := ‖θ̂(k)−θ‖/‖θ‖ versus k are shown in Figure 2.

TABLE I

THE PARAMETERS AND THEIR ESTIMATES (σ2 = 0.102)

k 2000 3000 4000 5000 True values

α1 0.59064 0.58818 0.59262 0.59493 0.60000
α2 0.39931 0.39644 0.39789 0.39848 0.40000
α3 0.30487 0.30330 0.30198 0.30179 0.30000

β11(1) -0.19898 -0.19841 -0.19791 -0.19877 -0.20000
β11(2) 0.50297 0.50312 0.50009 0.49983 0.50000
β11(3) -0.40172 -0.40262 -0.39989 -0.39985 -0.40000
β12(1) -0.64184 -0.64186 -0.64477 -0.64779 -0.65000
β12(2) 0.61093 0.61267 0.60790 0.60724 0.60000
β12(3) 0.08422 0.08560 0.09156 0.09446 0.10000
β13(1) 0.99335 0.99108 0.99323 0.99509 1.00000
β13(2) -0.50696 -0.51159 -0.50810 -0.50530 -0.50000
β13(3) 0.40967 0.41117 0.40503 0.40309 0.40000
β21(1) -0.39902 -0.40161 -0.40015 -0.40174 -0.40000
β21(2) 0.81099 0.81161 0.80724 0.80464 0.80000
β21(3) -0.20072 -0.20330 -0.20158 -0.19968 -0.20000
β22(1) 0.70476 0.70407 0.70305 0.70230 0.70000
β22(2) 0.19982 0.19719 0.19812 0.19968 0.20000
β22(3) 0.29450 0.29641 0.29823 0.29758 0.30000
β31(1) 0.99737 0.99508 0.99650 0.99780 1.00000
β31(2) -0.90722 -0.90927 -0.90505 -0.90375 -0.90000
β31(3) 0.21178 0.21229 0.20770 0.20616 0.20000
β32(1) 0.99885 0.99920 0.99996 1.00055 1.00000
β32(2) -0.76305 -0.76497 -0.75834 -0.75482 -0.75000
β32(3) 0.14226 0.13890 0.13414 0.13198 0.12500
β33(1) 1.20561 1.20748 1.20611 1.20480 1.20000
β33(2) -1.09781 -1.10057 -1.09229 -1.08900 -1.08000
β33(3) 0.25458 0.25389 0.24895 0.24637 0.24000
β34(1) 1.19517 1.19757 1.19846 1.19775 1.20000
β34(2) -0.80143 -0.80418 -0.79638 -0.79370 -0.78000
β34(3) 0.12734 0.12791 0.12484 0.12267 0.12000
β35(1) 0.79868 0.79929 0.79714 0.79743 0.80000
β35(2) -0.89246 -0.89369 -0.89024 -0.88831 -0.88000
β35(3) 0.21041 0.21226 0.20882 0.20580 0.20000
β36(1) 0.59680 0.60080 0.60179 0.60149 0.60000
β36(2) -0.71227 -0.71322 -0.70787 -0.70643 -0.70000
β36(3) 0.41039 0.41212 0.40573 0.40255 0.40000

δ (%) 1.44891 1.57504 1.00093 0.74490
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Fig. 2. The parameter estimation errors δ versus k

From Table I and Figure 2, it is clear that the parameter

estimation errors by the MR-AM-RLS algorithm become

(generally) smaller and smaller and go to zero with k increas-

ing. This shows that the proposed algorithm can effectively

estimate the parameters of the multirate systems.

VII. CONCLUSION

The state-space model of a multirate multi-input system

is derived by discretizing a continuous-time process with the

frame sampling period and the MR-AM-RLS algorithm is

presented to estimate the model parameters for such multirate

systems and convergence performance of the proposed algo-

rithm is analyzed. Since a multi-input, multi-output system

can be decomposed many multi-input, single-output systems,

the identification method in this paper can be extended to

identify multirate multi-input, multi-output systems.
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