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Abstract— This paper addresses the problem of Multiple
Model Adaptive Estimation (MMAE) for discrete-time, linear,
time-invariant MIMO plants with parameter uncertainty and
unmodeled dynamics. Model identification is analyzed in a
deterministic setting by adopting a Minimum Energy selection
criterion. The MMAE system relies on a finite number of local
observers, each designed using a selected model (SM) from the
original set of possibly infinite plant models. Results akin to
those previously obtained in a stochastic setting are derived
in a far simpler manner, in a deterministic framework. We
show, under suitable distinguishability conditions, that the SM
identified is the one that corresponds to the observer with
smallest output prediction error energy. We also develop a
procedure to analyze the behavior of MMAE when the true
plant is not one of the SMs. This leads to an algorithm that
computes, for each SM, the set of equivalently identified plants,
that is, the set of plants that will be identified as that particular
SM. The impact of unmodeled dynamics on model identification
is discussed. Simulation results with a model of a motor coupled
to a load via an elastic shaft illustrate the performance of the
methodology derived.

I. INTRODUCTION

The design of a single state-observer for a given plant

requires exact knowledge of the plant parameters for superior

performance. In practice, parameter uncertainty will impact

the performance and robustness of the observer. In fact,

incorrect modeling in the observer design may lead to large

estimation errors or even error divergence [1]. To cope

with this problem, adaptive estimation algorithms (where the

adaptation is with respect to the uncertainty in the plant

parameters) have been proposed in the literature. Among

these, the Multiple Model Adaptive Estimation (MMAE)

algorithm has received special attention [2]–[5]. However, the

use of multiple models for Adaptive Estimation goes back

to the 1960s and 1970s when several authors including [2],

[3], studied Kalman filter based estimators.

In the stochastic version of the MMAE [2]–[4], a separate

discrete-time Kalman filter (KF) is developed for each “se-

lected model” (SM) defined by an hypothesized parameter

vector in the unknown parameter set. The resulting set of KFs

forms a “bank” where each local KF generates its own state

estimate and an output error (residual), as shown in Fig. 1.

The bank of KFs runs in parallel and at each sampling instant
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the MMAE uses a nonlinear function of the measurement

residuals of each SM to compute the conditional probability

pi that the filter selected be the one corresponding to the

true plant model. The state estimate is a probabilistically

weighted combination of each KF estimate. The rationale is

that the highest probability should be assigned to the state

estimation provided by the most accurate KF, and lower

probabilities assigned to the remaining KFs.

In the last decade, MMAE has been the subject of con-

siderable research effort that is patent in a vast number of

publications; see [5]–[9] and the references therein. MMAE

is at the root of many techniques for estimation, navigation,

tracking, and surveillance. It is also the basis for Multiple-

Model Adaptive Control, see [7], [10]–[16].

In [4], by introducing an information theoretic measure,

the authors analyzed the convergence of the conditional

probabilities pi and showed that the one corresponding to

the KF designed for the closest to the actual system (in a

stochastic norm sense) converges to one, while the others

tend to zero. The theoretical setup exploited in [4] requires

extensive knowledge of stochastic analysis, information the-

ory, and measure theory. Here, we show that similar results

can be obtained by resorting to a much simpler deterministic

framework that relies on the use of Krener Observers (KO)

[17] rather than Kalman Filters. We prove that under suitable

distinguishability conditions, the model identified is the one

that corresponds to the observer exhibiting the smallest

output prediction error energy.

Other contributions of this paper are the introduction of the

concept of set of Equivalently Identified Plants (EIP), defined

as the set of plants that will be identified as the same SM, and

an algorithm to compute it. We also analyze the impact of

unmodelled dynamics (unstructured uncertainty) on model

identification and in particular how this translates into the

topology of the EIP sets.

The structure of the paper is as follows. In section II we

review the main issues of MMAE and define the structure of

a Minimum Energy (ME) MMAE. Section III summarizes

our main results. The effect of unmodeled dynamic upon

model identification is considered in Section IV. Section

V illustrates the performance of the ME-MMAE algorithm

proposed, through computer simulations with a model of a

motor coupled to a load via an elastic shaft. Conclusions and

suggestions for future research are summarized in Section

VI.
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II. THE MULTIPLE-MODEL ADAPTIVE

ESTIMATOR

This section introduces a class of MMAEs in a deter-

ministic setting. MMAE relies on a finite number N of

selected models chosen from the original set of (possibly

infinite) plant models and consists of: i) a dynamic generator

of N weighting signals and ii) a bank of N discrete-time

observers, where each observer is designed based on one

of the SMs adopted. The state estimate is generated by a

weighted sum of the local state-estimates produced by the

bank of observers. The dynamic weights are provided by a

difference dynamic equation called the Dynamic Weighting

Signal Generator (DWSG). Fig. 1 shows the structure of the

MMAE in which the plant is described by an LTI difference

equation, ξt and θt are deterministic plant and measurement

noise sequences respectively, and the observers are designed

using different values of the uncertain parameters. We as-
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Fig. 1. The MMAE architecture

sume the plant model G is subjected to parameter uncertainty

κ ∈ R
l, that is, G = G(κ). In what follows we consider

multiple-input-multiple-output (MIMO) linear time-invariant

(LTI) plant models of the form

xt+1 = Aκxt + Bκut + Lκξt, (1a)

yt = Cκxt + θt, (1b)

where xt ∈ R
n denotes the state of the system, ut ∈ R

m its

control input, yt ∈ R
q its measured noisy output, ξt ∈ R

r

an input plant disturbance that can not be measured, and

θt ∈ R
q is the measurement noise. The initial condition x0

of (1) and the signals ξt and θt are assumed unknown but

bounded. The matrices Aκ, Bκ, Lκ, and Cκ contain unknown

constant parameters denoted by vector κ.

Consider a finite set of candidate parameter values κ :=
{κ1, κ2, . . . , κN} indexed by i ∈ {1, . . . , N}. We propose

the following MMAE. The state estimate is given by

x̂t :=

N∑
i=1

pi
tx̂t|κi

, (2)

ŷt :=

N∑
i=1

pi
tŷt|κi

, (3)

κ̂t := κi� , i� := arg max
i∈{1,...,N}

pi
t, (4)

where x̂t, ŷt and κ̂t are the estimates of the state x, output

yt, and parameter vector κ at time t, respectively and pi
t

are dynamic weights (which are defined below). In (2), each

x̂t|κi
; i = 1, . . . , N corresponds to a “local” state estimate

generated by the ith (steady state) Krener minmax observer

[17]

x̂t+1|κi
= Aκi

x̂t|κi
+ Bκi

ut + Hκi

(
yt − Cκi

x̂t|κi

)
, (5a)

ŷt|κi
= Cκi

x̂t|κi
, (5b)

Hκi
= Σκi

CT
κi

[Cκi
Σκi

CT
κi

+ Θ]−1 (5c)

where Σκi
is the solution of the discrete Riccati equation

0 = −Σκi
+ Aκi

Σκi
AT

κi
+ Lκi

ΞLT
κi

− AT
κi

Σκi
CT

κi
[Cκi

Σκi
CT

κi
+ Θ]−1Cκi

Σκi
Aκi

, (6)

and it is assumed that [Aκi
, Lκi

] and [Aκi
, Cκi

] for i =
1, . . . , N are controllable and observable, respectively. The

symmetric positive definite weighting matrices Ξ and Θ are

viewed as parameters to be chosen based on information

about the disturbance, the measurement noise, and the plant.

In the sequel we introduce dynamic weights which weigh

the local estimations (2) and dictate the estimation of the

uncertain parameter (4).

A. Dynamic Weighting Signal Generator (DWSG)

To generate the dynamic weights pi , we use the dynamic

recursion

pi
t+1 =

βie
−wi

t∑N

j=1 pj
tβje−w

j
t

pi
t, (7)

where βi is a positive weighting constant matrix and wi
t is a

continuous function called an error measuring function that

maps the measurable signals of the plant and the states of

the ith local observer to a nonnegative real value. Examples

of an error measuring function and a βi that we use in this

paper are

wi
t :=

1

2
‖yt − ŷt|κi

‖2
S

−1
κi

, βi :=
1√
|Sκi

|
, (8)

where Sκi
is a positive definite weighting matrix and ‖x‖S =(

xT Sx
) 1

2 . The matrices Sκi
are important to scale the energy

of the estimation error sequences in order to make them

comparable. They are computed as

Sκi
= Cκi

Σ−
κi

CT
κi

+ Θ. (9)

For stable dynamic plants, Sκi
is a positive definite matrix.

The structure of the key equation (7), which generates the
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time-sequence of the weights pi, is inspired by the “standard”

stochastic discrete-time MMAE formulas (see [3]). We im-

pose the constraint that the initial conditions pi
0 be chosen

such that pi
0 ∈ (0, 1) and

∑N

i=1 pi
0 = 1.

Remark 1. Throughout this paper we formulate the ME-

MMAE in a deterministic setting; however, the same method

is applicable to stochastic systems. In the stochastic setup

[2]–[4], the signals ξt and θt are assumed zero mean inde-

pendent discrete-time white noise sequence with covariances

cov[ξt; ξτ ] = Ξδtτ and cov[θt; θτ ] = Θδtτ , respectively

and (1) is initialized at t = 0 with E{x0} = 0 and

E{x0x
T
0 } = Σ0 and the Sκi

in (9) represents the covariance

matrix of residuals and the observers are Kalman filters (in

fact, in [17] it is shown that the Kalman filter is also a

minimax filter). The advantage of using the deterministic

MMAE version is that it is easier to investigate stability and

performance-robustness issues as compared to the stochastic

version of the problem. �

III. MAIN RESULTS

In this section we summarize our main results on identi-

fication and convergence of the ME-MMAE. We first show

that positiveness and boundedness of the dynamic weights pi
t

are independent of the input signals of the DWSG system.

We also show that the overall sum of the pi’s is always unity

for all t ≥ 0.

Theorem 1. Suppose that the initial conditions pi
0 satisfy

pi
0 ∈ (0, 1) and

∑N

i=1 pi
0 = 1. Then, each pi

t, i = 1, . . . N
governed by (7) is nonnegative, uniformly bounded and

contained in the interval [0, 1] for every t ≥ 0. Furthermore,

N∑
i=1

pi
t = 1, ∀t ≥ 0

Proof. Defining Pt :=
∑N

i=1 pi
t and computing its time-

evolution using (7) yields

Pt+1 =

N∑
i=1

βie
−wi

t∑N

j=1 pj
tβje−w

j
t

pi
t

=

∑N

i=1 pi
tβie

−wi
t∑N

j=1 pj
tβje−w

j
t

= 1

Therefore, if P0 = 1, then Pt = 1, ∀t ≥ 0. We now show,

that if pi
0 > 0, then pi

t ≥ 0, ∀t ≥ 0. From (7), if pi
0 > 0, then

pi
t cannot be negative. The boundedness condition pi

t ∈ [0, 1],
∀t ≥ 0 follows immediately from the fact that pi

t ≥ 0 and

Pt = 1 for all t ≥ 0.

We next provide conditions for convergence of the dy-

namic weights pi
t.

Theorem 2. Let i� ∈ {1, 2, . . . , N} be an index of a

parameter vector in κ and let I := {1, 2, . . . , N}\i� an

index set. Suppose that there exist positive constants n1, t1,

ε, and ε1 such that for all t ≥ t1 and n ≥ n1 the following

condition holds:

1

n

t+n−1∑
τ=t

(
(wi�

τ ) + ε
)

<
1

n

t+n−1∑
τ=t

min
j∈I

wj
τ , (10)

where wi are defined in (8) and

(
lnmax

j∈I
βj − lnβi�

)
< ε1 with ε1 < ε. (11)

Then, pi�

t governed by (7) satisfies pi�

t → 1 as t → ∞.

�

Proof. Define

Lt =
pj

t

pi�

t

; j ∈ I.

From (7) we have

pi
t = pi

0

t−1∏
τ=0

βie
−wi

τ∑N

j=1 pj
τβje−w

j
τ

,

from which it follows that

Lt+n = [
t+n−1∏

τ=t

βje
−wj

τ

βi�e−wi�
τ

] Lt. (12)

Taking logarithms of both sides,

ln
Lt+n

Lt

=

t+n−1∑
τ=t

ln(βje
−wj

τ ) −

t+n−1∑
τ=t

ln(βi�e−wi�

τ )

≤

t+n−1∑
τ=t

ln(βje
−wj

τ ) −

t+n−1∑
τ=t

ln(βi�e−wi�

τ )

= n lnβj − n lnβi� +
t+n−1∑

τ=t

wi�

τ −
t+n−1∑

τ=t

wj
τ , (13)

where βj = maxs∈I βs.

From (13), (10), and (11) it can be concluded that there

exists a positive γ such that

ln
Lt+n

Lt

≤ −nγ (14)

or, equivalently,

Lt+n ≤ e

(
−nγ

)
Lt. (15)

It follows that Lt =
p

j
t

pi�

t

converges to zero for all j ∈ I,

as n → ∞. Since
∑N

i=1 pi
0 = 1, it is now straightforward

to conclude that pj
t → 0, and pi�

t → 1. Furthermore, the

convergence is exponentially fast.

Condition (10) can be viewed as a distinguishability crite-

rion and implies that for sufficiently large t one of the local

observers will exhibit least output error (residual) “energy”.

In fact, the following Corollary holds.

Corollary 1. Suppose that the conditions of Theorem 2

hold and let the input signal η = [ξt θt ut]
T consist of

a bounded-spectral sequence with power spectral density

Ψη(ω). Further, let wi
t := 1

2‖yt − ŷt|i‖
2
S

−1
κi

. Then, the
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parameter estimate κ̂t converges to the closest to the true

parameter κ as t → ∞, in the following sense:

lim
t→∞

κ̂t = κi� , (16a)

i� = arg min
i∈{1,...,N}

{Υκ1,κ, Υκ2,κ, . . . ,ΥκN ,κ} (16b)

Υκi,κ = tr[
1

2π

∫ π

−π

(Hi(e
jω)Ψη(ω)Hi(e

jω)HS−1
κi

) dω]

(16c)

where Hi(z) is the discrete transfer matrix defined by

Hi(z) = Ci(zI − Ai)
−1

Bi + D, (17)

with

Ai :=

[
Aκ 0

Hκi
Cκ Aκi

− Hκi
Cκi

]
, Ci :=

[
Cκ −Cκi

]
,

Bi :=

[
Lκ 0 Bκ

0 Hκi
Bκi

]
, D :=

[
0 I 0

]
.

A proof is available in [18].

Remark 2. In the stochastic MMAE, when the inputs to

(17) are discrete-time white noise with intensity matrix Q,

Υκi,κ in (16) can be computed as

Υκi,κ = tr[(CiΣiC
T
i + Θ) S−1

κi
],

where Σi satisfies the Lyapunov equation

Σi = AiΣiA
T
i + BiQB

T
i .

�

We now analyze the situation when the nominal values

κi, for i = 1 . . . N do not include the true parameter κ. As

Theorem 2 shows, as long as the distinguishability condition

holds, one of the dynamic weights pi governed by (7), say

pi�

, converges to 1 and the rest converge to 0. In this case,

the actual parameter is identified as κi� . Notice however that

it cannot be concluded that the true value of κ is actually

κi� . Nevertheless, in a well defined sense it can be said that

the true value of κ is closer to κi� than to any other κi

for i ∈ I. This simple reasoning allows us to conclude that,

corresponding to each κi,; i = 1 . . . N there is a set of plants

that are naturally identified as κi.

In what follows, we call each of these sets a set of

Equivalently Identified Plants (EIP), denoted Si
EIP . With an

obvious abuse of notation, for each κi we define the corre-

sponding EIP as a subset in the uncertain parameter space κ

with the property that if the uncertain parameter belongs to

that subset, then the selected model with parameter κi will

be identified. Corollary 1 provides a method to compute the

set of Equivalently Identified Plants (EIP) for all the κi.

Fig. 2 illustrates graphically how the EIP sets can be

obtained. In Fig. 2, it is assumed that a scalar uncertain

parameter κ lies in the interval [κL , κU ], and three local

observers are designed based on κ1, κ2, and κ3. We have

plotted the weighted RMS of the output estimation error

for each observer as a function of κ in [κL , κU ]. The

intersections of these curves define the boundaries of the

EIP sets.
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Fig. 2. Graphical Illustration of Equivalently Identified Plant (EIP) Sets
and Models

Remark 3. A systematic methodology to compute EIP

sets is as follows:

1. For each κi, i = 1 . . . N compute Υκi,κ for κ ∈ [κL , κU ].
2. The EIP set for ith model is defined by

Si
EIP = {κ : Υκi,κ = min

i∈{1,...,N}
{Υκ1,κ,Υκ2,κ, . . . ,ΥκN ,κ}}.

�

IV. EFFECT OF UNMODELED DYNAMICS

Consider a discrete-time, multi-input, multi-output linear

time-invariant plant with unmodeled dynamics described by

multiplicative unstructured uncertainty of the type

G(z) = G0(z)[I + W (z)Δ(z)]. (18)

where G0(z) is the nominal plant discrete transfer matrix,

W (z) is a known fixed stable discrete transfer matrix, and

Δ(z) represents any unknown stable discrete transfer matrix

satisfying ‖Δ(z)‖∞ ≤ 1. See Fig. 3, where H(z) denotes

ty
Σ

( )W z ( )zΔ

( )H z0( )G z

t

t t

tu

ξ
η θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

tη′ ty�

Fig. 3. Uncertain Plant (Nominal Discrete Transfer Matrix with Multi-
plicative Uncertainty) and Local Observer

the discrete transfer matrix of the local observer. The power

spectral density of sequence η′
t in Fig. 3 is given by

Ψη′(ω) = |I + W (ejω)Δ(ejω)|2Ψη(ω).

Since Δ(z) is unknown and satisfies ‖Δ(z)‖∞ ≤ 1, the

following holds:

[HLB(ejω)]2Ψη(ω) ≤ Ψη′(ω) ≤ [HUB(ejω)]2Ψη(ω),
(19)
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where

HUB(ejω) := sup
‖Δ(ejω)‖∞≤1

|I + W (ejω)Δ(ejω)|

= I + |W (ejω)|, (20a)

HLB(ejω) := inf
‖Δ(ejω)‖∞≤1

|I + W (ejω)Δ(ejω)|

=

{
0 if |W (ejω)| ≥ 1
I − |W (ejω)| if |W (ejω)| < 1

(20b)

Using (16c) and substituting Ψη(ω) by the upper and lower

bound of Ψη′(ω) determined in (19), one can compute an

uncertainty band around the nominal RMS of the output error

sequence. As shown in Fig. 4, the unmodeled dynamics lead

�
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Parameter)
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�

Output Error

RMS
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�
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�
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Fig. 4. Graphical Illustration of the effect of Unmodeled Dynamic on the
Equivalently Identified Plant (EIP) Sets

to “undecidable sets” in the uncertain parameter space. If

the true parameter lies in one of these sets, then it cannot be

ascertained which model will be selected. Computer simula-

tions have shown for specific examples that the larger the size

of the unmodeled dynamics, the larger the undecidable set is.

Notice, however that by exploiting the above circle of ideas

one obtains a clear procedure to compute the undecidable

sets.

Remark 4. The modified methodology to compute EIP

sets in the presence of unmodelled dynamics is as follows:

1. For each κi, i = 1 . . . N compute the upper and lower

bounds of Υκi,κ for κ ∈ [κL , κU ] given by

Υκi,κ = tr[
1

2π

∫ π

−π

(Gi
UB(ejω)Ψη(ω)Gi

UB(ejω)HS−1
κi

) dω]

(21a)

Υκi,κ
= tr[

1

2π

∫ π

−π

(Gi
LB(ejω)Ψη(ω)Gi

LB(ejω)HS−1
κi

) dω]

(21b)

where G
i
LB and G

i
UB are transfer matrices from input η to

local estimation error ỹt (see Fig. 3) considering the upper

and lower bounds of multiplicative uncertainty as computed

in (20).

2. The EIP set for ith model is defined by

Si
EIP = {κ : Υκi,κ ≤ Υκj ,κ for all j ∈ {1, 2, . . . , N}\i}.

�

Motor Load
mJ LJ

,L Lθ ω, ,m m mT θ ω
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d

Fig. 5. Motor and Load with Elastic Transmission (the spring-constant K1

is uncertain.)
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Fig. 6. Effect of Unstructured Uncertainty on Equivalently Identified Plant
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V. ILLUSTRATIVE EXAMPLE

The ME-MMAE procedure is now evaluated through the

example depicted in Fig. 5. The plant consists of a motor

driving a load through a flexible coupling and the load is

connected to a wall trough a torsional spring and torsional

damper. The output signal is the load shaft angle corrupted

by measurement noise θt and the disturbance torque ξt

affects only the load. The measuring functions wi
t = 1

2 (yt −
ŷt|i)

T S−1
κi

(yt − ŷt|i) were used during the simulations. A

state-space representation of the plant, including the distur-

bance and noise inputs, is given by (1) with

A =

⎡
⎢⎣

0 1 0 0 0
−K1
Jm

K1
Jm

−D1
Jm

D1
Jm

0

0 0 0 0 1
K1
JL

−(K1+K2)
JL

D1
JL

−(D1+D2)
JL

1
JL

0 0 0 0 −0.3

⎤
⎥⎦ , B =

⎡
⎣

0
0
1

Jm

0
0

⎤
⎦ ,

L′ = [ 0 0 0 0 0.3 ] , C = [ 0 0 1 0 0 ] ,

where Jm = JL = 1 (Kgm2), K2 = 0.2 (N/rad), D1 =
D2 = 0.1 , (Ns/rad), and K1 is an unknown parameter

assumed to have a value in the interval [0.5, 2.5]; we divided

uniformly the interval where the unknown parameter K1 can

live into 4 sub-intervals. We remark that the above dynamics

are similar to the mass-spring-dashpot system (MSD) testbed

for robust adaptive control (RMMAC), [14]. Using the results

in Corollary 1, we computed the nominal values for K1

such that the EIP set of each observer corresponds to

the sub-intervals. Fig. 6 illustrates the procedure adopted
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with N = 4 local observers and the following set κ =
{0.65, 1.19, 1.70, 2.21} was obtained for nominal values.

The y-axis corresponds to the weighted RMS of output error

sequences. It is also assumed that input torque is provided

through an amplifier whose bandwidth is unknown but in the

interval [20 25] rad/s; this amplifier can be described in the

form of a model with multiplicative uncertainty with

G0(z) =
0.2015

z − 0.7985
, W (z) =

0.1235z − 0.1235

z − 0.8187
.

The undecidable sets between adjacent EIPs can be seen in

Fig. 6.
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Fig. 7. Deterministic case: K1 = 0.92.

Fig. 7 shows the time evolution of some representative

signals. In this figure, the first sub-plot is the output es-

timation error and the second sub-plot is the output (load

shaft angle) together with the estimated output (almost coin-

cident). The remaining plots show the time evolution of the

dynamic weighting signals. In the deterministic case, θt and

ξt are swept-frequency cosine (chirp) sequences (with initial

frequency 1 (Hz), target time 50 (sec), and final frequency

10 (Hz)). In Fig. 7, the unknown parameter K1 is located

near the boundary between two adjacent EIP sets, where

identification is harder and the convergence takes longer. We

have used different values of the K1 in the simulations in

both the stochastic and deterministic setups (in the stochastic

case, θt and ξt are discrete-time white noise sequences) and

except for the values which are very close to the boundaries,

the correct model is always identified (the results are not

shown due to the space limitations).

VI. CONCLUSIONS AND FUTURE RESEARCH

We presented and analyzed a class of Minimum Energy

MMAE systems for LTI MIMO discrete systems with para-

metric uncertainty. We showed that if some suitable distin-

guishability condition holds, then the model identified is the

SM that exhibits least output error “energy”. Based on the

energy of the output error sequences, we introduced the con-

cept of Equivalently Identified Plant (EIP) sets corresponding

to each local observer. The methodology proposed allowed

us to deal with both parametric and unstructured uncertainty.

In particular, we introduced the concept of undecidable

sets, which capture the fact that unmodeled uncertainty will

necessarily lead to basic limitations to identification. This

issue and that of determining general geometric properties

of the EIP sets deserve further research. Another topic that

warrants consideration is that of deriving adaptive control

systems for uncertain plants (especially unstable and non-

minimum phase plants) using the multiple model approach.

REFERENCES

[1] R. J. Fitzgerald, “Divergence of the kalman filter,” IEEE Trans. on

Automat. Contr., vol. 16, pp. 736–747, 1971.
[2] D. T. Magill, “Optimal adaptive estimation of sampled stochastic

processes,” IEEE Trans. on Automat. Contr., vol. 10, pp. 434–439,
1965.

[3] B. D. O. Anderson and J. B. Moore, Optimal Filtering. New Jersey,
USA: Prentice-Hall, 1979.

[4] Y. Baram and N. Sandell, “An information theoretic approach to
dynamical systems modeling and identification,” IEEE Trans. on

Automat. Contr., vol. 23, pp. 61–66, 1978.
[5] A. P. Aguiar, V. Hassani, A. M. Pascoal, and M. Athans, “Identifcation

and convergence analysis of a class of continuous-time multiple-model
adaptive estimators,” in Proc. of The 17th IFAC World Congress, Seoul,
Korea, Jul. 2008.

[6] X. R. Li and Y. Bar-Shalom, “Multiple-model estimation with variable
structure,” IEEE Trans. on Automat. Contr., vol. 41, pp. 478–493,
1996.

[7] G. J. Schiller and P. S. Maybeck, “Control of a large space structure
using MMAE/MMAC techniques,” IEEE Transactions on Aerospace

and Electronic System, vol. 33, pp. 1122–1131, 1997.
[8] A. P. Aguiar, M. Athans, and A. Pascoal, “Convergence properties

of a continuous-time multiple-model adaptive estimator,” in Proc. of

ECC’07 - European Control Conference, Kos, Greece, Jul. 2007.
[9] A. P. Aguiar, “Multiple-model adaptive estimators: Open problems and

future directions,” in Proc. of ECC’07 - European Control Conference,
Kos, Greece, Jul. 2007.

[10] B. D. O. Anderson, T. S. Brinsmead, F. D. Bruyne, J. Hespanha,
D. Liberzon, and A. S. Morse, “Multiple model adaptive control: Part
I: Finite controller coverings,” Int. J. of Robust and Nonlinear Control,
vol. 10, pp. 909–929, 2000.

[11] J. Hespanha, D. Liberzon, A. S. Morse, B. D. O. Anderson, T. S.
Brinsmead, and F. D. Bruyne, “Multiple model adaptive control: Part
II: Switching,” Int. J. of Robust and Nonlinear Control, vol. 11, pp.
479–496, 2001.

[12] A. S. Morse, “Supervisory control of families of linear set-point
controllers-part II: Robustness,” IEEE Trans. on Automat. Contr.,
vol. 42, pp. 1500–1515, 1997.

[13] K. S. Narendra and J. Balakrishnan, “Adaptive control using multiple
models,” IEEE Trans. on Automat. Contr., vol. 42, pp. 171–187, 1997.

[14] S. Fekri, M. Athans, and A. Pascoal, “Issues, progress and new results
in robust adaptive control,” Int. J. of Adaptive Control and Signal

Processing, vol. 20, pp. 519–579, 2006.
[15] I. Al-Shyoukh and J. Shamma, “Switching supervisory control using

calibrated forecasts,” Accepted in IEEE Transactions on Automatic
Control, 2007.

[16] M. Kuipers and P. Ioannou, “Practical robust adaptive control: Bench-
mark example,” Accepted in American Control Conference 2008,
Seattle, Washington, USA, 2008.

[17] A. Krener, “Kalman-Bucy and minimax filtering,” IEEE Trans. on

Automat. Contr., vol. 25, pp. 291–292, 1980.
[18] V. Hassani, A. P. Aguiar, M. Athans, and A. M. Pascoal, “Multiple

model adaptive estimation and model identification using a minimum
energy criterion,” Institute for Systems and Robotics (ISR), Instituto
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