
 

  
Abstract—Terminal Iterative Learning Control (TILC) is a 

cycle-to-cycle control approach that can be used on 
thermoforming oven. TILC automatically tune the heater 
temperature setpoints such that the temperature at the 
surface of the plastic sheet tracks a desired temperature 
profile. Industrial thermoforming ovens can have a large 
number of temperature sensor (inputs) and heaters (outputs) 
which makes the design of TILC difficult. This paper 
presents the design of a TILC using the singular value 
decomposition decoupling technique. With this tool, the TILC 
design is facilitated for industrial thermoforming oven. 

I. INTRODUCTION 
HE thermoforming process consists of heating sheets of 
plastic before molding them [1, 2]. Each heater is 

locally controlled by PID loop, since its temperature is 
measured with an embedded thermocouple. However, the 
heater temperature setpoints of these PID loops are adjusted 
manually by trial and errors [1, 2]. This can result in plastic 
sheets being heated because they come out of the oven with 
a wrong temperature profile. Therefore, a financial lost is 
incurred from bad adjustment of heater temperature 
setpoints. 

The use of Terminal Iterative Learning Control (TILC) 
can solve this problem by tuning automatically the heaters 
temperature setpoint [3, 4]. This cycle-to-cycle control was 
successfully used on an industrial thermoforming machine. 
To be able to use the TILC, the plastic sheet surface 
temperature profile needs to be measured. This can be done 
with infrared temperature sensors [3-5]. 

TILC was first introduced in [6, 7]. The application where 
TILC is used is mainly for rapid thermal processing 
chemical vapor deposition [6-9] and recently in the plastic 
sheet surface temperature control in thermoforming machine 
[3, 4]. TILC is derived from Iterative Learning Control 
(ILC). The main difference between the two approaches is 
the access to measurements during the cycle [8]. For ILC, 
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there is measurement taken throughout the cycle [10], 
whereas TILC have access to only one measurement at the 
end of the cycle. 

When the number of inputs (infrared temperature 
measurements) and the number of outputs (heater 
temperature setpoints) are high, it may become difficult to 
design the TILC, especially if it is a high order one [4]. 

A way to simplify the design of the TILC is to use 
singular value decomposition (SVD) decoupling [4, 11]. 
SVD seems rarely used for TILC, but it can facilitate the 
design of optimal reduced-order ILC [12], it can help to 
suppress residual vibration with ILC [13] and also, to 
achieve decoupling on ILC [11]. 

Section II presents the system to be controlled by TILC 
algorithm. Section III introduces the SVD decoupling as a 
tool for the design of TILC. Section IV presents a second-
order TILC algorithm. Simulation results, using TILC 
designed using SVD decoupling and the thermoforming 
oven model developed in [3, 5, 14], are shown in Section V. 
Section VI concludes. 

II. PROBLEM SET-UP 
The TILC algorithm is applied to a continuous-time linear 

time-invariant (LTI) system. This LTI system can be the 
linearized model of the reheat phase of a thermoforming 
machine [3, 5, 14, 15] and is represented by: 

 
( ) ( )
( ) ( )

k k k

k k

x t Ax t Bu
y t Cx t

= +

=
 (1) 

where t is the time and the subscript k is the cycle number 
( k ∈ ). Matrices A, B, and C are time-invariant.  The state 
vector is ( ) n

kx t ∈ , the (constant over one cycle) input 

vector  is m
ku ∈  and the output vector is ( ) p

ky t ∈ . 
The control task is to update the control input ku  (heaters 

temperature setpoints) such that the terminal output ( )ky T  
(sheet surface temperature at some locations) converges to a 
desired terminal value dy  at time T. From linear system 
theory, one can write the solution of (1) at t T=  as: 
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 ( )

0

( ) (0)
T

AT A T
k k kx T e x e Bd uτ τ−⎛ ⎞

= + ⎜ ⎟
⎝ ⎠
∫ . (2) 

From this terminal state, we calculate the corresponding 
terminal output as: 

 ( )

0

( ) (0)
T

AT A T
k k ky T Ce x C e Bd uτ τ−⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

∫ . (3) 

Now, we change the notation to emphasize the fact that 
for the cycle-to-cycle control, the cycle k is equivalent to the 
time argument of a discrete time system [4]. Equation (3) is 
rewritten as: 
 0[ ] [ ] [ ]Ty k x k u k= Γ + Ψ , (4) 

where [ ] ( )T ky k y T= , 0[ ] (0)kx k x= . Matrix p n×Γ ∈  is  
therefore defined by: 
 : ATCeΓ =  (5) 
and matrix p m×Ψ ∈  by: 

 ( )

0

:
T

A TC e Bdτ τ−Ψ = ∫ . (6) 

We can apply discrete-time control on system (4) that will 
appear like cycle-to-cycle control to the system (1).  

The z-transform of (4) is: 
 0ˆ ˆ ˆ( ) ( ) ( )Ty z u z x z= Ψ + Γ  (7) 
where ˆ( )u z , ˆ ( )Ty z  and 0ˆ ( )x z  are the z-transforms of [ ]u k , 

[ ]Ty k  and 0[ ]x k , respectively. 
The following assumptions are made in this paper: 

A1) The initial state is invariant throughout all cycles. Then 
0 0(0) [ ]kx x k χ= =  is a constant vector for all cycle. This 

corresponds to the assumption that all plastic sheets are at 
the same initial temperature before being heated. 
A2) The desired terminal output is constant for all cycles k: 

[ ]dy k γ= . Since we want to thermoform plastic sheets to 
obtain a desired part in a repetitive way, the desired 
temperature must remains constant. 

The system (7) can be controlled by a first order TILC 
defined by: 
 ( )[ 1] [ ] [ ] [ ]d Tu k u k K y k y k+ = + − . (8) 
The z-transform of (8) is: 
 ( ) ( )1ˆ ˆ ˆ( ) 1 ( ) ( )d Tu z z K y z y z−= − −  (9) 
and lead to this closed-loop system: 
 ( ){ } ( ){ }

1

0ˆ ˆ ˆ( ) ( ) 1 ( )T p p dy z zI K I Ky z z x z
−

= + Ψ − Ψ + − Γ (10) 

or 
 ( ){ } { }1

0ˆ ˆ ˆ( ) ( ) ( )m m du z zI K I K y z x z
−

= + Ψ − Ψ − Γ . (11) 

From the first order TILC (9) we can define: 
 ( ) 1( ) 1C z K z −= − . (12) 
Lemma 1: The closed loop system (10) and (11) is internally 
stable if and only if the following matrix is invertible [16-
18]: 

 
( )m

p

I C z
I

⎡ ⎤
⎢ ⎥−Ψ⎣ ⎦

. (13) 

Proof: The proof can be found in [17, 18].                          □ 
  

Theorem 1: Suppose that a system represented by the full-
rank matrix Ψ  is controlled with the TILC algorithm 
expressed by (12). Then, there is at least one controller gain 
K that makes the system internally stable. 
Proof: From Lemma 1, the system is internally stable if (13) 
is invertible. Using the controller structure defined in (12), 
(13) becomes: 

 ( ) 1( ) 1m m

p p

I C z I K z
I I

−⎡ ⎤⎡ ⎤ −
= ⎢ ⎥⎢ ⎥−Ψ −Ψ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (14) 

Using properties of matrix determinants, the determinant 
of (14) is: 

 ( )( )1( )
( ) det det 1m

p
p

I C z
p z I K z

I
−⎛ ⎞⎡ ⎤

= = + Ψ −⎜ ⎟⎢ ⎥⎜ ⎟−Ψ⎣ ⎦⎝ ⎠
.(15) 

Or, we can also write: 

 
( ) ( )( )
( ) ( )( )

( ) 1 det 1

1 det

p
p

p
p p

p z z I z K

z zI K I

−

−

= − − + Ψ

= − + Ψ −
. (16) 

The roots of the equation ( ) 0p z =  defined in (16) 
correspond to the poles of the closed-loop system. It is 
possible to find at least one TILC matrix gain K such that 
the system is internally stable. One of the possible choices is 
to select matrix K as the pseudoinverse of Ψ .                □ 
Theorem 2: Suppose matrices Ψ  and K are such that the 
closed-loop is stable. The system converges to any desired 
terminal vector dγ  if and only if the rank of the system 
matrix Ψ , the rank of the controller K and the rank of the 
product KΨ  are all equal to p. 
Proof: Using the final value theorem on (10) leads to: 

 

( ) ( ){ }
( ){ }

{ } { }

11

1

1
0

1

( ) lim 1

1

T p pz

d

d

y z z zI K I

K z z z

K K

γ χ

γ

−
−

→

−

−

∞ = − + Ψ − ×

Ψ − + Γ

= Ψ Ψ

 (17) 

Suppose that the rank of the two matrices Ψ  and K are 
both equal to p. If the rank of the product KΨ  is also equal 
to p, then the last line of (17) involve the product of a full 
rank matrix with its inverse. Therefore ( )T dy γ∞ = , and 
convergence to dγ  is obtained. 

Conversely, if the rank of the product KΨ  is lower than 
p, then the product { } { }1

pK K I−Ψ Ψ ≠  and the convergence 
to dγ  will not happen.                                                         □ 

III. SINGULAR VALUE DECOMPOSITION DECOUPLING 
In some applications, like industrial thermoforming, it 

may become difficult to adjust the TILC matrix gain K such 
that the system will have poles located at some desired 
locations. That is the case when the system matrix Ψ  has a 
big size.   
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How can the design be made easier? This can be achieved 
by using the SVD decoupling approach [19] to diagonalize 
the matrices of the system. Once all matrices are diagonal, 
the internal stability analysis becomes very easy to do. 

The SVD of the system matrix Ψ  is expressed by: 
 TW VΨ = Σ  (18) 
where p pW ×∈  and m mV ×∈  are unitary (orthogonal) 
matrices, and p m×Σ ∈  is a matrix filled with 0’s, except on 
its diagonal which contains the singular values of Ψ  in 
descending order. 
 Once the SVD of Ψ is included in the system equation (7)
, we can write: 
 0ˆ ˆ ˆ( ) ( ) ( )T

Ty z W V u z x z= Σ + Γ . (19) 
Left-multiplying both sides of (19) by the transpose of 

W leads to: 
 0ˆ ˆ ˆ( ) ( ) ( )T T T

TW y z V u z W x z= Σ + Γ . (20) 
Define the new variables: 

 ˆ ˆ( ) ( )T
T Tz W y zη = , (21) 

 0 0ˆ ˆ( ) ( )Tz W x zη = Γ , (22) 

 ˆ ˆ( ) ( )Tz V u zν = . (23) 
Then, we can rewrite (20) using these new variables so as 

to obtain the equivalent decoupled system: 
 0ˆ ˆ ˆ( ) ( ) ( )T z z zη ν η= Σ + . (24) 
The desired input of this equivalent system is: 
 ˆ ˆ( ) ( )T

d dz W y zη = . (25) 
For the equivalent system the first-order TILC algorithm 

becomes: 
 ( ) ( )1ˆ ˆ ˆ( ) 1 ( ) ( )d Tz z K z zν η η−

Σ= − − . (26) 

where TK V KWΣ = . From the TILC algorithm in (26) we 
can define: 
 ( ) 1( ) 1C z K z −

Σ Σ= − . (27) 

The gain m pK ×
Σ ∈  is a matrix filled with 0’s, except for 

its main diagonal which contains the value of the controller 
gain. The controller (26) with the system (24) yields the 
closed-loop transfer function: 
 ( ){ } ( ){ }1

0ˆ ˆ ˆ( ) ( ) 1 ( )T dz zI K I K z z zη η η
−

Σ Σ= + Σ − Σ + −  (28) 

Proposition 1: The closed-loop poles of the equivalent 
system are the same as those of the real system. 
Proof: The matrix (13) is: 

 ( ) 1( ) 1T
m m

T
p p

I C z I VK W z
I W V I

−
Σ

⎡ ⎤⎡ ⎤ −
= ⎢ ⎥⎢ ⎥−Ψ − Σ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (29) 

Factoring out the two unitary matrices from (29) leads to: 

 ( ) 1( ) 0 1 0
0 0

T
m m

T
p p

I C z V I K z V
I W I W

−
Σ

⎡ ⎤⎡ ⎤ ⎡ ⎤−⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥−Ψ −Σ⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

(30) 

The determinant of a unitary matrix is equal to 1. Hence, 
calculating the determinant of both side of (30), we obtain: 

 ( ) 1( ) 1
det detm m

p p

I C z I K z
I I

−
Σ

⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤ −
⎜ ⎟= ⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟−Ψ −Σ⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

. (31) 

This equality shows the direct equivalence between the 
poles of the real system and the poles of the equivalent 
system.                                                                                 □ 
Theorem 3: Consider a system represented by a full-rank 
matrix Σ  and the TILC algorithm in (27). There is at least 
one matrix KΣ  that makes the system internally stable. 
Proof: From the previous proposition, the system is 
internally stable if (29) is invertible. Modifying (30) with the 
equivalent system and the equivalent controller, we can 
write: 

 ( ) 1( ) 1m m

p p

I C z I K z
I I

−
Σ Σ

⎡ ⎤⎡ ⎤ −
= ⎢ ⎥⎢ ⎥−Σ −Σ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (32) 

  From (32), we obtain: 

 

( )

( )( )

1

1

1
( ) det

det 1

m

p

p

I K z
p z

I

I K z

−
Σ

−
Σ

⎛ ⎞⎡ ⎤−
⎜ ⎟= ⎢ ⎥⎜ ⎟−Σ⎢ ⎥⎣ ⎦⎝ ⎠

= + Σ −

 (33) 

Since all matrices in (33) are diagonal: 

 
( ) ( )( )

( ) ( )
1

( ) 1 det 1

1 1
i

p
p

p
p

i
i

p z z I z K

z z kσ

−
Σ

−
Σ

=

= − − + Σ

= − + −∏
 (34) 

In (34), iσ  is the i-th singular value of Σ  and 
i

kΣ  the i-th 

gain of the matrix KΣ . Then, from (34), on can see that the 
range of gains that leads to a stable-closed loop system is 
0 2

i ik σΣ< <  for all i.                                                    □ 
Thus the poles are easily obtained when we use the SVD 

decomposition. As a result, doing a TILC design with pole 
placement becomes straightforward. This is because the 
poles of the real system are exactly at the same locations of 
the poles of the equivalent system (Proposition 1). 
Theorem 4: Suppose matrices Σ  and KΣ  are such that the 
system is stable. The system output will converge to any 
desired terminal value dγ  if and only if the product KΣΣ  is 
full rank. 
Proof: Applying the final value theorem to (28), one can 
find: 

 
( )

{ } { }

1

1
1

ˆ( ) lim 1 ( )T Tz

T
d

z z z

K K W

η η

γ

−

→

−
Σ Σ

∞ = −

= Σ Σ
 (35) 

If the rank of the matrices Σ  and KΣ  are equal to p, 
product  KΣΣ  will be full rank and (35) reduces to 

( ) T
T dWη γ∞ = .  
Left-multiplying both sides by W  gives: 

 ( )T dy γ∞ =  (36) 
showing the convergence of the equivalent system’s output 
to the desired terminal value. 

If at least one of the two matrices Σ  or KΣ  have a rank 
less than p, then the product KΣΣ  will not be full rank and 
convergence to dγ  is not obtained.                                     □ 
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Theorem 5: Suppose that the matrices Σ  and KΣ  have a 
rank equal to p. The system output converges in only one 
step (deadbeat convergence) if and only if all gains on the 
diagonal of KΣ  are equal to: 1

i ik σΣ = . 
Proof: From (34), one can see that all poles will be at 0z =  
if all gains of KΣ  are selected as the inverse of the singular 
value: 

 1
i

i

k
σΣ = . (37) 

This case corresponds to the deadbeat convergence of the 
equivalent TILC controller. The convergence to the desired 
output happens in only one cycle.                                        □ 

Using (37) for all gains of KΣ  is equivalent to define 
K +

Σ = Σ  where “+” corresponds to the pseudoinverse 
operation when Σ  is not square and to the inverse operation 
if Σ  is square. 

Once the design is done on the equivalent decoupled 
system, the TILC gain matrix K of the real system is 
computed from KΣ  using: 
 TK VK WΣ= . (38) 

IV. SVD WITH A SECOND ORDER CONTROL 
The TILC control can have a higher order than one. 

Consider for instance a second-order control defined by [4]: 

 
( ) ( )

1 2

1 2

[ 1] [ ] [ 1]
[ ] [ ] [ 1] [ 1]d T d T

u k L u k L u k
K y k y k K y k y k

+ = + −

+ − + − − −
(39) 

 The z-transform of this system is expressed by: 
 ( ) ( )( )

12
1 2 1 2ˆ ˆ ˆ( ) ( ) ( )m d Tu z z I zL L zK K y z y z

−
= − − + − .(40) 

In (39) and (40), 1
m pK ×∈  is the matrix gain for the 

error of the recently finished cycle, 2
m pK ×∈  is the matrix 

gain for the error of the second-to-last cycle, 1
m mL ×∈  is 

the matrix gain for the input of the recently finished cycle 
and 2

m mL ×∈  is the matrix gain for the input of the second-
to-last cycle. 
 From (40), we can define: 
 ( ) ( )12

1 2 1 2( ) mC z z I zL L zK K
−

= − − + . (41) 

Theorem 6: Suppose the matrix Ψ  is full rank. Then, there 
is at least one set of matrices 1K  and 2K  that stabilizes the 
closed-loop system. 
Proof: As in Theorem 1, the system is internally stable if 
(13) is invertible. Using the controller algorithm defined in 
(41), (13) becomes: 

 ( ) ( )12
1 2 1 2( )m m m

p p

I C z I z I zL L zK K
I I

−⎡ ⎤⎡ ⎤ − − +
⎢ ⎥=⎢ ⎥−Ψ ⎢ ⎥−Ψ⎣ ⎦ ⎣ ⎦

(42) 

Thus, the right hand side of (42) can be factored as the 
product: 

 

( )

( ) ( )

12
1 2

2
1 2 1 2

( ) 0

0
m m

p p

m

p

I C z z I zL L
I I

z I zL L zK K

I

−⎡ ⎤⎡ ⎤ − −
⎢ ⎥= ×⎢ ⎥−Ψ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤− − +
⎢ ⎥

−Ψ⎢ ⎥⎣ ⎦

 (43) 

The closed-loop poles are given by the zeros of the 
determinants of (43): 

 

( )

( ) ( )

12
1 2

2
1 2 1 2

0

0
( ) det

m

p

m

p

z I zL L

I
p z

z I zL L zK K

I

−⎛ ⎞⎡ ⎤− −⎜ ⎟⎢ ⎥ ×
⎜ ⎟⎢ ⎥⎣ ⎦⎜ ⎟=
⎜ ⎟⎡ ⎤− − +⎜ ⎟⎢ ⎥
⎜ ⎟−Ψ⎢ ⎥⎣ ⎦⎝ ⎠

 (44) 

We can rewrite (44) as: 

 
( )( )

( ) ( )( )

12
1 2

2
1 2 1 2

( ) det

det

m

m

p z z I zL L

z I zL L zK K

−
= − −

− − + + Ψ
 (45) 

Suppose we choose 1 1K L += Ψ  and 2 2K L += Ψ . Then 
(45) simplify to: 

 ( )( ) ( )12 2
1 2( ) det detm mp z z I zL L z I

−
= − −  (46) 

and then all finite poles are located at 0z = . Hence, there is 
at least one set of gains 1K  and 2K  that stabilize the closed-
loop system.                                                                         □ 

To design this second order TILC, we need to select the 
four gain matrices 1L , 2L , 1K  and 2K . For a large multi-
input multi-output system this task seems very difficult. 
However, the SVD can help in the design of a second-order 
TILC.  

From (40), (21), (22) and  (23), a second order TILC 
controller of the equivalent decoupled system can be 
defined [4]: 

 ( ) ( )
( )

12
1 2 1 2ˆ( )

ˆ ˆ( ) ( )

T
m

d T

z V z I zL L zK K W

z z

ν

η η

−
= − − + ×

−
 (47) 

Since T
mVV I= , we can rewrite (47) as: 

 ( ) ( )
( )

12
1 2 1 2ˆ( )

ˆ ˆ( ) ( )

T T
m

d T

z V z I zL L VV zK K W

z z

ν

η η

−
= − − + ×

−
 (48) 

or: 

 ( ) ( )
( )

12
1 2 1 2ˆ( )

ˆ ˆ( ) ( )
m

d T

z z I zL L zK K

z z

ν

η η

−

Σ Σ Σ Σ= − − + ×

−
 (49) 

 The two gain matrices 1KΣ  and 2KΣ  are chosen such that 
they have the same shape as the transpose of the equivalent 
system matrix Σ , with values only on the diagonal and 
zeros elsewhere. The matrices of gain 1LΣ  and 2LΣ  are the 
L  matrices of the equivalent system. Since we want a 
decoupled system, the matrices 1LΣ  and 2LΣ  must also be 
diagonal. 
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 The closed-loop equivalent system (24) with the control 
in (49) is: 

 
( ) ( ){ }

( ) ( ){ }

112
1 2 1 2

12
1 2 1 2 0

ˆ ( )

ˆ ˆ( ) ( )

T m

m d

z I z I zL L zK K

z I zL L zK K z z

η

η η

−−

Σ Σ Σ Σ

−

Σ Σ Σ Σ

= + Σ − − + ×

Σ − − + +
(50) 

The internal stability of the equivalent system can be shown 
using Theorem 6, replacing Ψ  by Σ , and adding Σ  to the 
subscripts of all controller gain. Using the same approach as 
Theorem 6 the resulting characteristic polynomial is: 

 ( ) ( )( )2
1 1 2 2

1

'( )
j j j j

p

j j
j

p z z z k l k lσ σΣ Σ Σ Σ
=

= + − + −∏ . (51) 

There exists a combination of gains 1 j
kΣ , 2 j

kΣ , 1 j
lΣ , and 2 j

lΣ  
(values on the main diagonal of the corresponding gain 
matrices), with the value of iσ , such that the poles are 
strictly inside the unit circle for all j, from 1 to p. 

With the two assumptions A1 and A2, (50) becomes: 

 
( ) ( ){ }

( ) ( )

112
1 2 1 2

12 1
1 2 1 2

1
0

ˆ ( )

( 1)

( 1)

T m

T
m d

T

z I z I zL L zK K

z I zL L zK K z z W

z z W

η

γ

χ

−−

Σ Σ Σ Σ

− −
Σ Σ Σ Σ

−

= + Σ − − + ×

⎧ ⎫Σ − − + −⎪ ⎪
⎨ ⎬
⎪ ⎪+ − Γ⎩ ⎭

(52) 

Theorem 7: Suppose all matrices in (52) are such that the 
system is closed-loop stable. The system output will 
converge to any desired terminal value dγ , if and only if 

1 2 mL L IΣ Σ+ = , 1LΣ  does not have an eigenvalue equal to 2,  
the rank of Σ  is equal to p and the sum of matrices 1KΣ  and 

2KΣ  has also a rank equal to p. 
Proof: The proof is too long for this paper and can be found 
in [4].                                                                                   □ 

Once the second-order TILC design is completed, we can 
find back the gain matrices of the real system since: 
 , 1, 2T

j jL VL V jΣ= = , (53) 

 , 1, 2T
j jK VK W jΣ= = . (54) 

V. SIMULATION RESULTS 
This design approach was used to design a TILC 

controller for a simulation on a model of thermoforming 
oven [5, 14]. The thermoforming model corresponds to an 
industrial AAA thermoforming machine pictured in Figure 
1. We make simulation with different size of thermoforming 
oven model by grouping heater banks and using some of the 
infrared sensors. 

For the design, we linearize the thermoforming model 
around its operating temperature. For the simulation, the 
nonlinear model is used with noise and initial plastic sheet 
temperature variation. 

The first simulation is done with a thermoforming oven 
model with two heaters (top and bottom) and two infrared 
sensors (IRT1 and IRB1). A first order TILC is designed using 
SVD with all closed loop poles located at 0.25. That pole 
location provides fast convergence and some robustness. 

The resulting gain matrix is: 

 
1.97 0.70
0.70 1.97

K
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
. (55) 

With this gain, the system error fall under 5°C at the 
second cycle, as shown in Figure 2.  After the error remains 
under 3°C despite the noise (mean 1°C, standard deviation 
1°C) present in the system. 

Heater
Heater Bank

Infrared sensor

 
Figure 1: Location of heaters and infrared sensors 
(bottom heaters and sensors at the same location) 

5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Cycle number (k)

||S
ur

fa
ce

 te
m

pe
ra

tu
re

 e
rro

r|| ∞
 (°

C
)

 
Figure 2: Error on sheet surface temperature (1st sim.) 

  
A second simulation is done with an oven model having 

six heaters (TT1-T4, TT2-T5, TT3-T6, TB1-B4, TB2-B5 and TB3-B6) 
and six sensors (IRT1, IRT2, IRT5, IRB1, IRB2, and IRB5). The 
designed TILC controller is a second order one and is such 
that all closed loop poles are at 0.25. Figure 3 shows the 
convergence under 5°C in 3 cycles. After, the error remains 
under 4°C. 

A third simulation is performed using again a second 
order TILC designed with the SVD approach with 5 poles at 
0.125 and 5 poles at 0.25. The model used is based on a 
thermoforming oven with 10 heaters (All heater banks are 
independent except banks 2 and 5 which are grouped 
together) and 10 sensors (IRB1, IRB2, IRB3, IRB5, IRB6, IRB1, 
IRB2, IRB3, IRB5, and IRB6). The model used for the 
linearization is different from the model used from the 
simulation since the main parameters have been changed by 
10% [4]. 
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Figure 3: Error on sheet surface temperature (2nd sim.) 
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Figure 4: Error on the sheet surface temp. (3rd sim.) 
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Figure 5: Heater temperature setpoints (3rd simulation) 

Furthermore, the measurement is subjected to noise and 
there is a ±10°C slow sinusoidal variation of initial sheet 
temperature. Despite that, the surface temperature error falls 
below 5°C in 4 cycles. The sinusoidal variation of the initial 
sheet temperature appears on the heater temperature 
setpoints. Note that the TILC algorithm is able to 
automatically adjust the heater temperature setpoint despite 
the variation of sheet parameters and the slow variation of 
the initial sheet temperature. 

VI. CONCLUSION 
This paper has shown that one can easily design a TILC 

controller for a system that has a large number of inputs and 
outputs using SVD decoupling. Industrial thermoforming 
machine are very big machines and this SVD decoupling 
tool is needed. As future work, we need to analyze the effect 
of the condition number of the system matrix on the design 
because it can have an effect on the SVD decoupling design 
on big thermoforming ovens. 
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