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Abstract— In this paper a nonlinear control has been de-
signed using the dynamic inversion approach for automatic
landing of unmanned aerial vehicles (UAVs), along with associ-
ated path planning. This is a difficult problem because of light
weight of UAVs and strong coupling between longitudinal and
lateral modes. The landing maneuver of the UAV is divided
into approach, glideslope and flare. In the approach UAV
aligns with the centerline of the runway by heading angle
correction. In glideslope and flare the UAV follows straight
line and exponential curves respectively in the pitch plane
with no lateral deviations. The glideslope and flare path are
scheduled as a function of approach distance from runway.
The trajectory parameters are calculated such that the sink
rate at touchdown remains within specified bounds. It is also
ensured that the transition from the glideslope to flare path
is smooth by ensuring C1 continuity at the transition. In the
outer loop, the roll rate command is generated by assuring a co-
ordinated turn in the alignment segment and by assuring zero
bank angle in the glideslope and flare segments. The pitch rate
command is generated from the error in altitude to control the
deviations from the landing trajectory. The yaw rate command
is generated from the required heading correction. In the inner
loop, the aileron, elevator and rudder deflections are computed
together to track the required body rate commands. Moreover,
it is also ensured that the forward velocity of the UAV at the
touch down remains close to a desired value by manipulating
the thrust of the vehicle. A nonlinear six-DOF model, which
has been developed from extensive wind-tunnel testing, is used
both for control design as well as to validate it.

I. INTRODUCTION

The capabilities of UAV as flying machines can be ex-

ploited to carry out surveillance missions and remote oper-

ations. The recovery of UAVs in landing is one of the key

operations in flight which define the overall success of the

mission. Landing becomes a more challenging task in case

of light weight vehicles such as UAVs, mainly because of

of the fact that the longitudinal and lateral modes in UAVs

are coupled. This problem cannot be dealt effectively with

linearized models, where underlying assumption is that the

longitudinal and lateral modes are decoupled. In this paper a

nonlinear control design approach is proposed using dynamic

inversion for automatic landing of UAVs.

Landing trajectories of aerial vehicles typically consists

of approach, glideslope and flare [1]. A successful landing

would depend upon the good selection of landing trajectory

and closely following it. Various methods have been adapted

to tackle the problem of automatic landing both for manned
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and unmanned aircrafts. Linearized model of the aircraft have

been used in the literature for autolanding using separate

longitudinal and lateral dynamics, where the control is de-

signed using linear matrix inequality method [2]. Modern

control methods like H2/H∞ have also been used for landing

of UAVs [3]. However, linear system based approaches have

a strong limitation that they work within a small operating

range. Gain scheduling can perhaps be used to overcome this

limitation to a limited extent. However gain scheduling is a

tedious process and there is no guarantee that the interpolated

gains can assure stability of the closed loop system [4].

In this paper a nonlinear control has been designed using

the dynamic inversion technique [5] for automatic landing of

UAVs. Dynamic inversion relies on the philosophy of feed-

back linearization. This feedback control structure cancels

the nonlinearities in the plant such that the closed loop plant

behaves like a stable linear system. This method has several

advantages, like simplicity in the control structure, ease of

implementation, global exponential stability of the tracking

error etc. Note that a feedback linearization technique has

been successfully demonstrated through simulation for auto-

matic landing of a high performance aircraft [1]. The control

implemented for the UAV in this paper has inner loop and

outer loop structure. The outer loop converts the guidance

commands to body rates. Where as inner loop generates the

control to track the body rates desired by outer loop. There

is a separate loop for velocity control which regulates the

desired velocity by throttle control.

The landing maneuver of the UAV is divided into ap-

proach, glideslope and flare. The requirement of variable

gain and blending function [6] for gains at the transition

of glideslope and flare have been reported in literature.

This requirement has been overcome by careful selection of

landing trajectory parameters. This ensures that the transition

from glideslope to flare path is smooth. The glideslope and

flare path parameters are computed online (i.e. they are

not fixed apriori). Note that the trajectory parameters are

calculated such that the sink rate at touchdown remains

within specified bounds.

The proposed control design has been experimented with

respect to a UAV built in the UAV lab of Indian Institute

of Science. Complete nonlinear six degree of freedom (six-

DOF) equations of motion are used to define the dynamics

of the UAV. The aerodynamic coefficients for force and

moments are found from the curve fitting of the wind tunnel

data [7], the philosophy of which is available in the literature

[8]. Note that while curve fitting the nonlinearities in the

aerodynamic coefficients are not neglected.
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II. MATHEMATICAL MODEL

Simulation requires an accurate mathematical model of

the dynamical system so that analysis be meaningful. Here

nonlinear six-DOF equations are used for the simulation. The

aerodynamic force and moment coefficients are found from

curve fitting on wind tunnel data of the UAV.

A. Six-DOF equations of motion

Under the assumptions of airplane to be a rigid body and

earth to be flat the complete set of six-DOF equations [9] of

motion are given by following differential equations.

U̇ = RV −QW −gsinθ +Xa +Xt (1)

V̇ = PW −RU +gsinφcosθ +Ya (2)

Ẇ = QU −PV +gcosφcosθ +Za (3)

Ṗ = c1RQ+ c2PQ+ c3La + c4Na (4)

Q̇ = c5PR+ c6(P
2
−R2)+ c7(Ma +Mt) (5)

Ṙ = c8PQ− c2RQ+ c4La + c9Na (6)

φ̇ = P+Qsinφ tanθ +Rcosφ tanθ (7)

θ̇ = Qcosφ −Rsinφ (8)

ψ̇ = Qsinφsecθ +Rcosφsecθ (9)

ḣ = Usinθ −V sinφcosθ −Wcosφcosθ (10)

In above equations U,V,W are velocity components and

P,Q,R are roll, pitch and yaw rates respectively about the

body axis. φ ,θ ,ψ are euler angles and h is the height above

ground. x is forward distance and y is sideward distance.

x and y position equations are not written above, but they

are included in the simulation. Xa,Ya,Za are the aerodynamic

forces per unit mass and La,Ma,Na are the aerodynamic

moments about the body axis. Xt is the force per unit mass

in direction X due to thrust and Mt is the moment around

the Y axis caused by thrust offset from the center of gravity

(CG) of the aircraft.

B. Aerodynamic forces and moments

The aerodynamic forces and moments are given by

[Xa Ya Za] =
qS

m
[CX CY CZ ] (11)

[La Ma Na] = qS[bCl cCm bCn] (12)

Xt =
1

m
(Tmax σt) (13)

Mt = −d (Tmax σt) (14)

where q is dynamic pressure and S is wing planform area.

b is wing span and c is chord length. Tmax is the maximum

thrust (15 N) which can be produced by the electric motor

and propeller assembly. σt is throttle control which varies

from 0 to 1. It is assumed that thrust produced has linear

relation with throttle input. d is offset of the thrust line from

the CG of the vehicle.

Aerodynamic coefficients obtained from curve fitting on

wind tunnel data [7] are given as

CX =CX0
+CXα (α)α +CXδe

(α)δe+CXQ
(α)Q̄

CY =CYβ
(α)β +CYδa

(α)δa+CYδ r
(α)δ r +CYP

(α)P̄+CYR
(α)R̄

CZ =CZ0
+CZα (α)α +CZβ

β +CZδe
δe+CZQ

(α)Q̄

Cl =Clβ
(α)β +Clδa

(α)δa+ClP(α)P̄+ClR(α)R̄

Cm =Cm0
+Cmα (α)α +Cmβ

(α,β )β +Cmδe
(α)δe+CmQ

(α)Q̄

Cn =Cnβ
(α)β +Cnδ r

(α)δ r +CnP
(α)P̄+CnR

(α)R̄

where,

[P̄ Q̄ R̄] =
1

2Vt

[bP cQ bR]

In above equations α is angle of attack and β is sideslip

angle. δa, δe, δ r are aileron elevator and rudder control

deflections respectively. Some of the static and dynamic

derivatives are functions of α and β . The detailed functions

and constants are given in appendix. Only static tests were

conducted in wind tunnel. The dynamic derivatives are found

with Athennae Vortex Lattice (AVL) software [10].

C. The UAV

Numerical simulations are carried out with the data of a

prototype UAV, named as all electric airplane-2 (AE-2) [7]. It

is designed and developed at UAV lab of aerospace engineer-

ing department, IISc. AE-2 (Fig. 1) is a fixed wing airplane

designed for autonomous flying. It has been designed for

long endurance, where the flight duration is expected to be

around 45 minutes. The thrust generating unit of the AE-

2 is an electric motor with propeller, which is powered by

lithium-polymer battery. It has a pusher configuration of

thrust, this has been done so that gimballed camera can be

mounted at the nose. The physical data of AE-2 is given in

Table I.

TABLE I

PHYSICAL DATA OF AE-2

b c m Ixx Iyy Izz Ixz

m m kg kgm2 kgm2 kgm2 kgm2

2 0.3 6 0.5062 0.89 0.91 0.0015

Fig. 1. AE-2 (All Electric airplane-2)
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III. PATH PLANNING AND GUIDANCE

The autonomous landing of UAVs requires a good path

planning and guidance. Here the landing is divided into three

phases, which are approach, glideslope and flare. The desired

trajectory is made a function of forward distance.

A. Approach

During approach the vehicle should come and align with

the runway at a specified height from where the glideslope

can be started.
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Fig. 2. Approach geometry in x-y plane

In Fig. 2 (x0, y0) is the initial point where UAV is at the

beginning of landing command. (xg, yg = 0) is point from

where glideslope begins. ψ0 is the initial orientation of the

vehicle. The equation for path of approach can be written as

a straight line function of forward distance.

y∗ = y0 +

(

yg − y0

xg − x0

)

(x− x0) (15)

We can find the desired heading angle to be followed by

inverting the kinematics. For this we first write a first order

error differential equation for y, where error ey = y− y∗

ėy + kyey = 0 (16)

The solution of the above differential equation is given as

ey = ey0
e−kyt . If ky is chosen positive than ey → 0 as t → ∞.

Expanding (16) we can write,

(ẏ− ẏ∗)+ ky(y− y∗) = 0 (17)

ẏ = ẏ∗− ky(y− y∗) (18)

From six-DOF equations we can write,

ẏ = ay sinψ +by cosψ (19)

where,

ay , Ucosθ +V sinφsinθ +Wcosφsinθ

by , V cosφ −Wsinφ

Substituting (19) in (18) than solving for ψ

ψ∗ = sin−1





ẏ∗− ky(y− y∗)
√

a2
y +b2

y



− tan−1

(

by

ay

)

(20)

B. Glideslope

During glideslope the height of the vehicle above ground

is controlled. The desired height is scheduled as a function

of forward distance. The glideslope is a straight line path

whose slope is defined by the flight path angle.
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Fig. 3. Landing geometry in x-h plane

In Fig. 3 (xg, hg) is the point where glideslope begins.

(x f , h f ) is point where flare begins. (xtd , htd = 0) is the

touchdown point. (0, 0) is the origin of inertial frame at the

beginning of runway. (xg0
, hg0

= 0) is a fictitious point on

ground from where glideslope is projected. (x∞, hc) is the

final point of flare path, this point is chosen to be below

ground so that exponential flare path intersects the ground at

touchdown point.

When the UAV enters in glideslope initiation zone the

required flight path angle which vehicle has to follow is

calculated as follows

γ∗ = tan−1

(

hg −hg0

xg − xg0

)

(21)

Than the desired height at every point of glideslope can be

written as a function of forward distance

h∗ = (x− xg0
) tanγ∗ (22)

C. Flare

During flare the height of the vehicle above ground is

controlled. The flare path is an exponential curve. The

desired height during exponential flare can be scheduled as

a function of forward distance.

h∗ = hc +(h f −hc)e
−kx(x−x f ) (23)

The unknowns in above equation are flare height h f , distance

at which to begin flare x f , final height below the ground

where flare trajectory should end hc, and constant kx. We

can solve for these four unknowns under the following four

constraints,

Initial condition: The point where glideslope ends and flare

begins be coincident. Substituting x = x f in (22) and (23)

than equating

h f = −(x f − xg0
) tanγ∗ (24)
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Initial slope: The slope at the beginning of flare and at the

end of glideslope be same. Differentiating (22) and (23) than

equating at x = x f

(h f −hc)kx = tanγ∗ (25)

Touchdown condition: The flare trajectory should intersect

the ground at touchdown point. Replacing x = xtd and h∗ = 0

in (23) we get,

0 = hc +(h f −hc)e
−kx(xtd−x f ) (26)

Sink rate at touchdown: The descent rate at touchdown

should be equal to specified sink rate. Differentiating (23)

and evaluating at x = xtd . Putting ḣ∗ = ḣ∗td , where ḣ∗td is the

desired sink rate at touchdown. Here we assume the forward

velocity at touchdown is nearly equal to air velocity.

ḣ∗t = −(h f −hc)kxẋtde−kx(xtd−x f ) (27)

Now we can solve the (24-27) for the four unknowns of

the landing trajectory. The solution will ensure a smooth

transition from glidelsope to flare path. We also have the

direct control over the touchdown point and sink rate at

touchdown. Which can be the design parameters and tuned

as per the need. Now the goal of control design is to closely

track the desired landing trajectory.

IV. CONTROL DESIGN

Dynamic Inversion is a promising technique for nonlinear

control design based on theory of feedback linearization.

In dynamic inversion the nonlinearities are canceled by

feedback so that linear control system theory may be applied.

This is achieved by enforcing stable error dynamics so that

error goes towards zero by time hence achieve the tracking.

Here the control is divide into outer and inner loop. The

outer loop transforms the guidance commands into the body

rates. Further inner loop generates the control required for

tacking the desired body rates commanded by outer loop.

A. Outer Loop Control

1) Heading control: The heading is controlled during

landing by generating yaw rate command from the error in

heading angle. The desired heading is found from the lateral

deviation from runway. Writing first order error dynamics

for ψ , where error = ψ −ψ∗

(ψ̇ − ψ̇∗)+ kψ(ψ −ψ∗) = 0 (28)

ψ̇ = ψ̇∗
− kψ(ψ −ψ∗) (29)

Separating terms containing R from ψ̇ equation (9) and

rearranging above equation we get,

R∗ = secφcosθ(ψ̇∗
− kψ(ψ −ψ∗))−Qtanφ (30)

2) Altitude control: The height during landing is con-

trolled by generating pitch command from the error in height.

The desired height is found from the guidance. Writing

second order error dynamics for h, where error = h−h∗

(ḧ− ḧ∗)+ kḣ(ḣ− ḣ∗)+ kh(h−h∗) = 0 (31)

ḧ = ḧ∗− kḣ(ḣ− ḣ∗)− kh(h−h∗) (32)

Under the assumption that the velocities do not change much

in one time step, we differentiate ḣ equation (10) in order to

get ḧ. We can write symbolically

ḧ = ah +bh φ̇ + ch θ̇ (33)

where ah, bh, ch are defined as

ah , U̇sinθ − (V̇ sinφ +Ẇcosφ)cosθ

bh , −(V cosφ −Wsinφ)cosθ

ch , Ucosθ +(V sinφ +Wcosφ)sinθ

Substituting back equation (33) in (32)

ah +bh φ̇ + ch θ̇ = ḧ∗− kḣ(ḣ− ḣ∗)− kh(h−h∗) (34)

Now separating the terms containing Q, in φ̇ and θ̇ from

equation (7) and (8) respectively

φ̇ = fφ +gφ Q (35)

θ̇ = fθ +gθ Q (36)

where, fφ , P+Rcosφ tanθ gφ , sinφ tanθ

fθ , −Rsinφ gθ , cosφ

Substituting (35) and (36) in (34) than rearranging

Q∗ =
ḧ∗− kḣ(ḣ− ḣ∗)− kh(h−h∗)− (ah +bh fφ + ch fθ )

(bhgφ + chgθ )
(37)

3) Bank angle control: To control bank angle roll rate

command is generated from the error in roll angle. Where

desired roll angle is zero for level flight and in the case of a

turn it is found from the coordinated turn constraint. Writing

first order error dynamics for φ , where error = φ −φ ∗

(φ̇ − φ̇ ∗)+ kφ (φ −φ ∗) = 0 (38)

φ̇ = φ̇ ∗
− kφ (φ −φ ∗) (39)

separating terms containing P from φ̇ equation (7) and

rearranging above equation we get,

P∗ = φ̇ ∗
− kφ (φ −φ ∗)− (Qsinφ +Rcosφ)tanθ (40)

B. Inner Loop Control

1) Body rate control: To achieve successful landing the

control should be calculated such that it tracks the body

angular rates desired by the outer guidance loop. We can

write objective as [P Q R]T −→ [P∗ Q∗ R∗]T . Let error

be e = [(P−P∗) (Q−Q∗) (R−R∗)]T . Writing first order

error dynamics
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



Ṗ− Ṗ∗

Q̇− Q̇∗

Ṙ− Ṙ∗



 +





kP 0 0

0 kQ 0

0 0 kR









P−P∗

Q−Q∗

R−R∗



 = 0

(41)




Ṗ

Q̇

Ṙ



 =





Ṗ∗
− kP(P−P∗)

Q̇∗
− kQ(Q−Q∗)

Ṙ∗
− kR(R−R∗)





separating the state and control terms in Ṗ, Q̇, Ṙ from

equation (4-6) and rearranging above equation we can write

fR +gRUc = bR (42)

carrying out the necessary algebra, the solution is

Uc = g−1
R (bR − fR) (43)

where, Uc = [δa δe δ r]T and other terms are defined as

follows

fR ,





c1RQ+ c2PQ+ c3Lax + c4Nax

c5PR+ c6(P
2
−R2)+ c7(Max −Mt)

c8PQ− c2RQ+ c4Lax + c9Nax





gR ,





c3Lau 0 c4Nau

0 c7Mau 0

c4Lau 0 c9Nau





bR ,





Ṗ∗
− kP(P−P∗)

Q̇∗
− kQ(Q−Q∗)

Ṙ∗
− kR(R−R∗)





where,

Lax , q̄Sb[Clβ
(α) β +ClP(α) P+ClR(α) R]

Max , q̄Sc[Cm0
+Cmα (α) α +Cmβ

(α,β ) β +CmQ
(α) Q]

Nax , q̄Sb[Cnβ
(α) β +CnP

(α) P+CnR
(α) R]

and,

Lau , q̄SbClδa
; Mau , q̄ScCmδe

; Nau , q̄SbCnδ r

2) Velocity control: The forward velocity is maintained

constant during landing by controlling the thrust through

throttle. We can write error in velocity as (U −U∗), where

U∗ is the velocity which has to be maintained during landing.

Enforcing the first order error dynamics.

(U̇ −U̇∗)+ kU (U −U∗) = 0 (38)

U̇ = U̇∗
− kU (U −U∗) (39)

Separating the state and control terms in U̇ from (1) and

rearranging

fU +gU σt = bU (40)

The control solution is

σt = g−1
U (bU − fU ) (41)

where,
fU , RV −QW −gsinθ +Xa

gU ,
Tmax

m

bU , U̇∗
− kU (U −U∗)

C. Control structure

Fig. 4 is the schematic diagram of the overall control

structure. The velocity loop is not shown in figure. Note that

desire height (h∗), desires heading angle (ψ∗) and desired

roll angle (φ ∗) are coming from guidance.

Fig. 4. Control structure

V. SIMULATION RESULTS

To evaluate the algorithm various cases have been simu-

lated with different initial conditions of which two cases are

presented here. The simulation results are given along with

the result in tabulated form.

A. Landing results

The complete landing sequence of approach, glideslope

and flare has been simulated. Two cases with different initial

conditions are considered. One such case (Case 2) is also

considered in which the UAV has to loose height during

approach. Fig. 5 shows the trajectory followed by the UAV

during landing. Initial part of the trajectory is approach where

it is aligning with runway. Next part is descent and flare

which are in longitudinal plane.
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Fig. 5. Trajectory in 3-D during landing
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Fig. 6 shows the landing trajectory in horizontal plane.

Where as Fig. 7 shows the landing trajectory in vertical or

longitudinal plane. The Fig. 8 shows the control plots for

landing. It is observed that in initial part of landing there are

some oscillations in control values this is because in initial

segment the lateral and longitudinal both the maneuvers are

taking place.
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Fig. 6. Trajectory in x-y plane during landing
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Fig. 7. Trajectory in x-h plane during landing
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Fig. 8. Throttle, elevator, aileron and rudder controls

The numerical results are given in Table II. It can be

observed that the desired touchdown point (50m) and desired

sink rate (−0.1m/s) at touchdown are achieved successfully.

TABLE II

LANDING RESULTS

(x0,y0,h0) ψ0 (xg,yg) xtd ḣtd

m deg m m m/s

Case 1 (-1500, 10, 50) 120o (-1000, 50) 48.76 -0.1001

Case 2 (-1500, 50, 60) 45o (-1100, 50) 48.97 -0.1001

VI. CONCLUSIONS

In this paper a guidance and nonlinear control design

for automatic landing has been demonstrated. The simu-

lation results are promising and show the robustness of

the algorithm for different initial conditions. The glideslope

and flare path parameters are calculated online, such that it

achieves the touchdown point. The sink rate at touchdown

remains within specified bounds. It is also ensured that

the transition from the glideslope to flare is smooth. The

dynamic inversion technique is used for nonlinear control

design. The underlying assumption of dynamic inversion is

that we have a accurate knowledge of the dynamic model

and true estimate of the states. However these problems can

be addressed by augmenting dynamic inversion with neuro-

adaptive technique and using extended kalman filter for state

estimation. Further algorithm needs to be tested in presence

of wind shear and wind gust.
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