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Abstract— Thalamus is concerned with the relay of visual
information from the retina to the visual cortex. Interestingly,
the information transfer is strongly mediated by nonlinear
dynamics of the neurons. In particular, experiments have shown
that the thalamic neurons process visual input in two distinct
nonlinear dynamic modes, the so-called tonic mode and the
burst mode. This paper is concerned with a bifurcation analysis
of the Hodgkin-Huxley type models of thalamic neurons. The
analysis is used to show that the tonic mode arises as a type
of global bifurcation where a homoclinic orbit interacts with a
saddle node bifurcation in equilibria. Such a bifurcation is very
efficient at the kind of rate coding that has been experimentally
observed in the tonic mode. The burst mode is consistent with a
subcritical Hopf bifurcation in slow currents. Finally, for both
modes, the electrophysiological role of the so-called slow and
fast currents is also discussed.

I. INTRODUCTION

The thalamus is a centrally located brain structure through

which most sensory information (including visual input from

retina) must pass prior to transfer to the neocortex. At this

level, the thalamic circuit integrates signals from the retina,

feedback signals from the neocortex, and arousal/attention-

related signals from the brainstem [1]. Although the role

of the thalamus in sensory and visual signal processing is

appreciated, the fundamental aspects of its function are not

understood [2].

From an input-output standpoint, the thalamic circuit re-

lays retinal input to thalamic output (into cortex) and as

such represents an early stage of visual signal processing.

Experimental studies indicate that there are two modes of

information transfer in a thalamic circuit: the tonic mode

and the burst mode [3]. Figure 1 depicts the experimentally

obtained action potential discharge for neurons in these two

modes [3].

In this paper, we investigate the role of nonlinear dynamics

underlying the transfer of information in these two modes.

There is a rich literature that shows that the nonlinear

dynamics are important in mediating information flow in

neurons (e.g., [4], [5], [6]). The study is carried out with

the aid of a model of a thalamocortical (TC) relay neuron

in the dorsal lateral geniculate nucleus (dLGN) in thalamus.

The Hodgkin-Huxley model of the TC neuron includes single

compartment models of fast sodium (Na+) and potassium

(K+) currents, and the slow low-threshold calcium (Ca2+)
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Fig. 1. Experimentally observed tonic and burst modes [3].

and hyperpolarization-activated sag currents. Time-domain

simulations with the model show equilibrium, burst and tonic

responses as the input current Iin is varied. The input current

models a generic input to the TC neuron (for e.g., an input

from ganglion cells in the retina).

To better understand the observed responses, we carry

out a systematic bifurcation study with the input current Iin

serving as a continuation parameter. To get a handle on the

relative influence of the slow and fast currents, the study

is first carried out for models where either the slow or the

fast current is turned off. For example, the slow current

is turned off by setting the value of conductances for the

low-threshold calcium and hyperpolarization-activated sag

currents equal to zero. Such a study is used to show that the

slow currents have a rather small effect on the tonic mode

response characteristics.

The bifurcation analysis helps explain the nonlinear dy-

namics underlying the two modes. In particular, the analysis

is used to show that the tonic mode arises as a result of

the saddle node on invariant circle (SNIC) [4] bifurcation.

It refers to a type of global bifurcation where a homoclinic

orbit interacts with a saddle node bifurcation in equilibria [4].

The bifurcation is very efficient at the kind of rate coding

that has been experimentally observed in the tonic mode.

The burst mode is shown to be consistent with a subcritical

Hopf bifurcation in slow currents. Such a bifurcation helps

explain the observed slow frequency characteristics of the

burst mode.

The remainder of the paper is organized as follows.

Section II presents the details of modeling a TC neuron and

section III describes the results of time-domain simulations

as the input current Iin is varied. Section IV presents the

results of continuation study carried out with the input

current Iin as the free parameter with the aid of software

AUTO. The bifurcation diagram together with nonlinear

dynamics underlying the rate coding in tonic mode are

described in detail. The conclusions and some directions for
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future research are discussed in Section V.

II. MODELING

We consider a conductance-based single compartment

model ([7], [8], [4]) of a single TC neuron:

C
dV

dt
= Iin − Imem, (1)

where C is the capacitance, V is the voltage across the

membrane (also called membrane potential), Iin is the input

current, and Imem is the sum of the neuron membrane

currents:

Imem = IL + IT + Ih + INa + IK .

It contains both passive currents and active currents. For the

passive currents, we consider the potassium leakage current

and the non-specific leakage current:

IL = IKL + INL

= gKL(V −EK)+gNL(V −ENL),

where gKL and gNL are the potassium leakage conductance

and non-specific leakage conductance, respectively, and EK

and ENL are their respective reversal potentials.

For the active currents, we consider both slow and fast

currents. The models for these currents are described next.

A. Slow Currents

For slow currents, we consider the T-type calcium current

IT and the hyperpolarization-activated sag current Ih:

IT = ḡT ·m2
∞(V ) ·h · (V −ET ),

Ih = ḡh · r · (V −Eh),

where ḡT and ḡh are the maximal conductances, ET and Eh

are the reversal potentials, and h and r are the gating variables

for T-type calcium and sag currents, respectively. IT has

another gating variable m, which is fast compared to h. So,

we replace m with its equilibrium function m∞(V ) to reduce

the number of states. The dynamics of gating variables for

slow currents have the generic form:

dx

dt
=

x∞(V )− x

τx(V )
, x ∈ {h,r}, (2)

where x∞(V ) is the equilibrium function of the corresponding

gating variable, and τx(V ) is the voltage-dependent time con-

stant. The explicit formula for these appear in the appendix.

B. Fast Currents

For fast currents, we consider the fast sodium current INa,

and the fast potassium current IK :

INa = ḡNa ·m
3
Na,∞(V ) ·hNa · (V −ENa),

IK = ḡK ·n4 · (V −EK),

where ḡNa and ḡK are the maximal conductances, ENa and

EK are the reversal potentials, mNa,∞(V ) is the equilibrium

function of gating variable. hNa and n are the gating variables

and have the same form of dynamics as (2) with x∈ {hNa,n}.

The explicit formula for these together with the parameter

values are given in the appendix.

C. Summary of model

The model including both slow and fast currents is de-

scribed by the following set of ODEs:

C
dV

dt
= Iin −

IL
︷ ︸︸ ︷

(gKL(V −EK)+gNL(V −ENL))

−

IT
︷ ︸︸ ︷

ḡT m2
∞(V ) ·h · (V −ET )−

Ih
︷ ︸︸ ︷

ḡh · r · (V −Eh) (3)

−

INa
︷ ︸︸ ︷

ḡNam3
Na,∞(V )hNa(V −ENa)−

IK
︷ ︸︸ ︷

ḡK ·n4 · (V −EK),

(slow)







dh

dt
=

h∞(V )−h

τh(V )
,

dr

dt
=

r∞(V )− r

τr(V )
,

(4)

( f ast)







dhNa

dt
=

hNa,∞(V )−hNa

τhNa
(V )

,

dn

dt
=

n∞(V )−n

τn(V )
.

(5)

To model only the effect of fast currents, we set ḡT = ḡh = 0.

This leads to a 3-state model (3) and (5) in state (V , hNa,

n). Similarly, the effect of slow currents alone is modeled by

setting ḡNa = ḡK = 0. This leads to a 3-state model (3) and

(4) in states (V , h, r).

III. TIME DOMAIN SIMULATIONS

In this section, we present the results of time domain sim-

ulations with the 5-state model (3)-(5); the parameter values

are given in table I in the appendix. With certain negative

(hyperpolarizing) constant input currents, the model exhibits

a slow periodic burst with fast spikes sitting at the crest,

known as burst mode. With other positive (depolarizing)

constant input currents, it exhibits periodic fast spikes, known

as tonic mode. The two responses are summarized next:

Burst Mode: Figure 2 (a) depicts the time-series of

the response with a constant input current at the value of

Iin = −0.7µA/cm2. The initial membrane potential is set

to V0 = −60 mV . The response shows that the slow-gating

variables have the same period of rhythmicity as the burst,

while the fast-gating variables have the same characteristics

as the spikes of the burst. This is qualitatively consistent

with the experimental results of [9], where the so-called low

threshold spiking (LTS) is mainly the result of IT and Ih [10].

Tonic Mode: Figure 2 (b) depicts the time-series of the

response with a constant input current at the value of Iin =
1.0µA/cm2. The initial membrane potential is set the same

value as burst mode. The response shows that the value of

slow-gating variables are small while the fast-gating variables

dominate and have the same characteristics as the membrane

potential.

To better understand the sensitivity of these two response

models to system parameters, we also carried out numerical

investigations with different values of gKL. This parameter

is thought to play an important role in regulation of re-

sponse mode by brainstem [11]. Figure 2 (c) summarizes

the solution regions together with the boundaries between
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Fig. 2. Simulation results: (a) Burst mode; (b) Tonic mode; (c) Bifurcation diagram in (gKL, Iin) plane.

equilibrium, burst and tonic mode for changing values of

gKL. In each of these regions, the time-domain simulations

exhibit the stated asymptotic solution state after a brief period

of transients. For a fixed value of gKL, the qualitative picture

of transition is same as the one just described. Quantitatively,

the onset of the tonic mode requires greater threshold of input

current Iin as gKL increases.

Variations in gKL can thus lead to qualitative changes in

response with same input current Iin. For example, when

Iin = 0µA/cm2 and gKL = 0.015mS/cm2, the neuron is at an

equilibrium. Suppose the input current changes suddenly to

Iin = 0.75µA/cm2 as a result of change in the environment,

the solution transits to tonic oscillation. Similarly, for a larger

value of gKL, e.g. 0.025mS/cm2, one obtains an equilibrium

solution again, as is shown by the arrows in Figure 2 (c).

IV. BIFURCATION ANALYSIS

In this section, we present the results of bifurcation

analysis with the models. The analysis is carried out with

the aid of continuation software AUTO [12]. The analysis

is structured such that we present the results with 3-state

models (slow-currents only in section IV-A and fast currents

only in section IV-B) before describing results with the 5-

state model in section IV-C.

A. Analysis of model with slow currents (ḡNa = ḡK = 0)

We set ḡNa = ḡK = 0 so the membrane current

Imem = IL + IT + Ih.

The model is described by equation (3) for membrane

potential and equation (4) for the two slow-gating variables

h and r. In the following, we describe results of equilibrium

analysis and continuation study in input current Iin.

The equilibria of the 3-state model are obtained by setting

the right hand side of (3) and (4) to zero:

Iin − Imem = 0 (6)

x∞(V )− x = 0 x ∈ {h,r}. (7)

At the equilibrium, we have h = h∞(V ) and r = r∞(V ).
Substituting these into (6), we obtain an equation only in

terms of V . With three variables we have

F(s)(V )
.
= Iin − IL − IT − Ih

= Iin − IL − ḡT ·m2
∞(V ) ·h∞(V ) · (V −ET )

− ḡh · r∞(V ) · (V −Eh). (8)

As a result, the equilibria of (6)-(7) are completely described

in terms of equilibria of (8).

Figure 3(a) depicts the graph of function F(s)(V ) with slow

currents only. The function is monotone and there is only

one equilibrium irrespective of the value of input current Iin.

Figure 3(b) depicts the continuation of the equilibrium as Iin

is varied. The equilibrium was found to be unstable for input

current in the interval [−1.064,−0.165](µA/cm2). At the

value of Iin =−0.165, there is a sub-critical Hopf bifurcation

resulting in large amplitude oscillation. The resulting branch

of periodic orbit is depicted in the figure. Each point along

the periodic orbit branch depicts the maximum value of the

membrane potential solution V (t). The time-period of these

oscillation is used to obtain the frequency that is depicted

in Figure 3(c). The low frequency (1− 4Hz) nature of the

solution is quantitatively consistent with the time-domain

simulation (these comparisons are given in the figure) and

also qualitatively consistent with the experimental results (

see [10]).

B. Analysis of model with fast currents (ḡT = ḡh = 0)

We set ḡT = ḡh = 0 so the membrane current

Imem = IL + INa + IK .

As before, the equilibria of the resulting 3-state model (3)

and (5) are completely characterized by the equilibria of the

function

F( f )(V )
.
= Iin − IL − INa − IK

= Iin − IL − ḡNa ·m
3
Na,∞(V ) ·hNa,∞(V ) · (V −ENa)

− ḡK ·n4
∞ · (V −EK).

This function is qualitatively different from F(s)(V ). The

fast current model has three equilibria for a certain range of

input currents (see Fig. 3(d)). In the continuation space with

Iin, the equilibrium solution branch now arises as a S-shaped

curve (see Fig. 3(e)). Locally, two equilibria “disappear”
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Fig. 3. Bifurcation analysis for TC model: First row (a,b,c) shows the results for slow current case; Second row (d,e,f) shows the results for fast currents;
Third row (g,h,i) shows the results for both currents; First column (a,d,g) shows F(V ); Second column (b,e,h) shows the bifurcation diagram (blue line
and red dashes indicate the equilibrium, others for periodic orbit; dashed line indicates unstable equilibrium (or periodic orbit) solutions, the number on
top of dashed line indicates the number of unstable eigenvalues (Lyapunov exponents)); Third column (c,f,i) shows the frequency as a function of input
current Iin.

via a saddle node bifurcation at the two turning points on

this branch. At the lower turning point along the S-shaped

branch, the equilibrium solution loses stability because a

real eigenvalue crosses the imaginary axis. At the upper

turning point, another eigenvalue crosses the imaginary axis

into right half plane (RHP). So, the upper branch of the

equilibrium solution is unstable with two eigenvalues in the

RHP. For a very large value of Iin, the two eigenvalues in

the RHP cross back into the left half plane (LHP) via a

supercritical Hopf bifurcation. Continuation of the periodic

orbit in Iin from the Hopf bifurcation point results in a branch

of periodic orbit solution that are depicted in Figure 3(e) as

a thick black line composed of “+”. The solution terminates

into a homoclinic orbit at the value of Ic
in = 1.0µA/cm2, same

as the critical value where the saddle node bifurcation occurs

(lower turning point).

The phase space schematic of the resulting global bi-

furcation is described in Figure 4. For Iin < Ic
in, there are

three equilibria, one of which is stable and other two are

unstable. Time domain simulations show that the trajectories

asymptote to the stable equilibrium. At Iin > Ic
in there is only

unstable equilibrium and trajectories asymptote to a stable

Fig. 4. Phase space schematic of the global bifurcation underlying the tonic
mode: black circle indicates stable equilibrium while white circle indicates
unstable one.

periodic orbit. As Iin ↓ Ic
in from above, the time period of

the oscillation grows and at the critical point Iin = Ic
in, the

orbits terminate in a homoclinic orbit. As Iin ↑ Ic
in from below,

the two equilibria along the lower and middle branches in

the S-shaped branch merge into a single marginally stable

equilibrium. The homoclinic orbit represents the unstable

manifold for this equilibrium. As Iin increases, the equilib-

rium disappears due to the saddle node bifurcation and the

homoclinic orbit is replaced by a stable periodic orbit with

a finite period.

The resulting bifurcation has an exquisite frequency cod-
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ing characteristics as shown in Figure 3(f). As Iin increaseas

beyond Ic
in, the frequency increases in a nearly linear fashion

for a certain range of input current values.

C. Analysis of model with both currents

In this subsection, we present the results of bifurcation

analysis with the 5-state model ((3)-(5)) that has both slow

and fast currents. We begin by describing the equilibria that

now are characterized by the equilibria of the function

F(b)(V )
.
= Iin − IL − IT − Ih − IK − INa

= Iin − IL − ḡT ·m2
∞(V ) ·h∞(V ) · (V −ET )

− ḡh · r∞(V ) · (V −Eh)− ḡK ·n4
∞ · (V −EK)

− ḡNa ·m
3
Na,∞(V ) ·hNa,∞(V ) · (V −ENa).

This function, depicted in Figure 3(g), is qualitatively sim-

ilar to F( f )(V ) with three equilibria in a certain range

of input current. Continuation in Iin shows a S-shaped

solution branch with two turning points. Along the lower-

branch, the solution loses stability in a certain interval

[−1.064,−0.165](µA/cm2) much the same as for the 3-

state model with slow currents alone (see section IV-A). The

stability characteristics at two turning points are similar to

the 3-state model with fast currents alone (see section IV-B).

With the 5-state model, one gets almost the same picture

of the tonic mode solution characteristics as the 3-state

model with fast currents (see section IV-B and Fig. 3(e) and

(h)). The global bifurcation involving a local saddle node

bifurcation and a global homoclinic orbit leads to efficient

frequency coding even with the 5-state model. Figure 3(i)

depicts the frequency characteristics. Quantitatively, this is

very similar to Figure 3(f) with 3-state alone. Thus a 3

state model with fast currents alone describes the solution

behavior adequately in the tonic region.

We next describes continuation study for hyperpolarizing

current (Iin < 0). As already noted, the equilibrium along

the lower solution branch loses stability for input current in

the interval [−1.064,−0.165](µA/cm2). Using time-domain

simulations, one obtains a burst response mode in this

interval. These solutions are depicted in Figure 3(h) using

the maximum value of solution V (t). Using continuation,

one obtains an unstable branch of periodic orbits (shown

in Fig. 3(h)) that has secondary bifurcation points (torus

bifurcation). Our conjecture is that burst mode arises as a

result of one of these secondary bifurcations. We could not

validate our conjecture because obtaining such solutions via

continuation methods in AUTO is currently not possible.

D. Summary

Tonic mode: Figure 2 (b) describes time-domain simula-

tions in tonic mode for 5-state model. These are explained

using the bifurcation diagram in Figure 3(e) and (h). The

bifurcation involves a global bifurcation as described by

Figure 4. Such a bifurcation is efficient at frequency coding

(see Fig. 3(f)). Analysis of 3-state and 5-state model showed

that the fast currents alone captures both the qualitative bifur-

cation picture as well as the quantitative value of frequency.
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Continuation provides an elegant alternative to obtain the

periodic orbit solution in the tonic region (see Fig. 3(h)).

Burst mode: Figure 2 (a) describes time-domain simu-

lations in burst mode for 5-state model. These simulations

are partially explained using the bifurcation diagram with 3-

state (slow currents only) and 5-state models. In particular,

the burst arises as a result of equilibrium losing stability

via Hopf bifurcation. Continuation studies with the 3-state

model alone showed the slow-frequency LTS solutions. How-

ever, the time-domain simulations with 5-state model shows

additional spikes due to fast currents that ride on the LTS

solution (see Fig. 2 (a)). We could not use continuation to

obtain this solution. Nevertheless, our studies revealed that

the frequency characteristics of underlying LTS solution is

qualitatively very similar for both 3-state and 5-state model

(see Fig. 5). The range of currents where burst response is

seen is also the same and well captured by analysis using

either models. Thus, the 3-state model can be used to carry

out approximate analysis of the LTS behavior underlying the

burst mode solution.

Continuation with gKL:

The analysis shows that the tonic response mode arises

at the lower turning point (saddle node-bifurcation). We

continued this point in AUTO as a function of gKL to obtain

the boundary for tonic mode in the (gKL, Iin) space. Likewise,

the burst mode arises due to the two Hopf bifurcation points

whose continuation is used to describe the boundary for burst

mode. The resulting solution region obtained using AUTO

are summarized in Figure 6. Comparison with time-domain

simulation is also given.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we carried out a systematic bifurcation anal-

ysis with Hodgkin-Huxley type models of a thalamic relay

neuron. Time-domain simulations of the model show that
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it exhibits different responses with different input currents.

These responses were further investigated with the aid of a

continuation-based study using AUTO. The analysis showed

that tonic mode arises as a type of global bifurcation where

a homoclinic orbit interacts with a saddle node bifurcation

in equilibria. Such a bifurcation is very efficient at frequency

coding. In future work, we will seek to extend this analysis

to include additional neurons, such as thalamic reticular and

cortical neurons. Of particular interest will be to determine

the impact of inter-connections on tonic mode response

characteristics.

APPENDIX

The equilibrium functions of the three gating variables m,

h and r take the generic form:

x∞(V ) =
1

1+ e−(V−Vx)/kx
, x ∈ {m,h,r},

where Vx is the value where x∞(Vx) = 1
2

and kx determines

the slope of the curve. The positive value of kx results in

a monotonically increasing function while negative value a

monotonically decreasing one. For h and n, the time constant

functions are:

τh(V ) = 7.14+
52.4

1+ e−(V−Vht )/kht
,

τr(V ) = 20+
1000

e(V−Vrt1)/krt1 + e−(V−Vrt2)/krt2
.

The explicit form of fast gating variables is given by

x∞(V ) =
αx

αx +βx

, x ∈ {mNa,hNa,n},

τx(V ) =
1/Φx

αx +βx

, x ∈ {hNa,n},

where Φx is a constant that serves to speed up the gating

variable response, and αx, βx are the voltage dependent

gating variable specific functions:

αmNa
=

−V+29.7−σm
10

e−(V+29.7−σm)/10 −1
,

βmNa
= 4e−

V+52.7
18 ,

αhNa
= 0.07e−

V+15.7−σNa
20 ,

βhNa
=

1

e−(V−14.3−σNa)/10 +1
,

αn =
−V+45.7−σK

100

e−(V+45.7−σK)/10
,

βn = 0.125e−
V+55.7−σK

80 .

The parameters used in numerical implementation of these

functions are listed in table I.
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