
 
 

 

  

Abstract — This paper presents a new modeling and robust 
control approach for active noise blocking (ANB). The 
proposed modeling technique is based on a new non-minimal 
state-space realization (NSSR) of continuous-time multiple-
input multiple-output (MIMO) linear time-invariant (LTI) 
systems. The NSSR model generates a non-minimal set of states 
for a given system, using measured inputs and outputs, without 
differentation. From the NSSR model, using an H∞ model 
reduction technique, a reduced-order state space (RSS) model 
is derived with known states. A multi-model H∞ state-feedback 
(MHSF) control is then designed, in an LMI framework, for 
multiple RSS models of the system. This control design has an 
increased robustness against modeling uncertainty when 
different frequency responses of the system belong to a 
bounded convex set. Hardware experiments using a digital 
signal processor (DSP) have been carried out in order to verify 
the applicability and the performance of the proposed NSSR-
based modeling and vibration control of a plate for active noise 
blocking (ANB) in a 3D acoustic enclosure. 

I. INTRODUCTION 
Active noise control (ANC) with the aim of reducing the 

effects of unwanted audio signals has received a great deal 
of attention in the control community over the last decade. 
Current reaserch on low frequency audio noise reduction has 
mainly considered feedforward and feedback ANC methods 
[18], [19], [23], since the passive methods are ineffective. 
Feedforward  ANC  techniques, in general, cannot deal well 
with post design structural variations. On the other hand, 
feedback ANC schemes, developed by Olsen and May in 
1953, are based on feedback control and can deal with 
model variations [20]. However, feedback ANC using 
microphones and speakers are effective only in small 
regions around the error microphones, known as the zones 
of quiet, while the noise may be increased outside these 
regions [15], [16]. Alternatively, successful active noise 
reduction can be achieved in large spaces, such as in 
aircraft/vehicle cabins, and coal mines, using active noise 
blocking (ANB) panels utilizing piezoelectric patches as 
sensors and actuators [19]. Here, a modeling and robust 
feedback control method is proposed for an aluminum panel 
with piezoelectric patches for active noise blocking (ANB) 
in a 3D acoustic enclosure. 

That is, in this paper, a new non-minimal state space 
realization (NSSR) technique [22] is reported for modeling 
continuous-time multiple-input multiple-output (MIMO) 
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linear time-invariant (LTI) systems. The states of this NSSR 
model can be found directly from input output 
measurements, without any differentiation. Moreover, a 
reduced-order state-space (RSS) approximation of this 
model can be found, also with known states, using an H∞ 
model reduction technique, [10], [13], [24]. The RSS model 
of the system is then controlled using an H∞ state feedback 
(HSF) control [1], [8], which can guarantee the closed-loop 
stability despite bounded disturbances. However, to improve 
robustness against model uncertainties, several estimated 
frequency response models of the system are simultaneously 
considered for H∞ control design, in an LMI framework. 

Here, vibration control of a plate is considered for ANB 
application in a 3D acoustic enclosure. A 2-input 2-output 
NSSR model of this plate is found to be of 32nd order, using 
continuous-time Kalman filter (KF) parameter estimation. 
Reducing the order of the NSSR model, a 4th order RSS 
model is found, with known states, for HSF control of the 
ANB plate. Given various frequency responses of the 
system with RSS models, an MHSF control is designed for 
all these models, simultaneously, in LMI framework [2], 
[12], for ANB application with increased robustness.  

This paper is organized as follows. Section 2 presents a 
modeling technique based on nonminimal state-space 
realization (NSSR), Kalman filter (KF) parameter estimation 
and H∞ model reduction. Section 3 presents robust control 
methodology in an LMI framework. Section 4 presents the 
experimental results. Finally, conclusions are summarized in 
Section 5. 

II. MODELING  
Given the mathematical structure of a linear time-invariant 

(LTI) model of a system with unknown parameters there are 
various identification techniques for estimating its 
parameters. The parameter estimation technique considered 
in this study is the Kalman filter (KF) method [4], [23]. The 
technique is applicable to both the LTI and the slowly time-
varying systems and can be applied to systems that are 
corrupted by white noise. 
 

A. Non-minimal state-space realization 
Consider a controllable and observable MIMO system in 

state-space form, as 
,     x Ax Bu y Cx= + =                                            (2.1) 

where ×∈ℜn nA , ×∈ℜn mB , ×∈ℜ p nC  are unknown 
constant matrices, and ∈ℜnx , ∈ℜmu , ∈ℜ py  are the 
state, input and output vectors, respectively. It is assumed 
that the state vector x is not measurable. An equivalent pn-th 
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order non-minimal observer-canonical state-space (NOSS) 
model of this system can be written as  
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where ai’s are the coefficients of the characteristic 
polynomial of matrix A, and its state vector ∈ℜ pnx  is 
unknown. Using the above, we can write  
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Adding all the n 1+  equations in the above, we get  
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where, by Cayley-Hamilton theorem [3], we used the fact 
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( 1) ( 1)... ,  ...
T TT T

n nT T T TY y y y U u u u− −= =⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

    (2.6) 

Define ( )+∈ℜ p m nζ  by augmenting Y and U, as 
( 1) ( 1)... ...

T
n n TTT T T T Ty y u uY Uζ − −= ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦   (2.7) 

Then, equation (2.4) in the above can be written as  
( )ny ζ= Θ                            (2.8) 

where ( )
0 1 1 0 1 1

p p m n
n na I a I a I B B B × +

− −⎡ ⎤Θ = − − − ∈ ℜ⎣ ⎦ .  

Using the above, a new (m+p)n-th order non-minimal 
state-space realization (NSSR) model of the original system 
can be written as  
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       (2.9)  

where the state vector ( )+∈ℜ m p nζ  is defined in (2.7) and is 
known. However, it is not practical to differentiate measured 
input-output signals. To avoid differentiation and to 
eliminate u(n), using the filter 1/Λ(s), where Λ(s)=(s+λ)n is an 
arbitrary monic Hurwitz polynomial of degree n, we filter 
the system’s inputs and outputs as  
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where subscript f denotes filtered version of the signal. Also, 
let us define [ ]0 1... n

Tλ λλ
−

= . Then we have 
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where 
( )1

1 1 1 0( ) ...n T

n f n f fP s u s s u Uλ λ λ λ−

− −
= − + + + = −     (2.12) 

Similarly, one can write 
( )

1 ( )n T
f n f fy P s y y Y yλ−= + = − +                  (2.13) 
Then, filtering equation (2.8), it can be written as  

( )n
f fy ζ= Θ                          (2.14) 

Combining the above two equations, we get  
( )( ) 0 0n T T T

f f f f f

C

y y Y

ζ

λ ζ λ ζ λ ζ= + = + = Θ+⎡ ⎤ ⎡ ⎤Θ ⎣ ⎦ ⎣ ⎦         (2.15) 

Now, filtering the state-apace equation (2.9), and using 
equations (2.11) and (2.15), a non-minimal state-space 
realization (NSSR) of the original system can be written as 

f f

f

B u
y C

A ζζ

ζ

ζ ζ
ζ

= +
=

                                         (2.16) 

where ( )+∈ℜ m p n
fζ , 0,( ) TA A Bζ ζ ζ λ− ⎡ ⎤= Θ ⎣ ⎦ , B Bζ ζ= , and 

, 0TCζ λΘ + ⎡ ⎤= ⎣ ⎦  are constant parameter matrices such that 

Bζ  is known, but Cζ  and Aζ  are in terms of the unknown 

parameter matrix Θ , defined in (2.5). However, unlike the 
original model (2.1), in this NSSR model of the system, the 
state vector fζ  is completely known. Furthermore, the 

unknown parameter matrix Θ , and hence the matrices Aζ  

and Cζ , can be identified from equation (2.11), using any 

appropriate parameter estimation technique.  
B. Kalman Filter Based Modeling 
This section considers the problem of estimating the 

unknown parameter matrix Θ , which appears in the NSSR 
model (2.16) of a MIMO system. To do that, note that 
equation (2.14) can be rewritten, as [6] 

( ) ( ) ( )T
f

n
fy t t θ= Φ                                     (2.17) 

where the regression matrix ( )( ) × +Φ ∈ ℜT p pn p m
f t and the 

parameter vector ( )+∈ ℜ pn p mθ  are given as  
( )( )

( )

T
T f
f

T
f

tt
t

ζ

ζ
Φ =⎡ ⎤

⎢ ⎥
⎢ ⎥⎣ ⎦

                 (2.18) 

( )vec Tθ = Θ                        (2.19) 
where ‘vec’ operator concatenates the columns of a matrix 
into a vector. Noting that the unknown parameter vector θ  
is constant, an associated parameter dynamics (APD) can be 
written as 
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( ) ( )( )n T
f fy t vt

θ ω
θ

=
= Φ +                                          (2.20) 

where the parameter vector θ  is its state vector, ( )T
f tΦ  is 

its time-varying output matrix, and ω  and ν  are zero-mean 
random disturbances. Now, the parameter estimation of the 
NSSR model of the system can be converted to state 
estimation problem for the above APD system.  Clearly, a 
Kalman filter (KF) technique can be used for the state 
estimation of the above APD system, which equivalently 
estimates the unknown parameters of the NSSR model of the 
MIMO system. 

Defining ˆ( )tθ  as the estimate of the unknown state 
(parameter) vector θ , the estimate of the associated output 

( ) ( )n
fy t  will be given as  
( ) ˆˆ ( ) ( ) ( )T

f

n
fy t t tθ= Φ                             (2.21) 
Denoting the corresponding state (parameter) estimation 

error as ˆθ θ θ= − , the corresponding output estimation 
error (equation error) will be given as  

( ) ( )ˆ( ) ( ) ( ) ( )T

f

n n
n f fy t y t t te θ− = Φ=            (2.22) 
The objective of the state estimation is to minimize the 

cost function 

{ }
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1( ) lim ( ) ( ) lim ( ) ( )
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T T
n n n ntt t
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V e e d e t e tθ τ τ τ
→ ∞ → ∞
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∫       (2.23) 

A Kalman filter (KF) technique, with forgetting factor for 
exponential discounting of the old data, for state (parameter) 
estimation is given as, [22], [23], 

1ˆ( ) ( ) ( ) ( ) ( )ft P t t R t tθ ε−= Φ                       (2.24) 
1 1( ) ( ) ( ) ( ) ( ) ( )T

f fP t P t t R t t P t Qλ − −= − Φ Φ +                 (2.25) 

with (0)P I=  and ( ) ( ) ( ) ( )T

f fR t R t P t tλ= + Φ Φ , where 
λ>0 is the forgetting factor. A small λ may lead to non-
robust estimation, while higher values for λ improve the 
convergence. Moreover, for successful implementation of 
the KF estimation algorithm the input and output signals 
should be filtered by band-pass filters before the estimation 
process, so as to remove both low and high frequency 
components of these signals outside the frequency range of 
interest [14].  

It should be noted that the proposed NSSR model (2.16), 
with estimated parameters, transforms the problem of output 
feedback control for the MIMO system (2.1) with unknown 
states, to a state-feedback control with known state fζ . 
However, for practical control design, it is important that the 
equivalent model of the system is of low order.  

C. H∞ Model Reduction 
In this section, using an LMI-based H∞ model reduction, 

[12], the NSSR model (2.16) with known states is 
approximated by a reduced-order state-space (RSS) model, 
also with known states. Consider the ( )n n m p= + -th order 
NSSR model (2.16), which can be written, as 
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                       (2.26) 

where ×∈ℜn nAζ , ×∈ℜn mBζ , and ×∈ℜ p nCζ . It is assumed 
that the minimal order model of system (2.1) is controllable, 
observable, and asymptotically stable. Denote the RSS 
model of the system as   
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r
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                           (2.27) 

with matrices ×∈ℜq q
rA , ×∈ℜq m

rB , ×∈ℜ p q
rC , and 

×∈ℜp m
rD  such that 1n q≥ ≥ . The above RSS model is 
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2
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The above minimization problem can be solved, if there 
exist matrices 0X >  and 0Z > , and a scalar 0σ > , so that  

0,  0
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I I
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• − • −

⎡ ⎤ ⎡ ⎤
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   (2.30) 

and that TX Z V V= + Σ  where 0Σ >  and nxqV ∈ℜ  is to be 
chosen. The above minimization is equivalent to solving a 
convex optimization problem, as  

, , , 0
min { :  and (2.30)}T

X Z
X Z V V

σ
σ

Σ>
= + Σ                (2.31) 

Then, the matrices of the RSS model can be found as, [12]  
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where 1( )T TV A Z XA Vψ −= + . To choose V , according to 
[12], note that the equality appearing in (2.31) implies that 

0oX G> > , where n n
oG ×∈ℜ  is the observability grammian 

matrix of ( )H sζ . This, together with Schur complement 
applied to the second matrix inequality in (2.30), yields 

1 T
c oG Z G V Vσ − > > − Σ  where n n

cG ×∈ℜ  is the controllability 
grammian of ( )H sζ . Now let T

o o oG G G=  be the Cholesky 
factorization of the observability grammian oG , and let 

0T
o c oG G GΛ = > , where Λ  is a diagonal matrix with 

diagonal elements in descending order, 

V

V

ΛΛ = Λ
⎡ ⎤
⎢ ⎥⎣ ⎦

                              (2.33) 

As in [12], V can be selected as those columns of oG , 
associated with the q greatest elements of Λ , which is by 
partitioning [ ] nxn

oG V V= ∈ℜ . Then, Σ  can be obtained 

from TX Z V V− = Σ . Note that elements of oG  are also 
associated with the Hankel singular values (HSV) of ( )H sζ . 
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Therefore, discarding the columns of oG , associated with 
the n q−  smallest elements of Λ , eliminates the less 
dominant components of ( )H sζ  and preserves the q 
dominant components of ( )H sζ . Moreover, the state vector 

rx  of the RSS model is found from the known state vector 

fζ , by discarding those elements of fζ  associated with the 

n q−  smallest Hankel singular values (HSV) of ( )H sζ . In 
other words, rx  consists of only those elements of fζ  
associated with the q largest HSVs of ( )H sζ , which are not 
eliminated. 
 

III. ROBUST CONTROL 
In this section, a new LMI-based H∞ optimal control 

technique is presented for active noise blocking (ANB). 
 

A. H∞  State-Feedback Control 
The H∞ state feedback (HSF) control approach [8] is 

the state feedback version of the H∞ output feedback (HOF) 
control [22] – [24]. The method can be applied to the RSS 
model (2.27), or equivalently (3.1), in order to satisfy the 
inequality (3.2). That is, 

r r r r w

z r z

x A x B u B w
z C x D u

= + +
= +

                                        (3.1) 

( )zwT s γ
∞

<                                                        (3.2) 
where ( )zwT s  is the transfer function from the bounded 
disturbance w  to performance output z , γ is the desired 
performance bound, rA  and rB  are the matrices of the RSS 
model, and rx   is the state vector, which is known. Also, for 
the ANB system, w rB B= , T

z zD D I= , and 
zC  is arbitrary. The 

solution is found by minimizing the cost function  
2

0

( , , ) ( )T T

rJ x u w z z w w dtγ
∞

= −∫                                     (3.3) 

where one needs to find a symmetric positive-definite matrix 
P  from the LMI (3.4) to obtain the control (3.5) [2], [21], 

2
0 0

T T

r r r wz zA P PA C C PB PB
I

Iγ −

+ +

−
• <
• •

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                (3.4) 

,  rru Kx K B P= − =                                             (3.5) 
where •  denotes the corresponding parts of the symmetric 
matrix. This is equivalent to linear dynamic game [11], as  

, (0)
( (0)) min max ( , , )

ru w xr rU x J x u w= < ∞                   (3.6) 

where, U is the upper value function. When the stabilizing 
control (3.5) exists, the inequality (3.2) will be satisfied.  

 

B. Increased Robustness Against Uncertainty 
Given the structure (3.1) of the RSS model of a 

system, one may find various independent estimates of its 
parameters, which could slightly differ from each other. 
Figure 3.1 shows that various frequency responses of a 
system belong to a convex set with an upper and lower 

bound frequency responses (vertices). Here, an LMI-based 
HSF control is introduced to guarantee robust performance 
for various system models that belong to such a convex set. 

 

 
Figure 3.1. Estimated nominal frequency response of a system with upper 

and lower bound vertices 
 

Consider N frequency response-based models of the system, 
including the upper and lower bound models (vertices), as  

, , , , ,

,

r i r i r i r i w i

z r i z

x A x B u B w
z C x D u

= + +
= +

                        (3.7) 

where , , ,i 1 2 N= . Now, for HSF control design, one 
needs to find P and K for all N models, simultaneously.  For 
this purpose, consider the Schur complement of (3.4), as  

2

, , , , , ,

, ,                                         0

T T T T

T T

r i r i r i r i r i r i

w i w i z z

A P PA PB K K B P PB B P

PB B P C Cγ −

+ − − +

+ + <
        (3.8) 

Let 1P P−= , multiply both sides of the above equation by 
P , and define K KP= . Then we get  

, , , , , ,
2

, ,                            0

T T T T
r i r i r i r i r i r i

T T
w i w i z z

PA A P B K K B B B
B B PC C Pγ −

+ − − +
+ + <

        (3.9) 

Equivalently, using Schur complement [2], [7], we get  
2

, , , , , , , , 0
T T T T T T

r i r i r i r i r i r i w i w i zPA A P B K K B B B B B PC
I

γ −+ − − + + <
• −

⎡ ⎤
⎢ ⎥⎣ ⎦

  (3.10) 

which is linear in P  and K  and can be solved to find P  
and K . The closed-loop system , , ,( )r r i r i r w ix A B K x B w= − +  
will be quadratically stable if and only if (3.10) is feasible 
for 0TP P= > , 0γ > , and K , for all , , ,i 1 2 N= . 
Then, the MHSF control gain is given as 

1K K P −=                           (3.11) 
The above stabilizing MHFS control, guarantees that 

, ( )zw iT s γ
∞

<  for all system models (see [2]). 
 

IV. EXPERIMENTS 
The proposed modeling and control strategy was 

implemented for vibration control of an ANB panel, using 
dSPACE ds1104 DSP processor, with Matlab/Simulink 
support. The DSP sampling rate was chosen to be 10kHz, 
and the proposed approach was realized in real-time. The 
experimental apparatus is a 120-cm long, 60-cm wide, 60-
cm high rectangular Plexiglas 3D acoustic enclusure with an 
ANB panel assembled in the middle. The panel is made of 
foam and aluminum sheets. The foam is used to reduce mid 
and high frequency noise propogation. The aluminum sheet, 
with embedded piezoelectric patches, is used to reduce low 
frequency noise propogation, using the proposed control 
strategy. The experimental setup in Figure 4.1 shows the 
locations of the piezoelectric patches on the aluminum plate.  
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Figure 4.1. Experimental ANB Setup 

A. Modeling and Model Reduction 
Here, a 2-input 2-output arrangement of the ANB panel 

was considered. Kalman filter (KF) parameter estimation 
was applied to find the NSSR model of the system. The 
sampling time was ts=0.0001sec and the forgetting factor 
was 0.01λ = . A first order Butterworth band-pass filter 
with low and high cut-off frequencies of wl=0.05 rad/sec and 
wh=1000 rad/sec was used for filtering the system’s 2-input 
2-output signals. The covariance matrices were Q=10-3I, 
R=1.250I, and the initial parameter estimates were zero.  A 
noise signal was added to the input to enhance the system 
excitation for KF process. The estimated NOSS model of the 
ANB panel was of 16th order and its NSSR model was of 
32nd order.  

Experimental estimates of the system’s nominal model, 
using both the KF and an off-line frequency response 
technique, are shown in Figure 4.2. Both the KF and the off-
line frequency response techniques produced equivalent 
transfer matrices. Applying the H∞ model reduction to the 
NSSR model, a 4th order RSS model of the ANB system was 
obtained with known states. The reduction error bound was 

1.75σ = , and 
2

( )
min ( ) ( )
r

rH s
H s H sζ ∞∈ϒ

−  became 1.57 , which 

satisfies (2.28) and shows the applicability of the H∞ 
technique for order reduction of the NSSR model in 
practice.  

Figure 4.3 shows various frequency responses of the 
system that were collected at different times, independently. 
From this figure, the actual ANB panel model varies 
between two extreme upper and lower bound frequency 
responses. The equivalent RSS models of these frequency 
responses were used in the proposed LMI-MHSF control 
design, in order to simultaneously stabilize all these models.  
B. Robust H∞ Control 

Experimental implementation of the proposed LMI-
MHSF control was considered for multiple RSS models of 
the system, using DSP. Other controls were also applied to 
the nominal model for comarison. Figure 4.4 shows the 
closed-loop frequency responses of the 16th order nominal 
NOSS model of the system with an LMI-based HOF control, 
and the 32nd order NSSR model of the system with LMI-
based HSF control. From this figure, the LMI-HSF control, 
designed for the 32nd order NSSR model of the system, 

achieved better vibration reduction. This shows the 
advantage of knowing the system’s states in a real-time 
implementation. 
 

 
Figure 4.2. Frequency response of estimated nominal system model using 

Kalman filter (solid line), off-line sine response (dotted line) 

 
Figure 4.3. Frequency response of KF-based estimate of nominal system 

model (solid line), various independent models (dotted lines), lower bound 
and upper bound models (dashed lines) 

 

 
Figure 4.4. Frequency response of open-loop (dotted line), closed-loop with 

32nd order NSSR model and LMI-HOF control (dashed line), closed-loop 
with 32nd order NSSR model with LMI-HSF control (solid line) 

 

 
Figure 4.5. Frequency response of open-loop (dotted line), closed-loop with 

32nd order NSSR model and LMI-HSF control (dashed line), closed-loop 
with 4th order nominal RSS model and LMI-HSF control (solid line) 
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Figure 4.6. Frequency response for open-loop (dotted line), closed-loop 
with 32nd order NSSR model and LMI-HSF control (dashed line), closed-
loop with multiple 4th order RSS models (nominal, lower and upper) and 

LMI-MHSF control (solid line) 
 

The frequency responses of the closed-loop system with 
LMI-based H∞ state feedback (HSF) control, designed for 
the 32nd order  NSSR model, and for the 4th order RSS 
model of the system, are shown in Figure 4.5. Clearly, both 
4th order RSS and 32nd order NSSR models give similar 
results. However, the HSF control for the 4th order RSS 
model is economically more appropriate for implementation. 

In Figure 4.6, the closed-loop frequency responses of the 
system are shown for LMI-based HSF control designed for 
the nominal 32nd order NSSR model, and for the proposed 
LMI-based MHSF control designed for multiple 4th order 
RSS models of the system (nominal, upper and lower bound 
models). Clearly, the proposed LMI-based MHSF control 
resulted in a better noise reduction over a reasonable 
bandwidth. This proves the efficacy of the proposed robust 
control law, in real-time applications. 

V. CONCLUSION 
A new modeling and robust control technique was 

developed for active noise blocking (ANB). The modeling 
technique is based on a novel non-minimal state-space 
realization (NSSR) of continuous-time MIMO LTI systems, 
Kalman filter parameter estimation, and H∞ model reduction. 
The algorithm produces an equivalent reduced-order state 
space (RSS) model of the system, with known states using 
input-output (I/O) measurements.  The control design uses 
an LMI-based H∞ approach to generate a multiple-model H∞ 
state feedback (MHSF) control. The LMI-MHSF control 
simultaneously stabilizes multiple models of the system in a 
convex set. Laboratory experiments using HSF control for 
NSSR model and MHSF control for multiple RSS models of 
the system gave similar results. However, the proposed 
LMI-MHSF control achieved better noise reduction over a 
reasonable bandwidth. Therefore, the presented theory and 
the implementation results were compatible. 
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