
Improved Bumpless Transfer with Slow-fast Controller Decomposition

Shin-Young Cheong and Michael G. Safonov

Abstract— Previously introduced slow-fast decomposition
bumpless transfer is extended to 2-degree-of-freedom con-
figuration of candidate controllers. An easy implementation
with observable canonical form of slow modes controllers is
introduced. For controllers that have only fast modes, an
uncontrollable-slow-modes state augmentation technique is pro-
vided. Simulations demonstrate comparative advantages over
other bumpless transfer methods.

I. INTRODUCTION

Situations in which switching among multiple controllers

is required are frequently observed in various fields of control

engineering. In nonlinear control, it is common to switch

gains to attenuate the effects of control actuator saturation,

as in anti-windup compensator design [1], [2]. Controller

switching is also used for adaptive control of uncertain or

changing plants. It is possible that controller output signal

mismatch can occur at times controllers switched [3], leading

to discontinuities and abrupt transients called ‘bumps’. These

bumps on controller output are not desired in most cases.

Therefore, researchers have been encouraged to develop

‘bumpless transfer’ methods to overcome this problem since

the 1980’s.

In adaptive switching control applications, the plant is not

precisely known at the outset in general, and the goal of

adaptive control is to change the controllers for stabilization

or performance improvement as measured data begins to

reveal information about the plant. Due to this situation

of controller adaptation an exact plant model is regarded

unavailable at the time of switching. This requires for

bumpless transfer switching controller to have a particular

property, which does not depends on a plant model. While

existing bumpless transfer literatures successfully define the

problem and shows good performance [3]–[5], some of them

can be adequately applied to adaptive switching controls.

The conditioning technique [3], the continuous switching

method [6], and linear quadratic optimal bumpless transfer

method [4] are examples of methods in this category of

bumpless transfer methodologies. Furthermore, recent study

covers controller uncertainty beyond perfect knowledge of

controller model [7].

Another method which suggested particularly for adaptive

switching controls is the slow-fast decomposition bumpless

transfer by us [8]. By appropriately re-initializing the states

of the slow and fast modes controllers at switching times, this
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Fig. 1. Switching control system with 2-degree-of-freedom controllers

method can ensure that not only will the controller output be

continuous, but also that it avoids fast transient bumps after

switching. This can be considered as an improvement over

the method in [6], which is one of the simplest methods by

assuring continuity [9] but may allow abrupt fast transients

after switching. Our slow-fast decomposition bumpless trans-

fer method removes the possibilities of the abrupt transients.

The purpose of this paper is to present improvements

over [8]. The previous results are extended to include 2-

degree-of-freedom controllers. For this extension a switching

control structure with 2-DOF candidate controllers in Fig. 1

is introduced and a proof is also modified. Afterwards, we

develop a straightforward way to build slow mode controllers

based on the standard observable canonical form. This makes

manipulating slow-fast decomposed configuration easy in

practice. Special cases of which a controller has only slow

modes or only fast modes are addressed. A controller with

only fast modes uses state augmentation technique to create

a slow modes controller. Furthermore, simulation results

comparing the method presented in this paper with the other

in [6] while earlier examples in [8] demonstrated differences

between controller switching transients with and without

bumpless transfer. The example verifies slow-fast decompo-

sition bumpless transfer produces better performance than

[6] when controllers have fast parts.

The organization of the paper is as follows. Notation and

the switching control system configuration are introduced

in Section II. The bumpless transfer problem formulation

is presented in Section III. The slow-fast bumpless transfer

theory and method is presented in Section IV. Section V

shows simulation results and conclusions are in Section VI .
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II. PRELIMINARIES

A. Switching control system

We consider the switching control system as shown in

Fig. 1. The system includes a plant and a set of controllers

K = {K1, · · · ,Ki, · · · ,Kn} (i = 1, 2, · · · , n). (1)

Assume that the plant output is continuous when input is

continuous; A linear time invariant plant with a proper

transfer function is a good example. The input of the plant is

u(t) and the output is y(t). Plant input is directly connected

to the controller output. Controller inputs are r(t) and y(t)
where r(t) is a reference signal.

When a controller Ki is in the feedback loop, the con-

troller is said to be on-line, and the other controllers are said

to be off-line. The i-th controller Ki is supposed to have

state-space realization

ẋi = Aixi + Biz
yKi = Cixi + Diz

(2)

where z = [rT yT ]T is the input and yKi is the output of

Ki. Equivalently, we write

Ki(s)
s
=

[

Ai Bi

Ci Di

]

. (3)

We are interested in the situation in which the on-line

controller is switched from Ki to Kj at time ts, so that

u =

{

yKi for t < ts
yKj for t ≥ ts

. (4)

Note that time ts is called switching time or switching instant.

Since the controller output yKi is replaced by yKj at the

switching instant ts, the control signal u can have bumps in

the neighborhood of t = ts if yKi and yKj have different

values. Times immediately before and after ts are denoted

as t−s and t+s , respectively.

The objective of bumpless transfer is to ensure continuity

in the control signal and to smooth ‘bumpy’ transients at,

and immediately following, the switching instant.

B. Slow-fast decomposition

We now consider controllers that can be additively decom-

posed into slow and fast parts as follows:

K(s) = Kslow(s) + Kfast(s) (5)

with respective minimal realizations

Kslow(s)
s
=

[

As Bs

Cs Ds

]

and Kfast(s)
s
=

[

Af Bf

Cf Df

]

.

(6)

The poles of Kslow(s) are of smaller magnitude than the

poles of Kfast(s), i.e.,

|λi(As)| ≤ |λj(Af )| for all i, j

where λi(·) denotes the i-th eigenvalue.

The Kslow(s) and Kfast(s) of the slow-fast decompo-

sition may be computed by various means, e.g., the MAT-

LAB slowfast algorithm, which is based on the stable-

antistable decomposition algorithm described in [10].
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Fig. 2. Slow-fast controller decomposition

The slow-fast decomposition of the i-th controller Ki in

the set K is denoted with the subscript i as (6).

Kislow(s)
s
=

[

Ais Bis

Cis Dis

]

and Kifast(s)
s
=

[

Aif Bif

Cif Dif

]

(7)

Further details on how the controller modes are divided

as slow or fast will be described in a later section.

III. PROBLEM FORMULATION

As we mentioned in Section I, bumpless transfer should

perform not only continuous control signal but also smooth

transient after switching. To address both of problems, we

define bumpless transfer as follows.

Definition 1: (Bumpless Transfer) A switching controller

with slow-fast decomposition (5) is said to perform a bump-

less transfer if, whenever controller is switched, the new

controller state is reset so as to satisfy both of the following

two conditions:

(a) The control input signal u(t) is continuous at ts
whenever r(t) ∈ C0, and

(b) the state of fast part of controller Kfast(s) is reset to

zero at ts. ♦

Condition (a) in Definition 1 is frequently observed in

other bumpless transfer literature [6], [11]. Condition (b) in

Definition 1 concerns control signal after switching. This

additional requirement for our bumpless transfer is needed

to ensure that there are no rapid transients immediately

following controller switching. How controller state reset be

performed to simultaneously satisfy both conditions will be

described in the following section.

IV. BUMPLESS TRANSFER IMPLEMENTATION

The idea of using slow-fast decomposition of the controller

as the basis for bumpless transfer generalizes a related idea

introduced by [12] for adaptive PID controller switching. The

details of the bumpless transfer method for PID controllers

were described in [8]. We shall now describe the details of

bumpless transfer with slow-fast decomposition and suggest

one particular way to implement it.

A. Bumpless transfer with slow-fast decomposition

Our bumpless transfer method which will be stated in

this section requires the following assumption hold for each

of the candidate controllers.

4347



Assumption 1: For each candidate controller Ki, the slow

part Kislow in (7) has at least m = dim(u) states. ♦

The Assumption 1 is sufficient to allow the state of the

slow controller Kislow(s) to be reset at switching times to

ensure both continuity and smoothness of the control signal

u(t), as we shall explain.

In general, even if all the controllers have the same order

and all share a common state vector, when the controller

switching occurs, any or all of the slow and fast controller

state-space matrices will be switched, which can lead to

bumpy transients or discontinuity in the control signal u(t)
at switching times. However, if only Ais or Bis are switched

and there is common state vector before and after the switch,

then the control signal will be continuous and furthermore

no ‘bumpy’ fast modes of the controller will be excited.

Fast transient ‘bumps’ or discontinuities, when they occur,

may arise from switching the Dis matrix of the slow con-

troller or from switching any of the state-space matrices

(Aif , Bif , Cif ,Dif ) of the fast controller. In the case of

switching the matrices Aif or Bif switches do actually not

result in discontinuous jumps in u(t), but nevertheless can

result ‘bumpy’ fast transients in the control signal which, if

very fast, may appear to be nearly discontinuous.

Our goal in bumpless transfer is to avoid both discontinuity

and fast transients induced by changing fast modes. We

would like our methods to work even when the order of the

controller changes at switching times, and to allow for the

possibility that the true plant may be imprecisely known,

we would like our switching algorithm not to depend on

precise knowledge of the true plant. In our method, we can

do this by initializing the state of the slow part of the new

controller Kjslow(s) after each switch to a value computed

to ensure continuity, and setting the state of the fast part

Kjfast(s) to zero.

Theorem 1 (Main Result): Suppose that each of the can-

didate controllers have slow-fast decomposition (7) satisfy-

ing Assumption 1 and suppose that at time ts the online

controller is switched from controller Ki to controller Kj .

At ts, let the states of the slow and fast controllers be reset

as follows

xfast(t
+
s ) = 0 (8)

xslow(t+s ) = C†
js{u(t−s ) − (Djs + Djf )z(t−s )} + ξ(9)

where z = [rT yT ]T , C†
js is the pseudoinverse matrix of

Cjs, and ξ is any element of the null space of Cjs;

Cjsξ = 0 . (10)

Then, bumpless transfer is achieved at the switching time ts.

♦
Proof: The control signal immediately after switching (time

t+s ) can be written, based on state space representation model

(7) of the new controller Kj(s), as

u(t+s ) = Cjsxslow(t+s ) + Cjfxfast(t
+
s )

+(Djs + Djf )z(t+s ) . (11)

By (8) – (9),

u(t+s ) = Cjs[C
†
js{u(t−s ) − (Djs + Djf )z(t−s )} + ξ]

+(Djs + Djf )z(t+s )

By Assumption 1, CjsC
†
js = Im×m where m is larger than

or equal to the number of states of Kj . This results in

u(t+s ) = u(t−s ) − (Djs + Djf )z(t−s ) + (Djs + Djf )z(t+s ) .

Since

z(t−s ) = [rT (t−s ) yT (t−s )]T = [rT (t+s ) yT (t+s )]T = z(t+s ) ,

we finally have

u(t+s ) = u(t−s ) .

The result follows immediately from the Definition 1.

Q.E.D.

Comment: Since Cjs is a full rank matrix which consists

of m linearly independent vectors, CjsC
T
js is invertible and

C†
js = CT

js(CjsC
T
js)

−1 .

For details, see [13]. ♦
Equations (8) and (9) now define our slow-fast bumpless

transfer algorithm. An example using this algorithm will be

presented in Section V.

B. Slow modes controller with observable canonical form

Now we introduce a way to build slow modes controller

satisfying Theorem 1. Although there are various ways to

make slow modes controller, using observable canonical

form of Kslow is a good choice since Cjs in (11) has the

following form

Cjs =
[

I 0 · · · 0
]

. (12)

in which case, C†
js = CT

js in (9). Additionally, one simple

choice for the vector ξ in (10) is ξ = 0.

By having (12) for all j, one uses transpose matrices

rather than pseudoinverse matrices of Cjss. This reduces

complexity on state reset procedure.

Comment: Note that a bumpless transfer in [6] is a

special case of our bumpless transfer method. A method in

[6] requires that all controllers have the same number of

states and all controllers must have a state-space realization

which share a common C-matrix and D-matrix. Our slow-

fast method does not impose these controller restrictions, and

can be used whenever the minimal realization of slow part

Kislow has order at least equal to the dim(u). However, if

the controllers have slow part only (i.e., Kifast = 0 for all

i) and each controller has C-matrices with the form of (12)

and a common D-matrix (e.g. Dis = 0 for all i), then, it

is expected for both of methods to have the same result.

The advantages of the slow-fast bumpless transfer method

considered in this paper arise when the controllers have both

slow and fast modes, in which case our method is able

to exploit the additional flexibility for state re-initialization

provided by the additional fast modes to eliminate the bumpy

abrupt transients the might otherwise result. ♦
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C. Controllers with single type of modes

Situations that some of candidate controllers have only

slow modes or only fast modes need to be addressed as

special cases of the slow-fast decomposition bumpless trans-

fer. If candidate controllers have slow modes only, using the

method in Section IV-B and applying (9) straightforwardly

solve the problem.

On the other case, when candidate controllers have only

fast modes K = Kfast, it is necessary that the controllers are

modified in order to apply Theorem 1 because they do not

contain slow parts to be re-initialized. One possible solution

is augmenting the controller states with uncontrollable slow

modes that was not originally contained in the controller.

Then, by slow-fast decomposition, an additive slow mode

controller Kslow is included in the controller so that K̃ =
Kslow + Kfast where

Kslow
s
=

[

As 0
Cs 0

]

(13)

and As ∈ Rm×n has only slow modes. Note that the

Kslow has zero matrices for its Bs and Ds, so its output is

determined solely by initial state. The matrix Cs is chosen

with the form of (12) for the easiest way. Now, (8) and

(9) in Theorem 1 can be applied, exactly as when there

was already a Kslow. Since K(s) = K̃(s), measurements

for performance are not effected by adding the slow mode

controller (13) except transients after the switching times, as

expected how xslow works.

V. SIMULATION RESULTS

In this section, we present simulation example to demon-

strate the effect of our slow-fast bumpless transfer method in

reducing bumpy abrupt transients that might otherwise occur.

Example: Comparison among non-bumpless transfer, conti-

nuity assuring bumpless transfer, and slow-fast decomposi-

tion bumpless transfer

The example verifies validity of the additional condition

Definition 1(b) compared with a previously existing method

in [6]. A PID controller has an infinitely slow pole and a very

fast zero when ǫ is not zero with the following definition;

K(s) = Kslow(s) + Kfast(s) = KP +
KI

s
+

KDs

ǫs + 1
. (14)

Since a fast zero in its differentiator can make a large and

fast transient even after controller switching, considering

only continuity of controller output as in [6] might not

be sufficient to perform bumpless transfer. In this example,

we show that our method can suppress undesired transient

right after the switching. The results compare our bumpless

transfer method properly initializing both fast and slow

modes controllers with non-bumpless transfer switching and

another bumpless transfer in [6].

A plant for the comparison is

G(s) =
s2 + s + 10

s3 + s2 + 98s − 100
.

Two controllers having the structure in (4) were used to

show the results. Each controllers have three gains to be

switched, and the gains are as follows;

Controller 1. KP1 = 80, KI1 = 50, KD1 = 0.5
Controller 2. KP2 = 5, KI2 = 2, KD2 = 1.25

A small number ǫ is 0.01 and the reference input is r = 1.

The ǫ prevents the differentiator not to make an infinite

peak when a discontinuity comes into the controller. A PID

controller is naturally decomposed into a slow and a fast part.

Since a proportional gain is memoryless component, it can

be added to either part. Controller input is z = [rT yT ]T

for 2-DOF controllers. Subsequently, the controllers were

decomposed into

Kslow(s)
s
=

[

0 [KI − KI ]
1 [KP − KP ]

]

. (15)

And, in the same way, Kfast can be written by

Kfast(s)
s
=

[

−1/ǫ [1/ǫ − 1/ǫ]
−KD/ǫ [KD/ǫ − KD/ǫ]

]

. (16)

Controller 1 and Controller 2 in this particular case were,

respectively,

K1(s) = K1slow + K1fast = 80 +
50

s
+

0.5s

0.01s + 1

K2(s) = K2slow + K2fast = 5 +
2

s
+

1.25s

0.01s + 1

K1(s) was designed to stabilize the plant, while K2(s)
cannot stabilize the plant. In this experiment, K2 is the on-

line controller at first. Thus, the plant was not stabilized

at early stage. After 2 seconds, the on-line controller was

switched into K1.

Comment: The bumpless transfer method in [6] does not

include any initializing or state reset procedure at switching

instants. Instead, it works allowing only controllers for which

there exist state-space realizations such that share common

C and D matrices; i.e.,

Ci = Cj , C and Di = Dj , D for all i 6= j (17)

where the matrices are as in (3). Note that this is not possible

in general, unless all controllers have the same order and

same D-matrics. Though our slow-fast method does not

suffer this restriction on controllers, we have chosen for

our simulation example controllers that do conform to this

requirement in order be able to directly compare the two

different methods in the same situation. ♦
Three simulation experiments were done. First, switching

without any bumpless transfer method was performed. Next,

for comparison one used the method of [6] and another used

our slow-fast method based on Theorem 1. The upper part

of Fig. 3 shows the controller output. The solid line (Cheong

and Safonov’s) of output u(t) shows a smooth transient

around the switching instant while the dashed line (Arehart

and Wolovich’s) shows a fast transient after switching. The

dotted line indicates switching transient without bumpless

transfer, which has extremely high peak value generated by
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Fig. 3. Controller output u(t) (upper figure); Plant output y(t) (lower
figure). Controller is switched at t = 2.

derivative controller. If ǫ approaches to zero, the peak value

goes to infinity.

Fig. 4 shows u(t) with the time axis magnified near the

switching time. While the output without bumpless transfer

has discontinuity at switching time 2 second, the outputs

with bumpless transfer (dashed line and solid line) show

continuous transient. Note that dashed line (Arehart and

Wolovich’s) satisfies Definition 1(a) which coincides with

the definition of bumpless transfer used in [6]. However,

comparing with the solid line, the dashed line exhibits a fast

‘bumpy’ transient after 2 second. It is excited by changing

Kfast, which is clearly different result from our method.

The resultant plant output y(t) shown in the lower part of

Fig. 3 likewise exhibits an abrupt transient with the method

of [6]. Evidently, both the control signal and the plant output

in the case are significantly smoother with our slow-fast

bumpless transfer method.

VI. CONCLUSION

In this paper, we have analyzed and improved the slow-

fast controller decomposition bumpless transfer method in

[8]. Our bumpless transfer imposes, in addition to the usual

continuity demand, a requirement that there be no fast

transients induced by controller switching. We extended the

slow-fast bumpless transfer theory and method to 2-degree-

of-freedom controllers and explained how to use the standard

observable canonical form of the controllers to simplify
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Fig. 4. Magnified u(t) around the switching instant (t = 2).

practical implementation. Special cases that controllers have

only slow modes or only fast modes were commented and

possible solutions were provided. To clarify advantages of

our bumpless transfer method, comparison with continuity

based bumpless transfer and with non-bumpless transfer were

performed. Simulation results demonstrate the effectiveness

of our slow-fast bumpless transfer method in eliminating

abrupt fast switching transients.
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