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Abstract—This paper deals with the problem of
robust stabilization of an uncertain nonlinear system
with output measurements using the invariant ellip-
soid method. The non-linear system is uncertain but
bounded according to a ‘quasi-lipschitz’ condition and
the output measurements are subjected to pertur-
bations bounded by ellipsoids.The invariant ellipsoid
method allows to obtain the robust linear feedback as
a solution of the special linear optimization problem
with bilinear constraints. The methods for solving this
optimization problem involves the LMI technique. The
stabilization of the double mass-spring system is con-
sidered as an illustrative example.

Keywords:linear matrix inequalities, output regula-
tion, uncertain systems.

I. INTRODUCTION

The model of a system is only an approximate repre-
sentation of its full behavior. As a consequence of that,
uncertain parameters and perturbations appears. So, it
is desired that a control law is designed according to
the characteristics of the unknown variables in order to
provide robustness against them.

A class of state feedback controls in order to guaran-
tee uniform ultimate boundedness (UUB) for uncertain
dynamic systems were presented in [1] and summarized
in [7] where additional results were presented for the
analysis of perturbed systems subjected to nonvanishing
perturbations.

For the case of L2 perturbations, the explicit solutions
for the optimal controller with the H2 theory were ob-
tained as it was shown in [2] and [3]. The restriction of
bounded perturbations was changed in [4] where only the
maximum amplitude of the perturbations (l1 norm) was
considered, although the optimal controller designed with
the l1 scheme can be of high order. In [9] the problem
of ‘peak to peak’ gain minimization with Linear Matrix
Inequalities (LMI) was considered.

The notion of invariant sets and its close connection
with the Lyapunov theory was also exploited for the anal-
ysis and control of dynamical systems such as constrained
control, robustness analysis, and disturbance rejection as
was stated in [10].

The concept of invariance set states that any element
of this set for t = 0, will remain in the invariance set
for all t ε R. Ellipsoids are a simple way to characterize
the invariant set because only a center and a matrix are
required, although they are conservative approximations
of the invariant set.

Many robust control problems can be formulated in
terms of linear matrix inequalities (LMI) and solved with
semidefinite programming [8]. A significantly wider class
of problems can be formulated in terms of Bilinear Matrix
Inequalities (BMI) as in [5], but only in very few cases
(such as static state feedback and dynamic output feed-
back) it is possible to convexify the problem and derive
equivalent LMIs.

In [11] the static output feedback stabilization was
solved for an uncertain linear time invariant (LTI) system
using LMIs without minimizing any criterion. In [13] and
[14] the stabilization problem was stated for an LTI system
under bounded perturbations and noisy output measure-
ments using a linear control law based on the observed
state. This was done using the so-called invariant ellipsoid
method (Lyapunov function approach and the invariant
ellipsoid concept) that allows to design a control such
that minimices the invariant ellipsoid for the controlled
system. The solution to this problem was reduced to
an optimization problem with linear objective and LMI
constraints.

This paper is concerned with the problem of stabiliza-
tion of a nonlinear system in the presence of bounded
perturbations and output measurements. The nonlinear-
ities in the system come from uncertainties in a nominal
LTI system. The stabilization scheme is the invariant
ellipsoid method to construct a Luenberger observer and
the observed state feedback controller that minimices the
invariant ellipsoid as in [13]. Due to the nonlinearities of
the system, the constraints of the optimization problem
are bilinear. However, with the use of some appropriate
transformations, the obtained BMI constraints are shown
to be dependent only on two scalar parameters, i.e., for
fixed scalar parameters, the BMI constraints becomes
LMI and the optimization problem can be solved through
standard semidefinite programming technique. The outline

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeB15.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 1160



of this paper is as follows. In section 2, the problem
statement and basic assumptions are introduced. Then, in
section 3 the main results and its proofs are given; some
numerical aspects of the robust feedback synthesis are
given in section 4. Next, section 5 presents the application
of the obtained result to the stabilization of a double mass-
spring system. Finally, the conclusions are given.

II. PROBLEM STATEMENT

Consider the nonlinear dynamic system with linear
state-output mapping given by

ẋ = f(x, t) + Bu
y = Cx + wy

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the control
input, y ∈ Rk is the system output, wy ∈ Rk is the output
perturbation, f : Rn×R → Rn is an unknown (from a class
given below) nonlinear function, B ∈ Rn×m, C ∈ Rk×n are
the system matrices.

The following assumptions will be in force throughout:
• the output disturbances wy are inside of a bounded

ellipsoid, that is,

‖wy‖2
Kη

= wT
y Kηwy ≤ 1 (2)

where Kη > 0 is given;
• the nonlinear function f(x, t) is quasi-Lipschitz,

namely, it belongs to the class of functions satisfying

‖f(x, t) − Ax‖2
Kf

≤ δ + ‖x‖2
Kx

where 0 < Kf ∈ Rn×n, 0 < Kx ∈ Rn×n, A ∈
Rn×n are known matrices, δ ≥ 0; without loss of
generality, after the normalization of this inequality
it is sufficient to consider only two-valued case: δ =
(0; 1).

• The pair (A,B) is controllable and the pair (A,C) is
observable.

Using denotation wx := f(x, t)−Ax the system (1) can
be rewritten in the form

ẋ = Ax + Bu + wx (3)

y = Cx + wy (4)

with
‖wx‖2

Kf
≤ δ + ‖x‖2

Kx
(5)

Here we only consider the linear feedback controls

u = Kx̂, K ∈ Rm×n (6)

with respect to observed state x̂ ∈ Rn which are obtained
by the classical Luenberger observer having the structure

·
x̂ = Ax̂ + Bu + F (y − Cx̂), F ∈ Rn×p (7)

The robust stabilization of the system (3),(4) will be
realized using the method of Invariant Ellipsoids (see, for
example, [13]). Here we just present some basic ideas of
this method.

The ellipsoid

ε(0, P ) =
{
x ∈ Rn : xT P−1x ≤ 1

}
, P > 0

with center in the origin and shape matrix P is said
to be state-invariant for the system (3),(4) under the
disturbances (2) and nonlinearities (5) if the condition
x(0) ∈ ε(0, P ) implies x(t) ∈ ε(0, P ) for all t ≥ 0; in
other words, any trajectory of the system starting in the
invariant ellipsoid stays in it for all t ≥ 0. The trajectory
starting outside of the ellipsoid converges to this ellipsoid
(asymptotically or in finite time) and this is done with
the aid of the second method of Lyapunov for designing a
observed state controller.

This invariant ellipsoid can be considered as a charac-
teristic of the influence of the uncertainties in a system.
So, the minimum (in some sense) invariant ellipsoid cor-
responds to a robust feedback control. Hence, the main
problem is to design the observer-based linear feedback
control providing the convergence of any trajectory of the
system (3),(4),(7) to the ‘minimum’ invariant ellipsoid.
Here we will use the trace as the criterion of the ellipsoids
minimality.

III. MAIN RESULTS

Define the state estimation error as e := x− x̂. Then its
time derivative satisfies

ė = (A − FC)e + wx − Fwy

Introduce the extended vector z := ( x̂ e )T where z ∈
R2n. Then it follows

ż = Âz + F̂w (8)

where Â :=
(

A + BK FC
0 A − FC

)
, F̂ :=

(
0 F
I −F

)

and w :=
(

wx

wy

)
.

Our aim here is to find the control gain matrix K and
the observer gain matrix F providing a ‘good enough’
stabilization as well as state estimation of the system (8),
or more exactly, to design K and F such that the corre-
sponding invariant ellipsoid, called below ‘quasi-minimal’,
would contain the minimal one.

Theorem 1. If the following optimization problem

tr(X1) + tr(H) → min (9)

subject to⎛
⎜⎜⎜⎜⎝

R1 Y T
2 C 0 Y T

2 X2X1

CT Y2 Ψ X2 -Y T
2 I

0 X2 -τ2Kf 0 0
Y2 -Y2 0 -τ3Kη 0

X1X2 I 0 0 - 1
τ2

K−1
x

⎞
⎟⎟⎟⎟⎠ ≤ 0 (10)

(
-R1-2X2 I

I X1A
T +AX1+Y1B

T +BY T
1 +τ1X1

)
≤ 0

(
H I
I X2

)
≥ 0, τ1 ≥ δτ2 + τ3, τ2 ≥ 0, τ3 ≥ 0
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X1 > 0,X2 > 0,H > 0

with
Ψ := AT X2+X2A-Y T

2 C-CT Y2+τ1X2

has a solution with respect to the matrix variables
H,X1,X2, R1, R2 ∈ Rn×n, Y1 ∈ Rn×m, Y2 ∈ Rk×n and
the scalar variables τ1, τ2 and τ3, then the ellipsoid with
the matrix

P =
(

X1 0
0 X−1

2

)
(11)

is quasi-minimal invariant ellipsoid of the system (8) with
(2), (5) with the feedback control gain matrix

K =
(
X−1

1 Y1

)T
(12)

and the observer gain matrix

F =
(
Y2X

−1
2

)T
(13)

Proof: Define the Lyapunov function as

V (z) : =(z, P−1z), P−1=
(

P1 0
0 P2

)

where P > 0 is the matrix of an invariant ellipsoid should
be minimized. Then

V̇ = (z, P
−1

ż)+(ż, P
−1

z)
= (z, P

−1(Âz+F̂w))+((Âz+F̂w), P
−1

z)

= zT [Â
T
P−1+P−1Â]z+wT F̂T P−1z+zT P−1F̂w

or expressing in its quadratic form

V̇ =

⎛
⎝ z

wx

wy

⎞
⎠

T (
ÂT P−1+P−1Â P−1F̂

F̂T P−1 0

)⎛
⎝ z

wx

wy

⎞
⎠ ≤ 0

(14)
This ellipsoid (z, P−1z) ≤ 1 will be invariant if and only

if outside of it we have V̇ ≤ 0, that is, for z satisfying

zT P−1z ≥ 1 (15)

Together with (14) and (15) we also have

wxKfwx ≤ δ + xT Kxx and ‖wy‖2
Kη

≤ 1 (16)

To fullfill all this constraints let us apply the, so-called,
S-procedure (see, for example, [15]). Define

A0 :=
(

ÂT P−1 + P−1Â P−1F̂

F̂T P−1 0

)
, α0 := 0

Since

zT P−1z ≥ 1 ⇔
⎛
⎝ z

wx

wy

⎞
⎠

T

A1

⎛
⎝ z

wx

wy

⎞
⎠ ≤ −1 := α1

A1 :=

⎛
⎝ −P−1 0 0

0 0 0
0 0 0

⎞
⎠

Representing (16) in the form

wxKfwx ≤ δ + zT Kzz, Kz =
(

Kx Kx

Kx Kx

)

one has ⎛
⎝ z

wx

wy

⎞
⎠

T

A2

⎛
⎝ z

wx

wy

⎞
⎠ ≤ δ := α2,

A2 :=

⎛
⎝ −Kz 0 0

0 Kf 0
0 0 0

⎞
⎠

And analogously,

‖wy‖2
Kη

≤ 1 ⇔
⎛
⎝ z

wx

wy

⎞
⎠

T

A3

⎛
⎝ z

wx

wy

⎞
⎠ ≤ 1 := α3

A3 =

⎛
⎝ 0 0 0

0 0 0
0 0 Kη

⎞
⎠

Finally, by the S-procedure if there exist τ1 ≥ 0 , τ2 ≥ 0
and τ3 ≥ 0 such that

α0 ≥ τ1α1 + τ2α2 + τ3α3

A0 ≤ τ1A1 + τ2A2 + τ3A3
(17)

then the conditions (14), (15) and (16) hold and the
ellipsoid with the matrix P is an invariant ellipsoid of our
system. The first condition in (17) can be represented as

τ1 ≥ δτ2 + τ3, τi ≥ 0, i = 1, 2, 3 (18)

For the second one, define

Q := A0 − τ1A1 − τ2A2 − τ3A3 ≤ 0

or

Q =⎛
⎜⎜⎝

Θ1 P1FC+τ2Kx 0 P1F
CT FT P1+τ2Kx Θ2 P2 -P2F

0 P2 -τ2Kf 0
FT P1 -FT P2 0 -τ3Kη

⎞
⎟⎟⎠

with

Θ1 : =AT
KP1+P1AK+τ2Kx, AK = A + BK +

τ1

2
I

Θ2 : =AT
F P2+P2AF +τ2Kx, AF = A − FC +

τ1

2
I

Applying the quadratic non-singular transformation

T1 =

⎛
⎜⎜⎝

P−1
1 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞
⎟⎟⎠

to the matrix Q we get

Q1 = T1QTT
1 =⎛

⎜⎜⎜⎜⎜⎜⎝

Ψ1
FC+

τ2P
−1
1 Kx

0 F

CT FT +
τ2KxP−1

1

Ψ2 P2 -P2F

0 P2 -τ2Kf 0
FT -FT P2 0 -τ3Kη

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ 0
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Ψ1 := P−1
1 AT

K + AKP−1
1 + τ1P

−1
1 + τ2P

−1
1 KxP−1

1

Ψ2 := AT
F P2 + P2AF + τ1P2 + τ2Kx

Obviously that

Q1 = Q̃+

⎛
⎜⎜⎝

P−1
1

I
0
0

⎞
⎟⎟⎠ (τ2Kx)

(
P−1

1 I 0 0
) ≤ 0 (19)

where

Q̃ =

⎛
⎜⎜⎝

Ξ1 FC 0 F
CT FT Ξ2 P2 −P2F

0 P2 −τ2Kf 0
FT −FT P2 0 −τ3Kη

⎞
⎟⎟⎠

Ξ1 := P−1
1 AT

K + AKP−1
1 + τ1P

−1
1

Ξ2 := AT
F P2 + P2AF + τ1P2

Using the Schur complement to (19) we obtain

Q2=⎛
⎜⎜⎜⎜⎝

Π1 FC 0 F P−1
1

CT FT Π2 P2 -P2F I
0 P2 -τ2Kf 0 0

FT −FT P2 0 -τ3Kη 0
P−1

1 I 0 0 - 1
τ2

K−1
x

⎞
⎟⎟⎟⎟⎠ ≤ 0

Π1 := P−1
1 AT

K+AKP−1
1 +τ1P

−1
1

Π2 := AT
F P2+P2AF +τ1P2

Analogously, apply the transformation

T2 =

⎛
⎜⎜⎜⎜⎝

P2 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎞
⎟⎟⎟⎟⎠

to Q2 we obtain

Q3 = T2Q2T
T
2 =⎛

⎜⎜⎜⎜⎝

Δ1 P2FC 0 P2F P2P
−1
1

CT FT P2 Δ2 P2 -P2F I
0 P2 -τ2Kf 0 0

FT P2 −FT P2 0 -τ3Kη 0
P−1

1 P2 I 0 0 - 1
τ2

K−1
x

⎞
⎟⎟⎟⎟⎠ ≤ 0

(20)

Δ1 : = P2(P−1
1 AT

K+AKP−1
1 +τ1P

−1
1 )P2

Δ2 : = AT
F P2+P2AF +τ1P2

By Λ-inequality (see [15])

XY T + Y XT ≤ XΛXT + Y Λ−1Y T (21)

valid for any X ∈ Rn×k, Y ∈ Rn×k and any 0 < Λ =
ΛT ∈ Rk×k being applied for X = P2 and Y = I it follows

X + XT ≤ XΛXT + Λ−1

that for

Λ := −(P−1
1 AT

K + AKP−1
1 + τ1P

−1
1 )

implies

P2(P
−1
1 AT

K + AKP−1
1 + τ1P

−1
1 )P 2

≤-P2-P2-(P
−1
1 AT

K+AKP−1
1 +τ1P

−1
1 )−1 (22)

Applying then the Schur complement to the matrix in-
equality

−2P2 − (P−1
1 AT

K + AKP−1
1 + τ1P

−1
1 )−1 ≤ R1 (23)

we get( −R1 − 2P2 I
I P−1

1 AT
K + AKP−1

1 + τ1P
−1
1

)
≤ 0 (24)

Defining

X1 := P−1
1 , Y1 := P−1

1 KT ,X2 := P2, Y2 := FT P2

using (22), (23), (24) and the matrix inequality[
X Y T

Y Z

]
≤

[
X ′ Y T

Y Z

]

valid for any X = XT , Z = ZT and X ′ = X ′T ≥ X, then
(20) can be restricted by⎛

⎜⎜⎜⎜⎝

R1 Y T
2 C 0 Y T

2 X2X1

CT Y2 Σ1 X2 -Y T
2 I

0 X2 -τ2Kf 0 0
Y2 −Y2 0 -τ3Kη 0

X1X2 I 0 0 - 1
τ2

K−1
x

⎞
⎟⎟⎟⎟⎠ ≤ 0

Σ1 := AT X2+X2A-Y T
2 C-CT Y2+τ1X2(

-R1-2X2 I
I X1A

T +AX1+Y1B
T +BY T

1 +τ1X1

)
≤ 0

The minimization problem to be solved is

tr(X1) + tr(X−1
2 ) → min (25)

subject to the constraints (10). Introduce the following
additional constraint

H ≥ X−1
2 ⇔

(
H I
I X2

)
≥ 0

This allows to reduce the optimization problem (25) to a
linear one

tr(X1) + tr(H) → min

Remark 1. The problem (9) is, in fact, a bilinear opti-
mization problem because of the term X1X2 participating
in the matrix constraint (10). The numerical solution of
bilinear optimization problems is usually a non trivial task
and the feasible set for a BMI is nonconvex.

Remark 2. The proof of the theorem 1 was mainly based
on the S-procedure, Schur complement and Λ-inequality
[15].

Remark 3. Λ-inequality gives only the upper estimates
of the matrix inequalities so we can only guarantee that
the obtained solution gives the quasi-minimal invariant
ellipsoid.
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IV. ROBUST FEEDBACK SYNTHESIS:
NUMERICAL ASPECTS

Semi-definite relaxations (as in [6]) and the solution
through nonlinear programming methods (e.g. ‘branch-
bound’ algorithm) can be considered as two alternatives
to solve bilinear optimization problems. The Matlab-Tool
‘PENBMI’ is highly sensitive to the initial point selection
which is desired to be close to a solution [12].

The following lemma constraints the feasibility domain
of the previous theorem simplifying the problem of a
feasible starting point finding.

Lemma 1. The set of variables satisfying (10) contains
the set of ones satisfying⎛

⎜⎜⎜⎜⎝

R1 Y T
2 C 0 Y T

2 0
CT Y2 Φ X2 -Y T

2 I
0 X2 -τ2Kf 0 0
Y2 −Y2 0 -τ3Kη 0
0 I 0 0 R2

⎞
⎟⎟⎟⎟⎠ ≤ 0 (26)

(
-R1-2X2 I

I X1A
T +AX1+Y1B

T +BY T
1 +τ1X1+Λ

)
≤ 0

(
- 1
τ2

K−1
x -R2 X1

X1 -Λ

)
≤ 0,

(
H I
I X2

)
≥ 0

τ1 ≥ δτ2 + τ3, τi ≥ 0, i = 1, 2, 3

with
Φ := AT X2+X2A-Y T

2 C-CT Y2+τ1X2

Proof: By the Λ-inequality (21) with

XT :=
(

0 0 0 0 X1

)
and Y :=

(
X2 0 0 0 0

)
the matrix inequality (20) containing Q3 can be estimated
as

Q3 ≤ Q′
3 ≤ 0

where
Q′

3 :=⎛
⎜⎜⎜⎜⎝

Γ1 P2FC 0 P2F 0
CT FT P2 Γ2 P2 −P2F I

0 P2 −τ2Kf 0 0
FT P2 −FT P2 0 −τ3Kη 0

0 I 0 0 Γ3

⎞
⎟⎟⎟⎟⎠ ≤ 0

(27)
with:

Γ1 : =P2(P−1
1 AT

K + AKP−1
1 + τ1P

−1
1 + Λ)P2

Γ2 : =AT
F P2 + P2AF + τ1P2

Γ3 : = − 1
τ2

K−1
x + P−1

1 Λ−1P−1
1

that, in view of (24),(
-R1-2X2 I

I X1A
T +AX1+Y1B

T +BY T
1 +τ1X1+Λ

)
≤ 0

The term Γ3 in (27) can be bounded by R2 as

P−1
1 Λ−1P−1

1 − 1
τ2

K−1
x ≤ R2 (28)

Applying the Schur complement we can express (28) as( −R2 − 1
τ2

K−1
x P−1

1

P−1
1 −Λ

)
≤ 0

Remark 4. Notice that for fixed scalar parameters τ1 and
τ2 the matrix inequalities (26) become LMIs. They can be
solved using packages such as SeDuMi Toolbox, YALMIP
Toolbox and the standard MATLAB LMI-toolbox.

Remark 5. The solutions obtained for the optimization
problem (9) under (26) for fixed τ1 and τ2 can also be seen
as suboptimal solutions.

V. NUMERICAL EXAMPLE

Consider the model of a double mass-spring system
consisting in two unit masses, m1 and m2, connected by a
elastic spring with spring constant k, sliding without fric-
tion along a fixed horizontal rod with control input u. and
the following state space vector x =

(
x1 x2 v1 v2

)T

where x1, v1 and x2, v2 are values of coordinate and
velocity for the bodies. The corresponding state space
representation:

ẋ=

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

− k
m1

k
m1

0 0
k

m2
− k

m2
0 0

⎞
⎟⎟⎠ x+

⎛
⎜⎜⎝

0
0
1

m1

0

⎞
⎟⎟⎠ u+wx

The spring constant is an uncertain parameter that intro-
duces nonlinearities in the system and is given by

0.8 ≤ k ≤ 1.2

One can rearrange the nonlinearities wx to the form (5)
with

Kf =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , δ=0

Kx =

⎛
⎜⎜⎝

0.08 -0.08 0 0
-0.08 0.08 0 0

0 0 1e-10 0
0 0 0 1e-10

⎞
⎟⎟⎠

Also assume the following state-output mapping

y =
(

1 0 0 0
0 1 0 0

)⎛
⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎠ + wy

where wy ∈ R2 is an output noise which can be estimated
as

wT
y Kηwy ≤ 1, Kη =

(
530 25
25 1960

)

A linear feedback is designed according to the main
results of the previous section. The obtained parameters
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K and F realizing the robust output linear controller are

K =
(

-15.353 3.243 -10.275 -10.908
)

F =
(

1.298 0.177 0.530 0.153
0.141 1.269 0.203 0.233

)T

The obtained performance index (9) is 0.0117.
The figure 1 shows the position of the double mass-

spring model and the figure 2 shows the projection of the
invariant ellipsoid for x̂ in the phase plane (x̂1, x̂2).

Remark 6. As it can be seen from the above numerical
simulation the closed loop system has a good stabilization
performance, but the convergence processes in general are
slow. This situation seems to be usual for robust linear
controllers being applied to nonlinear models containing
external noise or disturbances.

VI. CONCLUSIONS

Here the stabilization scheme for a class of nonlinear sys-
tems under the presence of uncertainties and disturbances
is presented. As a principle part it contains the linear
output controller using the current state estimates and
designed based on the invariant ellipsoid technique. It min-
imizes the effect of the perturbations and nonlinearities in

the system. Due to nonlinearities and perturbations the
constraints involved into this optimization problem turns
out to be bilinear matrix inequalities. Using appropriate
transformations and fixing the scalar parameters (τ1 and
τ2), the bilinear constraints become LMI. The robustness
property of this scheme is confirmed by the application to
the double mass-spring model.
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