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Abstract— In this paper global stabilisation of a complex
network is attained by applying local decentralised static
output feedback control, ensuring guaranteed bounds on
quadratic performance. Necessary conditions for stabilisation
of a complex network with quadratic performance are de-
rived as a convex LMI representation. Strict positive real-
ness conditions on the node level dynamics allow nonlin-
earities/uncertainties, which satisfy sector conditions, to be
considered. A randomly generated academic example with 10
nodes is used to demonstrate the efficacy of the approach.

I. INTRODUCTION

How multiple dynamical systems connected over an arbi-
trary network achieve global stabilisation with gauranteed
performance is a significant research problem. Many re-
searchers have made contributions to the control of network
systems and cooperative control problems (see [5], [6]
for an overview). In comparison to conventional control
problems, the control of networks is much more demanding.
One key issue is how the information topology of the
network distribution, which plays a key role in determining
the dynamical behaviour, can be suitably exploited in the
problem. Making use of decentralised control strategies is
attractive from the perspective of limited computing power
and sensing capability.

A particular representation of the scale-free dynamical
network [4] in a modified form will be utilised in this
paper. According to [9], broadly speaking, state agreement,
synchronisation and consensus problems can be viewed
from an identical point of view. Central to these problems
is the graph describing the topology of the interconnections.
Algebraic graph theory has been widely employed in a
variety of research works dealing with such systems (see
the large number of publications in this area, [1]–[5], [7]–
[9], [9]–[14]), where interconnections are represented in
terms of a graph. Recently, the passivity concept has been
used in [11] to study the coordination of dynamical systems
in a group. In [11] the difference between the output
variables of individual dynamical systems in a group is
controlled to belong to a defined compact set, and studied
as a set stability problem. The passivity concept is then
employed to design the control law. The compact set is
defined as a sphere in the case of a formation of vehicles
and is considered as the origin in the case of consensus
problems. Ref. [12] focuses on stabilisation of formations
with linear dynamics, mainly with a full order decentralised
controller. Ref. [12] suggested the possibility of analysing
the stability of a network of N identical sytems, N nodes of
the representative graph, by simply studying the stability of
a node level system with modifications according to the
eigenvalues of the associated graph Laplacian. In [8], a
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common Lyapunov function is made use of for studying
the ‘pinning’ of complex networks and a state feedback
control structure was utilised. A particular representation
of the scale-free dynamical network [4], [8], in a modified
form, will be utilised in this paper.

It is probably fair to say that great strides have been made
in controlling and stabilising different classes of networked
systems. A decentralized state feedback control law that
guarantees consensus for the closed-loop system without
disturbances as well as a state-feedback controller that
achieves not only consensus, but optimal H2 performance
for disturbance attenuation are synthesised in [15]. In [16]
there has been work to design centralised optimal state
feedback regulators for the synchronisation problem, and
the L2 -norm of the error dynamics is considered as a
performance index of synchronisability. Decentralised state
feedback control of mobile robots and formation flying
is discussed in [6]. Note that most of the studies use
a state feedback approach. However in general, the idea
of incorporating performance aspects within the output
feedback control problem has received somewhat less at-
tention. At least part of the reason for this could be the
inherent complexity in understanding and then solving the
stabilisation problem of the networked system itself.

In this paper, the stabilization of a class of dynamical
systems operating over a network with guaranteed upper
bound on the H2 performance of the network is considered.
Algebraic graph theoretical tools, based on the connectivity
of the graph [22], are used to represent multiple dynamical
systems operating over the network [7], [8]. The individual
node level dynamics are represented as a combination of
linear and nonlinear parts. The primary objective is to
stabilize the network with certain H2 performance bounds
on individual nodes as well as at a network level by
making use of a decentralised static output feedback control
strategy. References [17], [21] provide details on output
feedback stabilisation. The contribution of this paper is
a methodology for systematic stabilisation of networks
using decentralised static output feedback control strategies,
formulated as convex linear matrix inequality problems. The
paper also demonstrates the possibilities of exploiting posi-
tive realness in the closed loop nodes so that the formulation
can handle certain classes of nonlinearities/uncertainties
satisfying sector conditions.

II. NOTATION

The notation in the paper is quite standard. The set of real
numbers, real-valued vectors of length m, and real-valued
m×n matrices are given by IR, IRm, and IRm×n respectively.
C ol(.) and D iag(.) denote a column and diagonal matrix.
The symbols N (·) and R(·) represent the null space and
range space of a matrix respectively. For a LTI system
H, its impulse response is denoted by H(t). The squared
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H2 -norm of a causal LTI system H is equal to ‖H‖2
2 =

∫ 0
∞trace[H(t)TH(t)]dt.

For the graph G , the adjacency matrix A (G ) = [ai j], is
defined by setting ai j = 1 if i and j are adjacent nodes and
ai j = 0 otherwise. This is a symmetric matrix. The symbol
∆(G ) = [δi j] represents the degree matrix, and is an N ×N
diagonal matrix, where δii is the degree of the vertex i.
The Laplacian of G , L (G ), is defined as the difference
∆(G )−A (G ).

III. SYSTEM DESCRIPTION

A distributed dynamical system operated over a con-
nected network, consisting of N identical dynamical ele-
ments indexed as 1,2, ...,N is considered in this paper. The
system is viewed as a graph G with N labelled vertices
or nodes. Each vertex/node represents an n-dimensional
dynamical system. The nodes are assumed to be coupled
linearly and diffusively [1], [4], [7]. As and where there is
an interconnection between any two dynamical systems, it
constitutes an edge connecting those nodes. The connectiv-
ity between the systems is assumed to be provided a-priori
by the Laplacian of the graph L (G ), from here on denoted
as L . The dynamics of the ith individual node of the graph
G are given in equations (1) and (2):

ẋi = Axi + Bui−
N

∑
j=1

cLi jΓx j + fi(xi) (1)

yi = Cxi (2)

where, xi ∈ IRn is the n-dimensional state vector of the ith

node of the network. The matrices A∈ IRn×n, B∈ IRn×m and
C ∈ IRp×n represent the nominal linear part of the system
comprising the dynamics of the ith node.

Assumption 3.1: The matrices B and C have full column
and row rank; and (A,B,C) is a minimal realization of the
ith node of the network G .
The real constant c > 0 is the coupling strength between the
ith and jth node.

Assumption 3.2: The coupling strength is assumed to be
identical for all the connections between the nodes.

As described in Section II, L ∈ IRN×N denotes the
connectivity of the topology of the network. The matrix
Γ = τi j ∈ IRn×n represents the local coupling configuration
among the states of the nodes. All the entries of Γ are 1 or
0 and represent the existence or non-existence of coupling
in the respective channels in the network.

Assumption 3.3: The local coupling matrix Γ is assumed
to be identical in each node of the network

Γ = D iag [τ1,τ2, ..,τi, ..,τn]

In addition, assume rank(Γ) = m, implying no coupling
in n−m channels. By rearrangement of the states of the
dynamics of each node, it is possible to ensure without loss
of generality that Γ consists of the block diagonal matrix:

Γ = D iag [Im,0] (3)

The signals ui ∈ IRm and yi ∈ IRp represent the control input
and the measured outputs of the ith node respectively. Here
it is assumed that p ≥ m. The functions fi(xi), represent the
nonlinear parts of the dynamical system and are assumed to

satisfy certain sector bounds which will be precisely defined
later in the paper.

Assumption 3.4: There exists a matrix F ∈ IRm×p

such that the triple (A,B,FC) is minimum phase and
rank(FCB) = m.

Assumption 3.5: Assume R(Γ) = R(B)
Remark 1: The restriction rank(FCB) = m can be in-

terpreted as the dynamical mapping between the control
signals and the outputs, is relative degree one.

Remark 2: The synthesis of a matrix F such that
(A,B,FC) is minimum phase and rank(FCB) = m is dis-
cussed in [19]. Necessary but not sufficient conditions are
that (A,B,C) is minimum phase and rank(CB) = m, see
[19]. Although this is still an open problem, in special cases
it can be solved explicitly. For details see [19].

IV. DECENTRALISED NETWORK STABILISATION

A. Linear static output feedback case

Before addressing the control problem associated with
system (1)-(2) discussed in Section III, certain preliminary
results will be developed. Consider the linear system

ẋ = Ax + Bu (4)

y = Cx (5)

Suppose Assumptions 3.1 and 3.4 introduced in Section III
hold for (4)-(5). Based on Assumption 3.4, there exists a
mapping x 7→ T̃ x, such that in the new coordinate system
the triple (A,B,FC) has the following special 4-block
partitioned form [19]:

A =

[
A11 A12

A21 A22

]

B =

[
Im

0

]

FC = [ F1 0 ] (6)

where F1 ∈ IRm×m is nonsingular. The matrix A22 ∈
IR(n−m)×(n−m) is Hurwitz since the eigenvalues of A22

represent the invariant zeros of the triple (A,B,FC). The
specific structures in (3) and (6) will be made use of in the
subsequent proofs.

Problem 4.1: Design an output feedback control law
of the form u = −γFy, where γ ∈ IRm×m, such that the
quadratic performance

J =
∫ ∞

0
(xTQx + uTRu)dt (7)

where Q = QT ∈ IRn×n ≥ 0 and R = RT ∈ IRm×m > 0
associated with (4)-(5) is minimised (or at least an upper
bound on J is minimised).

Proposition 4.1: (Quadratic stability criterion) Consider
the system given in (4)-(5) and the performance criterion
given in (7). Suppose the state space representation is in
the canonical form as in (6). Then, for γ = R−1, the static
output feedback control law u = −γFy, guarantees the
stability of the closed loop system (A−BγFC). Furthermore
the H2 performance (7) is bounded by trace(P̂), where P̂
is the optimal solution obtained by minimising trace(P)
with respect to γ , subject to the satisfaction of the Riccati
inequality and the matching condition:

P(A−BγFC)+(A−BγFC)TP+Q+(γFC)TR(γFC)<0 (8)

and
PB = (FC)T (9)
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Proof: Consider the output feedback control law u =
−γFy and the associated closed loop system (A−BγFC). A
matrix inequality condition associated with stability as well
as the quadratic performance index in (7) (see for example
[23]) can be written as

Θ:=P(A−BγFC)+(A−BγFC)TP+Q+(γFC)TR(γFC)<0
(10)

Recall that from Assumption 3.4 the system triple
(A,B,FC) has the canonical form in (6). In order to satisfy
(9), and commensurate with the partitioning in (6), P is
chosen as

P :=

[
P1 0
0 P3

]

> 0 (11)

If P1 := F1 then, the classical matching condition [18]–[20]
in (9) is satisfied 1. Solution methods to synthesise a (P,F)
pair to satisfy (9) are discussed in [19]. Choose a quadratic
Lyapunov function candidate V (x) = xTPx. It follows from
Eq.(4) and (10) that

V̇ (x) ≤−xTQx− xT(γFC)TR(γFC)x = −xTQx−uTRu

which by integrating over time implies

V (t)−V(0) ≤−

∫ t

0
(xTQx + uTRu)dt

The LQR type Riccati inequality (10) ensures the closed
loop system matrix (A − BγFC) is stable and therefore
V (t) → 0 as t → ∞. Since V (t) → 0 as t → ∞, J ≤ V (0).
Substituting the matching condition PB = (FC)T from (9)
into (10) yields

Θ = PA + ATP−2PBγBTP + Q+ PBγRγBTP (12)

By ‘completion of the square’, (12) can be written as,

Θ=PA + ATP+Q−PBR−1BTP+PB(I−γR)R−1(I−γR)
︸ ︷︷ ︸

Θc

BTP

(13)
A necessary and sufficient condition for Θ < 0 in (13) is

PA + ATP+ Q−PBR−1BTP < 0 (14)

Necessity is clear from (13), since Θc ≥ 0 . Sufficiency can
be seen by choosing γ := R−1 which makes Θc in (13) zero,
and (13) becomes the inequality in (14).

A bound on the H2 performance is provided as follows:
equation (14) is bilinear, but a congruence transformation

P̃ :=

[
P̃1 0

0 P̃3

]

= P−1 (15)

followed by a Schur complement argument can be applied
to achieve (14) in the LMI form given below:

Θ̃ =

[
AP̃+ P̃AT −BR−1BT P̃Q1/2

Q1/2P̃ −I

]

< 0 (16)

As a result of the optimal ‘natural’ choice γ = R−1, which
makes Θc = 0, it can be seen that the LMI (16) has

1If there exists an F so that (A,B,FC) is minimum phase then
(A,B,SFC) where det(S) 6= 0 possess the same invariant zeros and hence
the choice of P1 = F1 is not additional constraint.

no dependency on γ . Let P̂ represent the solution to the
optimization problem and so by construction

J ≤ trace(P̂−1)

Since J ≤ V (0) = x(0)P̂−1x(0), for a uniformly distributed
random distribution of normalised initial conditions x(0),
the expectation of J equals trace(P̂−1). Consequently this
provides an upper bound on the H2 norm. This completes
the proof. �

Remark 3: Formally the LMI problem associated with
(16) can be posed as:
Minimise: Trace(X)
subject to:

[
−X I

I −P̃

]

< 0 (17)

[
AP̃+ P̃AT −BR−1BT P̃Q1/2

Q1/2P̃ −I

]

< 0 (18)

where P̃ has the form in (15). Inequality (17) im-
plies X > P̃−1 and so minimising trace(X) minimises
trace(P̃−1) =trace(P). This is a convex optimisation prob-
lem [24] and can be solved using standard LMI solvers [25].
The solution to the set of LMIs provides a P̂ which also
satisfies the matching condition in (9) for an appropriately
scaled F . With the optimal choice of γ and manipulation of
the matching condition equality, the static output feedback
control law, ensuring H2 performance is:

u = −γFy = −γFCx = −R−1BTP̂−1x

which recovers the well known solution structure.
Remark 4: For the H2 performance framework which

follows, it is convenient to alter the representation of
the system dynamics in (4)-(5) to include a “fictitious”
input signal, v ∈ IRn and a performance output w. In the
transformed coordinates (6), the system can be written as:

ẋ = Ax + Bu + ν (19)

w = Ex (20)

where

E :=

[
Q1/2

R−1/2FC

]

(21)

Finding the controller to minimise the LQR cost J from (7)
is equivalent to minimising an upper bound on the H2 norm
of the transfer function matrix

G(s) := E(sIn − (A−BγFC))−1In (22)

B. Decentralised H2 performance at Network Level

This subsection tackles the problem of interest in this
paper, namely, the design of decentralised static output
feedback control laws ui = −γiyi, for i = 1, ...,N, for the
network system in (1) - (2). The problem can be defined as
follows:

Problem 4.2: Design decentralised output feedback con-
trol laws ui =−γiyi, for i = 1, ...,N, for the network system
in (1) - (2), satisfying an upper bound on the quadratic
performance, that entirely depends on the individual node
level closed loop dynamical system performance indices:
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specifically the problem seeks to minimize J = ∑N
i=1 Ji,

where

Ji =

∫ ∞

0
(xT

i Qxi + uT
i Rui)dt (23)

is the decoupled individual node level performance index.

The result in Proposition 4.1 does not necessarily reveal
anything about the H2 performance at a network level of
the N identical dynamical systems connected according to
an arbitrary graph G . Initially, a network system in the
absence of nonlinearities is considered, but in the sequel,
the presence of a specific class of nonlinearities in the
network dynamics is addressed with no alteration to the
theory developed.

Consider the network dynamics

ẋi = Axi + Bui−
N

∑
j=1

cLi jΓx j (24)

yi = Cxi (25)

for i = 1, ...,N which is the special case of (1)-(2), when
fi(xi) = 0.

Theorem 4.1: (Network quadratic performance bound)
Consider the linear network G given in (24) and (25)
together with the decentralised static output feedback con-
trol law ui = −γiFyi, for i = 1, ...,N, each providing an
H2 performance bound Ji at the ith decoupled node level as
in Proposition 4.1. Then the H2 performance of the network
satisfies J ≤ ∑N

i=1 Ji.
Proof:
From Lemma 4.1, consider the local decentralised static

output feedback control law for the N decoupled dynamical
elements given by

ui = −R−1Fyi, i = 1, ...,N (26)

Note the optimal ‘natural’ choice for γ has been used in
(26). Write the dynamics given in (24) as

ẋi = (A−BR−1FC)xi −
N

∑
j=1

cLi jΓx j + νi (27)

where νi ∈ IRn represents the fictitious input signal vector
at the nodes of the network whose effect is to be minimised
in an H2 sense. Using the expression in (27), the dynamics
of the overall network can be conveniently written as

ẋ =
(
IN ⊗ (A−BR−1FC)− c(L ⊗Γ)

)

︸ ︷︷ ︸

Ac

x + νc (28)

where νc = C ol{ν1,ν2, ...,νN} and the collective state x =
C ol(x1,x2, ...,xN). (See [27] for details and properties of
the Kronecker product operator “⊗”.) Since the Laplacian
L is a s.p.d matrix, by spectral decomposition (see [26]),
L can be written as

L = VDV T (29)

where the orthogonal matrix V ∈ IRN×N is formed from the
eigenvectors of L , and D ∈ IRN×N is a diagonal matrix
formed from the eigenvalues so that

D := D iag(d1,d2, ..,di, ...,dN) (30)

with the property that d1 ≥ d2 . . . ≥ dN = 0. Define a co-
ordinate transformation T : x 7→ z := T x, where

T := (V T ⊗ In) (31)

and V is the orthogonal matrix obtained from the spectral
decomposition in (29). The transformation matrix T is an
orthogonal transformation since using the properties of the
Kronecker product (see [27])

(V T ⊗ In)
T(V T ⊗ In) = (V ⊗ In)(V

T ⊗ In) = (VV T ⊗ In) = InN

Now consider the H2 performance at a network level.
Associate with each node the output

wi := Eixi (32)

where

Ei =

[
Q1/2

R−1/2FC

]

Define

Ec := (IN ⊗Ei) (33)

and write wc := C ol(w1,w2, . . .wN) so that

wc = Ecx (34)

From (28) and (34) the network system can be written as

G(s) ≃ (Ac, InN ,Ec)

with inputs νc and outputs wc. The performance sought here
is to minimise the effect of νc on wc in a H2 sense. The H2

norm of G(s) therefore represents a measure of the overall
network performance in terms of an LQR cost.

To obtain the dynamics in suitable coordinates, the trans-
formation T in (31) is applied to the outputs as well as
the states of the network level dynamics. Applying the
transformation T from (31) to the network level output wc

gives

wc = (IN ⊗Ei)(V
T ⊗ In)

−1z

= (IN ⊗Ei)(V ⊗ In)z

= (V ⊗Ei)z (35)

Using the properties of the Kronecker identities, the trans-
formation T : x 7→ z in (31), applied to (28) yields

ż =
(
IN ⊗ (A−BR−1FC)− c(D⊗Γ)

)

︸ ︷︷ ︸

Ãc

z (36)

where D is defined in (30). To have decoupling at the output
level, another orthogonal transformation To is applied to wc

to obtain a new signal w̃c as follows:

w̃c := (V T ⊗ Im+n)
︸ ︷︷ ︸

To

wc (37)

and so substituting from (35)

w̃c = (V T ⊗ Im+n)(V ⊗Ei)z = (IN ⊗Ei)z = Ecz (38)

Notice that if

G̃(s) := ToG(s)T T (39)
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then because T from (31) and To from (37) are orthogonal
‖G̃(s)‖2 = ‖G(s)‖2. A realization of G̃(s) from (39) is

G̃(s) ≃ (Ãc, InN ,Ec) (40)

where Ãc is defined in (36) and Ec is defined in (34). With
these transformations, the dynamics of an individual node
in the transformed co-ordinates can be written

żi = (A−BR−1FC− cdiΓ)
︸ ︷︷ ︸

Ai

zi + νi (41)

w̃i = Eizi (42)

for i = 1 . . .N, where z = C ol(z1,z2, . . . zN). This structure
follows from (36) because of the diagonal nature of D from
(30). Because of the decomposition of Ãc from (36) and w̃
from (37) into the structure in (41)-(42), it can be easily
verified that

‖G(s)‖2
2 = ‖G̃(s)‖2

2 =
N

∑
i=1

‖G̃i(s)‖
2
2 (43)

where

G̃i(s) ≃ ((A− cdiΓ−BR−1FC), In,Ei) (44)

The following argument shows the H2 norm of G̃i(s) is
bounded by trace(P̂−1). From the definition of Gi(s) in
(22), there exists a block diagonal matrix P̂ = D iag(P̂1, P̂3)
satisfying (16) which means that ‖Gi(s)‖

2
2 ≤ trace(P̂−1).

Using the four block partitions from (6) and (15), inequality
(16) can be written as





A11P̂1+P̂1AT
11−R−1 Θ2

ΘT
2 Θ3

P̂Q1/2

Q1/2P̂ −I



 < 0 (45)

where Θ2 := A12P̂3 + P̂1AT
21 and Θ3 := A22P̂3 + P̂3AT

22.
Since cdi ≥ 0, where the di are the eigenvalues of L ,
the symmetric matrix D iag(−2cdiP̂1,0,0) ≤ 0. Adding
D iag(−2cdiP̂1,0,0) to both sides of (45) means





Θ1 Θ2

ΘT
2 Θ3

P̂Q1/2

Q1/2P̂ −I



 < 0 (46)

where Θ1 = (A11−cdiIm)P̂1 + P̂1(A11−cdiIm)T−R−1. From
the structure of Γ in (3), it can be verified that

[
Θ1 Θ2

ΘT
2 Θ3

]

=(A−cdiΓ)P̂+P̂(A− cdiΓ)T−BR−1BT (47)

and therefore from the definition of G̃i(s) in (44), inequality
(46) implies

‖G̃i‖
2
2 ≤ trace(P̂−1)

and consequently from (43)

‖G(s)‖2
2 ≤ N × trace(P̂−1) (48)

This completes the proof �

Remark 5: The control law is ‘decentralised’ and ‘static
output feedback’ in nature. The H2 performance at the
network level has no direct relevance to the topology of
the graph.

V. NONLINEAR EXTENSIONS

The results discussed so far pertain to the special case of
system described in (1)-(2), when fi(xi)= 0. The results will
now be extended to systems represented by (1)-(2), where
nonlinearities in the system satisfy an additional assumption
introduced in the sequel. The dynamics of the network with
nonlinearities/uncertainties can be represented as:

ẋ = (IN ⊗ (A−BR−1FC))x− c(L⊗Γ)x + f (x) (49)

y = (IN ⊗C)x (50)

where f (x) = C ol( f1(x1), . . . fN(xN)) represents the vector
of nonlinearities.

Assumption 5.1: Suppose that the nonlinearities satisfy

fi(xi) = Bξi(xi) i = 1 . . .N (51)

for some functions of the states ξi(xi) where

(Fyi)
T(ξi) ≤ 0 (52)

is satisfied for all xi, where yi is thought of as Cxi.
Equation (52) represents a sector condition on the non-
linearity ξi(xi). Define ξ = C ol(ξ1, . . . ,ξN). Because (A−
BR−1FC) is stable, the triple ((A − BR−1FC),B,FC) is
strictly positive real [28], with Lyapunov matrix P̂ satisfying
the constraint P̂−1B = (FC)T . Define A := IN ⊗ A, B :=
IN ⊗B, C := IN ⊗C, F := IN ⊗F and P := IN ⊗ P̂−1. Notice
that

PB = (FC)T

by construction, since P̂−1B = (FC)T. From Assumption
5.1, it follows that

(Fy)Tξ =
N

∑
i=1

(Fyi)
Tξi ≤ 0, i = 1 . . .N

From the corresponding algebraic Riccati equation and the
definition of Ac in (28) and P

PAc +A
T
c P < 0,

it follows that V(x) = xT
Px is a Lyapunov function for the

nonlinear system in (49) written as ẋ = Acx + Bξ (x). Fur-
thermore N× trace(P̂−1) is still a bound on the performance
index J for the nonlinear system (49)-(50), or the equivalent
system representation (1)-(2).

VI. NUMERICAL EXAMPLE

To demonstrate the application of the theory developed
in this paper, an academic example is used. Consider
an arbitrary network consisting of 10 identical dynamical
systems with 8 interconnections represented as a graph
G (10,8). The 10 nodes of the graph represent the identical
dynamical systems. The linear parts of the dynamics at
individual node level in (1) - (2) are given as follows:

A =

[
1 0 1
0 1 0
0 1 −1

]

B =

[
1 0
0 1
0 0

]

C =

[
1 0 0
0 1 0

]

(53)

The nonlinearity fi(xi) = − |xi3|sin(xi1)
2y satisfies 5.1.

The local coupling matrix Γ = Daig{1,1,0}, which satis-
fies Assumptions 3.3 and 3.5. The coupling strength c is
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Fig. 1. Decentralised controller performance

identical (Assumption 3.2) and fixed as unity. The scaling
matrix

F =

[
1.0598 9.4526
3.3409 1.0598

]

follows from Assumption 3.4 and makes the triple
(A,B,FC) minimum phase. Compared with the usual state
feedback policies, only output information will be utilised
for stabilizing the network, which is realistic.

A locally decentralised static output feedback control law
is designed following the LMI procedures described in (17)-
(18). It should be noted that the decentralised static output
feedback design requires only local information at the node
level dynamics. Identical controllers are then used for each
node of the network G . Figure 1 shows the state and
output time responses of the closed loop network dynamics
with decentralised feedback. For clarity, only a 5 second
interval is shown. In the decentralised feedback case, the
computation of the Lyapunov matrix is at node level, no
matter how large the number of nodes in the network. This
is a very attractive feature of the decentralised feedback
strategy.

VII. CONCLUSION

In this paper, the stabilisation of a class of nonlin-
ear dynamical systems operating over a network with a
guaranteed upper bound on the H2 performance of the
network is considered. The individual node level dynamics
are represented as a combination of linear and nonlinear
parts, where the linear part is minimum phase and the non-
linearities/uncertainties satisfy sector bounded conditions. A
transformation depending on the spectral properties of the
network topology is used to achieve a suitable structure
for providing the bounds on the H2 performance level.
Decentralised static output feedback control is employed
to stabilise a network consising of a class of dynamical
systems with H2 performance at node level. An upper
bound on H2 performance, relating to the performance
at individual node level in the nonlinear systems and the
entire network, is also provided. The controller synthesis
is formulated as convex linear matrix inequality problems.

This paper also demonstrates the possibilities of exploiting
positive realness in the closed loop nodes so that the for-
mulation can handle nonlinearities/uncertainties satisfying
sector conditions.
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